ABSTRACT DERIVATION AND LIE ALGEBRAS*

BY
NATHAN JACOBSON{

The purpose of this paper is the investigation of the algebraic properties
of the set of operations mapping an algebra on itself and having the formal
character of derivation in the field of analytic functions. Some of the results
obtained are analogous to well-known theorems on automorphisms of alge-
bras.{ The considerations in I are general and quite elementary. In IT and III
we restrict ourselves to the derivations of an associative algebra having a
finite basis and in the main to semi-simple algebras. A number of results of
the theory of algebras are presupposed. These may be found in Deuring’s
Algebren, Springer, 1935.

I. DERIVATIONS IN AN ARBITRARY ALGEBRA

1. Let R be an arbitrary algebra (hypercomplex system not necessarily
commutative or associative, or of finite order) over a commutative field §.
Then R is a vector space (with elements x, y, - - - ) over § (with elements
a, B, - - - ) in which a composition xyeR is defined such that
(1) @+ y)z=22+ 3z, a(x +y) =25+ 2y, (¥y)a = (za)y = x(ya).

A derivation D of R is a single valued mapping of R on itself such that
(2) (@) (# + 9)D = xD + yD, (b) (va)D = (xD)a, (c) (xy)D = («D)y + «(yD).

Thus D is a linear transformation in the vector space R satisfying the special
condition (2c). It is well known that the sum D;+D,, difference D,—D,,
scalar product Da and product DiD. (defined respectively by x(D:=+ D)
=xD,+xD,, (Do) =(xD)a, x(D,D;)=((xD;) D) of linear transformations
are linear transformations. If D, D,, D, are derivations we have besides

3) (xy)(Dr £ Dy) = (xy)Dy = (xy)Ds = («Dy1)y + x(yD1) * (xD3)y + x(yD)
= (2(D:1 £ D»))y + x(y(D; £ D»)),
(4) (xy)Doe = ((xy)D)e = ((2D)y + x(yD))a = (xDa)y + x(yDa),

* Presented to the Society, December 31, 1936; received by the editors November 6, 1936.

1 National Research Fellow.

1 A direct connection between derivations and automorphisms may sometimes be established.
For example if R is the ring of polynomials [x] where § is a field of characiterstic 0, and D is defined
by f(x)D=f'(x) the usual derivative then exp D=1+4D+D?/2!4 - - - is an automorphism since
f(x) exp D=f(x+1).
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(2y)D1Dy = ((xy)D1)Dy = ((xD1)y + x(yD1))D;
= (#D1Ds)y + x(yD1Ds) + (xD))(yDs) + (xD2)(yD»).
Thus D, + D;, Da are derivations, but not in general D,D,. However (5) shows

that the commutator [D,, D;]=D;D.—D,D; does satisfy (2c) and so is a
derivation. We recall the relations

(6) [D1,D;] = — [Dy, Di], [[Ds, D2], Ds] + [[D2, Ds], Di] + [[Ds, D1}, D:] = 0.
As a consequence of (2) we have Leibniz’s formula:

(7) (xy)D* = (xD*)y + Ci,1(xD*)(yD) + Cio(xD**)(yD?) + - - - + x(yD*).

Hence if § has characteristic >0 we have

(8 (x3)D? = («D?)y + x(yD?);

i.e., D7 is a derivation.

By a restricted Lie algebra of linear transformations we shall mean a sys-
tem of linear transformations closed relative to the operations of addition,
subtraction, scalar multiplication, commutation, and taking pth powers, if p
(=0 or a prime) is the characteristic of the field over which the vector space
is defined.* With this definition we have

THEOREM 1. The derivations of an algebra R over F constitute a restricted
Lie algebra © of linear transformations in R.

()

We call D the derivation algebra or, more briefly, the d-algebra of R over §.
It should be noted that we are regarding D as an algebra over §.

2. Suppose D, E, Dy, D,, - - - are elements of any associative algebra .
As a generalization of the multinomial theorem in a commutative algebra we
have
9) (D1+D2+"'+Dr)k=2{l.)l o D}

Ji e g

where the summation is extended over ji, - - -, j- such that j.=0 and
ji+ -+ - +j.=k and where {D:---D,/ji-- 7.} denotes the sum of the
(it - - - +4)Y/ (! - - - 4.)) terms obtained by multiplying j; of the D’s,
j2 of the Dy’s, - - - , 4, of the D,’s together in every possible order. Let
D;+D;+ - - +D;=D,,,...; where iy, 23, - - - , i, are distinct and have val-
ues in the range 1, 2, - - -, k. Consider

D =D+ + (- )X DE =0,
C c

* We use the convention D°=0.
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where Y _¢D%,...;, denotes the sum of the C;, terms obtained by letting
iy, - - - , 1, run through all the combinations of 1, 2, - - - , k taken s at a time.
By (9), Q is a sum of terms of the form {D,, - - - Dm,/j1 - - - j¢} where j.>0
and ji+js+ - - - +j.=k. Since

{Dm1 . Dm} {Dm Dy Dy - - D‘n,,}
1o g i je 0 -0’
where 71, %2, - - - , %, are distinct indices different from m,, m,, - - - , m,, the

term {Dn, - - Dm/j1- - - j¢} has the coefficient Ci_.,, in X ¢Df,.. s, and
hence the coefficient of this term in Q is

Cratiimt = Ch—tipmtm1 + - - -+ (= 1)¥Cry 0 = bk,
i.e., =0 or 1 according as k¢ or k=1{. Hence

k

(100  Dhiy— X Dieciyy + - + (= )X Di = {
c C

{D1+~~-+D, D} _Z{Dl~-~D, D}
k 1f g1 g 17

where j, 20 and j1+ - - - +j,=Fk, we may derive the following formula simi-

lar to (10):

D AT < A B

If in (10) and (11) we set j; of the D’s equal to Dy, js equal to Dy, - - - , 71 equal
to D, then {Dy---Dy/1---1} and {D;--- DiD/1--- 11} become re-
spectively (il -7 {Di - - Dy/ju---ji} and (! i) {Dy- -
D:D/jy - - - 71} and we obtain expressions for these as sums of kth powers
and as sums of terms of the type { ED/k1}.

An analogue of (7) is

- (12) DE* = E*D + Ci,E*'D' + - - - + D®
- where D'=[D, E], - - -, D@ =[DD_ E]. Hence
EDE*! = E*D + Cp_1,E¥D' + - - - + Ci_y ;E*DD + - - . + EIDO=D,

Dl"'Dk} *
1 .1 ("

Since

and summing on /=0, 1, - - -, &£ we have

* If we set Dy=D;= - -+ =Di=1 in (10) we obtain the identity
ke —Cra(k—1)%+Cra(k—2)k— - - - +(—=1)1Cppa1F=EL
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ED
(13) {k 1} = Cip11E*D + - - - + Ciy1,jnE*DD 4 - . . 4 Db

since
Cri+ Cia,i+ - +Cji = Ciprjsa.
If the characteristic of % is p 0 special cases of (12) and (13) are

E D

(14) (a) [D, E?] = D®, (b) { } = D1

p—11
Equations (11) and (14b) show that {D; - - - D,/1 - - - 1} is expressible as
a linear combination of (p—1)-fold commutators, i.e., of the type Db
where D=D, and E is a sum of the other D.’s. Hence we see also that
(il - - 7) {Di---Dyfji-- -7} where i+ -+ +ji=p is a linear sum
of (p—1)-fold commutators. If no ji=p, (! - - - /i) £0 (mod p) and so
{D\D; - - - Di/jij2 - - - ju} is a linear sum of (p—1)-fold commutators and
(9) becomes

(15) Di+Dy+ - +D)»=D? +DP+ - +DF +5,

where S is a linear sum of (p—1)-fold commutators.

3. If D is any system of linear transformations we define the enveloping
algebra A of D to be the totality of linear combinations of products of a finite
number of elements of ©. We call £ the degree of the monomial D:D, - - - D,
D;e®. Suppose D is a Lie algebra of linear transformations and consider
D\D, - - - Dy where k<p if ps0 and arbitrary if p=0. We have

Dy DisDepDiDiya+ - Dy =DiDy - - D+ Dy - DisD'Dyys - - - Dy,

where D’ = [Dyy1, D;]eD. Since any arrangement 4152 - - -4, 0f 1, 2, - - - |
may be obtained from 1, 2, - - - , 2 by a sequence of transpositions of adjacent
indices

DiD;,- - D; =DDy---Dy+ R,
where R is a sum of terms of degree <k. Hence

{DlDz"'DI;

— (B)DD, - - - D + S,
11...1} (kD)D1D, e+

where degree of S <k. Since the left-hand side of this equation is expressible
by (10) as a sum of kth powers of elements in © and k!0 (mod ), we have
by induction that D,D; - - - D, is a linear combination of /th powers of ele-
ments of O where I<k.
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THEOREM 2. If D is a Lie algebra of linear transformations the elements
in the enveloping algebra N of degree k<p if p=0 and of arbitrary degree if
p=0 are expressible as linear combinations of lth powers ISk, of elements of D.*

If D is restricted (10) shows that {D\D,--- D,/jijo- - - j,} €D if
Hi+s+ - - - +j.=pand D;D. This transformation is also expressible as a sum
of (p—1)-fold commutators of elements of D. Since (Di+D,+ - - - +D,)?
=((D1+D2+ o +Dr)pk_l)pf0r].hj2’ T ’jr such thatjl+j2+ T +jr=Pk7

we have
D, Dy, - - D, D, Dy ---D,
D, D, --D, } }
. . . } = Z ku k12"'klr \k21 k22"‘k2r )
Jv J2 I

” - .

where the summation is extended over the non-negative integers such that

the ordered set (ku, ki, - - -, k1) 7 (Bm1, Bm2, =+ -, Bmr) fOr I#m and
b+ kit by = R t=1,2--"),
my+my+ - = p,
kimy + kemy + - - - = j, (i1=1,2,---,7).

Hence we see by induction on & that {D,D, - -- D,/jijs - - - 7.} €D for all
g1, Ja, - - - Such that j1+ja+ - - - +j.=pk.

4. Because of (14a) we are led to the definition: A restricted Lie Algebra R
of characteristic p (=0 or not) is an algebra (i.e., satisfies (1)) in which the
composition [, y] (in place of xy) satisfies

(16) [x: y] = - [y7 x]’

(17) ([x, y], 2] + [[y, 2], #] + [z, ], y] = 0,
for every vy there exists an element denoted as y? such that
(18) [ [l vyl 9] = [, 97]

for all x. A restricted subalgebra & of R is a subalgebra containing y? for every
y in &. Similarly we define restricted ideal, etc.}

Suppose R is an associative algebra. We may define a new composition
[x, y] =xy—vyx in terms of xy defined in R. It is readily verified that R is a

* This is a slight extension of a result announced recently by M. Zorn (i%ulletin of the American
Mathematical Society, vol. 42 (1936), p. 485). Cf. H. Poincaré, Sur les groupes continus, Cambridge
Philosophical Transactions, vol. 18 (1899), pp. 220-255.

t For definitions of the important concepts in the theory of Lie algebras the reader is referred to
Jacobson, Rational methods in the theory of Lie algebras, Annals of Mathematics, vol. 36 (1935), pp.
875-881.
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restricted Lie algebra if y? is defined as the pth power of y in . We shall call
this Lie algebra the restricted Lie algebra determined by the associative R.

5. If R is any algebra the mapping a,: x—=xa is a linear transformation
and will be called the right multiplication determined by a. Suppose D is a
derivation in ®. Equation (2c) gives the commutation relation

(19) [dr; D] = (aD),.

Similarly we define a; as x—ax and call this mapping the left multiplication
determined by a. In place of (19) we have [a;, D] =(aD),. If R is a Lie algebra
a,= —a,; and, by (16) and (17),

[%, yla. = [xa,, y] + [x, ya,].
Thus a, is a derivation which we call inner.

THEOREM 3. The totality of inner derivations of a (restricted) Lie algebra i
is a (restricted) ideal S in the d-algebra D of R. I=NR/C where C is the centrum
of R.*

If a, and b, are multiplications associated with @ and b it follows directly
from the definition of % that a, +b,=(a £b),, a,a=(ae),, [a,, b,] = [a, b], and
if R is restricted (a,)?=(a?),. Hence & is a subalgebra of ® and is restricted
if R is. Furthermore the correspondence a—a. is a homomorphism between
R and &. Since the elements of € are the ones corresponding to 0 in this
homomorphism %/€=>=3. Equation (19) shows that & is an ideal.

Suppose R is associative and D a derivation. D is also a derivation in the
restricted Lie algebra determined by %. Hence the d-algebra of & as an asso-
ciative algebra is a restricted subalgebra of the d-algebra of % as a Lie algebra.
Moreover the inner derivations x—[x, a] are derivations of the associative i
since

[%y, a] = [, a]y + xy, o].
Thus  is a restricted ideal in the d-algebra of the associative R.

If % is associative, D its d-algebra, DeD and ce@ the centrum of R then
¢-=c;=c and it is easily verified that Dce® also. Hence D has € as well as
& as a set of multipliers under which it is invariant. A subalgebra € of D
which contains with every element E also Ec for every ¢ in € will be called a
C-subalgebra of D.

If R is arbitrary, DeD the elements keR such that 2D =0 are called D-con-
stants. Their totality is a subalgebra. If 2D =0 for all D then % is a constant.
If R has an identity 1 we have 12=1 and hence 1(1D)+(1D)1=1D or 1D =0

* The centrum is the set of elements ¢ such that [¢, x] =0 for all x in R.
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so that 1 is a constant. More generally if D, is a subalgebra of © we denote
the set of elements £ in % such that ZD: =0 for all D:eD; by R(D1). R(Dy) is
a subalgebra. On the other hand if %, is a subalgebra of R we define D(Ry)
to be the set of derivations E such that x,E=0 for all xeR,. D(R,) is a re-
stricted subalgebra of . Evidently D(R(D:)) > D1 and R(D(Ry)) > R If R
is associative with centrum €, D(R,) is a restricted €-subalgebra of D.

S is a characteristic subalgebra of R if it is mapped on itself by every ele-
ment of D. The subalgebra of constants R, the centrum € and the powers of
R are characteristic. If & is characteristic, ©(&) is an ideal. In particular
D(C) is an ideal containing & if R is associative or a Lie algebra. The deriva-
tions mapping 9 on the characteristic subalgebra & also form a restricted
ideal ®. In the case of a Lie algebra or an associative algebra the ideal asso-
ciated in this way with € is the annihilator of J, i.e., the set of elements G
such that [a,, G] =0 for all a,. This is an immediate consequence of (19).

II. DERIVATIONS IN AN ASSOCIATIVE ALGEBRA WITH A FINITE BASIS

6. In the remainder of the paper 3 will denote an associative algebra
with a finite basis over §. We propose to study the d-algebra © of R.

THEOREM 4. If R=R1DR; and R =R1, RZ =Rz then D=DD,D D, where
D is isomor phic to the d-algebra of R..

R, is characteristic; for N2 =N, and so the arbitrary element x; of R
has the form Y_y:21, 1, z16R1. Hence £:D =) (y121) D =2 (31D) 21+ _y1(2:D) €9ty
since this is an ideal. Similarly R, is characteristic. Let D, be the ideals map-
ping % onto R;. Since R, N R; =0, DN D, =0 and hence [D1, D] DN D,
=0.1 If x=x1+x, x:,6R; and D any derivation, the mappings x—x1D=xD,
and x—x,D =xD, are derivations in D, and D, respectively. Since D = D;+ D,
D=,0D,. The isomorphism between D; and the d-algebra of R, follows
directly from the fact that the transformations of ®, induce all the deriva-
tions in R, and map N, into 0. Similarly D, is isomorphic to the d-algebra
of Re.

Let x;, #s, - - - , «, be a basis for R over § (R=u:F+xF+ - - - +.F) and
SUPPOSE XiX; =D _%,Y,ij, Voii€S- If D is a derivation in &% and

(xlD) x2D7 T er) = (xl, X2y "t 0y xT)A’ A= (aii)’ aiﬁ%)
then the condition (x:x;) D = (x;D)x; =x:(x;D) gives

(20) Z UpYpij = E Ykpi%pi + Z YkipQpj (1'! jr k= 1; 2’ ) f),
o o p

a set of #® linear homogeneous equations for the coordinates o;; of A. Con-

t [%,B] denotes the smallest subspace of D containing all the elements [4, B], where A, Be®.
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versely if A is any matrix whose coordinates satisfy (20) the linear transforma
tion D determined by A satisfies (x:x;)D = (x;D)x;+x:(x;D) for all 7, j and
hence (xy)D = (xD)y+x(yD) for all x, y, i.e., D is a derivation. Now suppose
R is a field containing § and let Re=x:R+2.8+ - - - +x,.8 and D* be the
d-algebra of Ng (over K). Evidently the matrix A also determines a deriva-
tion D* in R,. Furthermore since the maximum number of linearly independ-
ent solutions of (20) in K is the same as in § it follows that if Dy, D,, - - -, D,
is a basis for © then D Ds, - - -, D¥* is a basis for D%, and if [D:, D;]
=2 Dittoij, DY =2 Dovyi (ipis, v0i€F), then [A;, A;] =3 Aupyis, AT =D A, and
hence [D¥, D}]=2_D*u,;, (D¥)?=2 D*v,;. Thus we have proved
THEOREM 5. If D is the d-algebra of R then Dg is the d-algebra of Rg.

7. We now consider the d-algebra of a semi-simple algebra R. Since
R=RON:D - - - ®R; where R, are simple and R? =R, we have as a con-
sequence of Theorem 4

THEOREM 6. The d-algebra of a semi-simple algebra is a direct sum of alge-
bras isomor phic to the d-algebras of its simple components.

We suppose therefore that & is simple and let € denote its centrum. € is
an algebraic field over § and is characteristic. Let €, be the subfield of con-
stants of €. Because of (19),

[Dy, Ds]eo = [Dico, D2 = [Dy, Dico],

where ¢, here denotes the multiplication determined by the element ¢, of €.
Thus D as well as i may be regarded as an algebra over €,. We may there-
fore suppose that €o=g, i.e., the only constants in € are the multiples of 1
by elements of §. In this case we shall show that € is an inseparable field of
a simple type over .
Let ¢ be any element of € not in §. Since ¢cDeG, we have
¢(@)D = (c"+ ¢ vi+ - - +v)D
(21) . =(rc 14+ (r — Ve 2y1 + - - + vr1)(cD)
= ¢'(c)(cD),

where ¢’(\) is the formal derivative of the polynomial ¢(\) in the polynomial
ring §[A]. If ¢(c) =0 is the minimum equation of ¢ and D is chosen so that
cD#0, (21) gives ¢’(c) =0 and hence ¢’(\) =0. Thus ¢ is inseparable. In par-

ticular if the characteristic p=0, €=F and R is a normal simple algebra.
If p0, c» =v€§ since ¢?D = pc—(cD) =0 for all D.

Lemma 1. If § is a field of characteristic p#0, the polynomial \? —a is
either irreducible or a pth power of a linear factor in F\].
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Suppose \? —a is reducible and ¢(\) of degree <p is an irreducible factor,
say

A —a=¢MNYN),  (6(V),¥(N) = 1.
Differentiating we obtain
0 = (W) 1’ (Y (N) + oMY (V).

¥’(\) #0 implies that ¢(\)" divides r¢(\)™'¢’(N)¢(N\) and ¢(N) divides
r¢’ W)Y (N). Since ¢’(A) =0 and (¢(N), ¢¥(N)) =1, it follows that » =p and hence
¥ (\) has degree 0 contrary to the assumption y’(A) 0. Hence ¢’(\) =0 or
¥ (\) has degree 0 and may be taken to be 1. Then r¢(\)™'¢’(\) =0 and so
r=p, NP —a=¢p(\)".

We return to the consideration of the structure of € in the case p=0. If
€ #§ choose c1€G, ¢§. ci? =v1€F. The polynomial \» —+; is irreducible in F[A].
For otherwise A»—vy;=(A—8)?, 8§ and \?»—y;=A—c))?=(A—08)?, c; = e
contrary to the choice of ¢i. The order of F =§(c1) over § is therefore p. If
C=F' choose c:6€, ¢F'. c:? =7v26F and the polynomial \?—+, is irreducible
in §'. Hence §2=§'(cz) =F(c1, c2) has order p over F and consequently p?
over §. Continuing in this way we prove that €= (c1, ¢z, - - -, €m), €2 =7
and € has order p™ over §.

8. We determine first the structure of the d-algebra D of a normal simple
algebra R, i.e., €=§. The following theorem is fundamental.

THEOREM 7. If & is a semi-simple subalgebra of R, any derivation in S may
be extended to an inner derivation in R.T

By Wedderburn’s theorem R is the totality of £X¢ matrices with coordi-
nates in a normal division algebra @. In particular the elements z of & are
such matrices and we have a representation z—z of & by matrices in @. We
suppose first that this representation is irreducible. If D is any derivation
in & it is readily verified that

()
2 —>
zD z

()

are also representations of © by matrices (2¢X2f) in @. Since, as E. Noether}
has shown, every representation of a semi-simple algebra by matrices in a
normal division algebra is completely reducible, any two representations with

t This proof is an extension of an argument communicated to me by R. Brauer.

t E. Noether, Nichtkommutative Algebra, Mathematische Zeitschrift, vol. 37 (1933), pp. 514~
541. The theorem is stated here only for simple algebras but the proof given is also valid for semi-
simple algebras.
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the same irreducible parts are similar. Thus the two representations in (22)
are similar, i.e., there exists a fixed non-singular matrix

a a
4 = ( 11 21)) 2ieR
a1z Qg2
(02 G o) -G 2D G2)
2D 2z a1 Qg2 ag1 Qg9 0z

241, = ans, 2a13 = @123, (sD)ay; + zas1 = a3,

such that

for all ze©. Hence

(aD)a1s + 2022 = as3.

By Schur’s lemma, a;; and a1, are either 0 or non-singular and both cannot
be 0 since 4 is non-singular. If ¢,;#0, we set ¢ = —ana,it and if a1, =0, we
set = —ana:it. Then aeR and zD = [z, a] as was to be shown.

If z—z is not irreducible it is completely reducible and so there exists a
fixed matrix b in R such that

2
b~ 120 =

21

and z—z; are irreducible representations of &. As before

(o (2
- —
# (ZD),- 2 ’ z 0 Z;

are similar representations of & and there exists a matrix a; such that
(zD);= [z, a;]. Then if
a

az

@
b~1(zD)b=[b~'2b, a] and zD = [z, bab~], bab~'eR.
As a special case we have

THEOREM 8. The d-algebra of a normal simple algebra contains only inner
derivations.

COROLLARY. If R is simple, D(C) =T.
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If DeD(E), (x¢)D = (xD)c for all x and all ce€. Thus D is a derivation of %
considered as an algebra over €. By Theorem 8, D is inner and so D(€) € 3.
Since & o D(€) we have equality.

Suppose again that 9 is normal simple. Theorem 8 implies that
D=J>~R/F where R is the restricted Lie algebra determined by the associa-
tive R and § is the centrum consisting of the multiples of 1. We may extend
& to the field & such that Rg = &, is the complete matrix algebra of order 72
over &, i.e.,, 8, has a basis e;; (7, 7=1,2, - - -, n) such that e;jer;=dpreir.
We consider the structure of the Lie algebra &, having basis e;; also and
multiplication table

(23) less, ext] = 8jkeir — Surens.

The centrum of ®,is & the totality of multiples of 1 =e; e+ - - - +enn.
This is an ideal as is 8, = [®,, &.]. From (23) follows that e, €, —e..€f.
if ##s. Evidently every element of &, has trace 0. Conversely if a =>_e;jou;;
and tr(e) =anton+ - - - +on =0,

a = (ell - enn)all + (822 - enn)a22 + R + (en—l,n—l - enn)an—l.n—l

+ Z enata&@n,
t#s

and so R, is the set of matrices of trace 0 and is generated by eu—enn,
€2 —Cnn, * * * 5 €n1,n1— C€nn, €15 (17%5). These n?—1 elements are evidently line-
arly independent and hence form a basis for f,. Since (e,,—e:)? =e..—eu,
eq=01f p5£0 is the characteristic of &, & by (15) contains the pth power of
every element belonging to it, i.e., ®, is a restricted ideal. &, contains 1 if
and only if tr(1) =#=0 (mod p).

Suppose B is an ideal #8& in &, and b= ¢;8:/B, ¢f. Suppose
first B.,#=0 for some pair %, v, u=v. If #>2, choose v, % and then
[[[8, €], ew], e]Bat=eneB. If p£2, [[b, €], €m] (—2Bus)l=e,,eB. If
all B4, =0 then b =e1B11+ €202+ - -+ +€nnBrr and since b ¢R, B, 8., for some
pair #=v and hence [b, €.,] (Buu—Bw) ' =e6.,e8. Thus in any case unless
n=p=2 B contains an e,;, s*¢ and since by (23), [e., £.]=8/, B> K.
If = R, B=R..

Any ideal of ®./8 the derivation ring of the associative algebra &, has
the form B/ ® where 9B is an ideal in the Lie algebra &, containing . If p{n
the only such ideals are ® and .. Hence &,/ 8 is a simple Lie algebra, i.e.,
has no proper ideals.

If p|» and either %2 or n>2, 8,/ 8 has one proper ideal 8, /8 and this
is restricted. It may be shown by a direct argument similar to the above that
R, /R is simple except when p =% =2 and hence the Lie algebra &,/ & is semi-
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simple. Since ®. /8 is the only proper ideal in 8,/ & the latter is not a direct
sum of simple ideals.f

THEOREM 9. If R is a normal simple algebra of order n* and p | n® then
the d-algebra © of R is simple.

THEOREM 10. If R is normal simple and p|n® but either ps£2 or n>2 D is
semi-simple though not simple.

To prove these theorems we note that a proper ideal 8 of D becomes a
proper ideal B, of Dy the d-algebra of Ry when § is extended to &. By choos-
ing R so that Rp = R,, D= R,/ R it follows that D has no such ideals if p}n?2.
If p|n? and either p£2 or n>2, [D, D]e= R,/ /R is a proper restricted ideal
of Dg and hence D' =[D, D] is a proper restricted ideal in D. D’ is simple
since Dy is.

If n=p=2 it is easily seen that f;/& and hence D is solvable.

9. We consider next the d-algebra © of the other extreme case, namely,
R=C=F(ci, 2, - - -, cm) Where ¢ =v; and the order of R over § is pm,
$#0. Let D be any element of ®© and consider the correspondence D—
(aiD, ¢:D, - - -, ¢cwD) mapping D on the space R™ of ordered m-tuples of
elements of R. This correspondence is linear relative to § and since
aD=¢D= - =c,D=0 implies that D=0 it is (1—1). Moreover if
(di, ds, - - -, dn) is an arbitrary element of R there is a DeD such that
c:D=d;. For R>F [N\, N, - - -, An]/P where P is the ideal having the basis
M =71, M=,y AP =Yme IE iy -, M), doh, oy A,

dn(\1, - - -, N\n) are arbitrary polynomials, then the transformation D de-
fined by
e\, Ny 5 Am
C()\l, )\2, s ,)\m)D = Z ( - 26)\ ) di()‘l; )‘2) T )\m)

is easily verified to be a derivationin F[A, Ng, - - -, An]. IF 2, Ag, - - -, An)€B
then zDep also. It follows that D induces a derivation in F[A;, Ag, - - -, An]/B,
i.e., in R and since di(\y, - - -, N\) Were arbitrary, D may be chosen so that
c:D=d;. We have therefore established an isomorphism between D and R™
considered as vector spaces over §. The order of R is mp™ and hence the
order of D is mp™ also.

LemMA 2. If R is any commutative field, D a derivation in it, and § the
subfield of D-constants, a necessary and sufficient condition that the elements
Vi, Yo, - - -, ¥» e linearly dependent over § is that the Wronskian

t If p=0 a fundamental theorem due to E. Cartan, Thése, Paris, 1894, states that a semi-simple

Lie algebra is a direct sum of simple algebras. The algebras £,/8 for p] nshow that this does not hold
for p70. A second example of this type will be given below.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



218 NATHAN JACOBSON [September

yl y2 e . yr

le y2D e yrD _ 0

yi D™l y,D 1. .. yrDr—l

The usual proof of this result for analytic functions is valid here.f As a
consequence we have

LeMMA 3. The differential equation y(D"+D'a;+ - - - +a,) =0, a:eR,
has at most r solutions y1, vs, - - - , V. in R linearly independent over §.

It hasbeen shown by R. Baer] that if % is a field of the type §(ci,cz, - -« -, €m),
c® =v,€§, there exists a derivation D such that the D-constants are precisely
the elements of §. Let D denote a fixed derivation of this type and set ¢cD =c¢’
for any ceR. D», D** - . . are derivations and since ® is commutative the
transformation Dao+Dra;+ - - - +D*"a,_; is a derivation for arbitrary
right multiplication a; (=a.,) in R. If Dao+D?a,+ - - - +D*"a,,_,=0, i.e.,
y(Dao+Dray+ - - - +D*"a,,_y) =0 for all y in R, it follows by Lemma 3
and the fact that § is the set of D-constants that all ¢;=0. Thus as the a;
vary in ® we obtain in this way mp™ linearly independent (over §) deriva-
tions and hence the complete algebra ©. We shall therefore call D a generator
of D. Since D*" is a derivation we have

D?" = D?" by y + D?" "byy + - - - + Dby.
Taking commutators with D we have by (19),
0=D"""byi_y + D*" by + - - - + DbJ,
and hence b/ =0, i.e., b; =0:€e§, and

(24) D" = D*" By + D?" Bps+ - - - + DBo.
As a consequence of (19), we note also
(25) [Dr*a, DPib] = Dr*a®)p — Driprhq,

where a® =gD?. If E=Da0 then the E-constants are the same as the
D-constants since the multiplication a is non-singular and hence E is a genera-
tor of D also.

THEOREM 11. The d-algebra of the field R=F (c1, ¢z, - = - , Cm), €:* =7: 1S
simple except when p=2, m=1.

t See, for example, T. Chaundy, Differential Calculus, Oxford, 1935, p. 106.
1 R. Baer, Algebraische Theorie der differentiierbaren Funktionenkirper. I, Sitzungsberichte,
Heidelberger Akademie, 1927, pp. 15-32.
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Let 80 be an ideal in © and E =Dbo+Drb,+ - - - +D?b;, b;#0, j <m,
belong to B. We call j the length of E and suppose E chosen in ¥ so that j
is minimal. We assert that j=0. For if >0 we may suppose b,=1. This is
evident if &/ =0 or b;=0,eF and if b/ %0, [E, D(b})~']=Dbs*+Drb}+ - - -
+Dp7€§B But if E=Dbo+DPb1+ LR +Dpi—lbj_1+Dpi then

[E, Da] = D(ab(), - d,bo —_ s - a"’"‘)b,-_l - a“”))
+ Drab{ + - - - 4 Dr'ab/_,.

[E, Da] has length <j and may be chosen >0 since by Lemma 3 a may be
"chosen so that ab{ —a’byp— - - - —a® ™Mb, ; —a® 0. This contradicts the
minimality of 7 in 8 and shows that E=Db,, by0. Since E as well as D is a
generator of ®, by changing the notation we may suppose that 8 > D. Then
B> [Da, D] =Da’ also. Since the null space of the linear transformation D
in R has order 1, the order of %’ the set of all a’ is pm—1 over . If 1 ¢R’ the
smallest space containing all ¢’ and 1 is R. Since > D and Da’, 8 will then
contain Da for all a in R. Also if p=2, $>%1[Da’, Db]+31[Da’b, D]=Da’’b
and since a’’ is not identically 0 and b is arbitrary, 8 > Da for all a. Suppose
finally that p=2 and R’ >1, say «’=1. Here 8> [[D%, D], Db]=D%""b
+Da’b"’. If m>1, a’’ is not identically 0 and hence b may be chosen so that
a"’b=u. Set a'b’’=v. B>5[Du+Dv, Dal+D(va+ua’+a)’=D% and
[D%, Db]+D?%’b=Dab"’. Thus in any case unless p=2, m=1, B> Da for
all ¢ and since [D?b, Da]+Da™b=D"b'a, B> all D?a so that B=D.

If p=2, m=1, © has order 2 and hence is solvable. In all other cases the
algebras © are simple algebras which, like inseparable fields, have no counter-
parts for p=0.

If E is any derivation, the totality of expressions E”a¢+E*'q;+ - - -
+Eag, a:eR is, by virtue of (15) and (19), a restricted R-(=E€-)subalgebra
€ of D. Conversely if € is any restricted R-subalgebra of D, € is generated in
this fashion. To prove this let E=D#gy+D?"g1+ - - - +Dg., go%0, be an
element of smallest length in €. Since € is an f-algebra we may suppose that
go=1and then E=D»”+4D*"gi+ - - - +Dg, is unique. If F =D hy+D*"h,
+ - -+ +Dhse€, fzeand

Fl = F - Epf_eh() = Dp/_lko + AR + Dkf_.l

by (15) and (25). Fi has length <f—1 and belongs to €. Repeating this proc-
ess we obtain an expression for F of the form E*ay+ - - - +Ea;_..

If as in I we denote the elements of % which are constants for all the deri-
vations in € by R(E) it is clear that R(E) coincides with the subfield & of
E-constants. On the other hand if E is any derivation, © the set of E-con-
stants, then the argument at the beginning of this section shows that E gen-
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erates the d-algebra D(&) of R considered as a field over &. Hence D(S) =G,
ie.,

DHRE)) = E.

If & is any subfield of R, D(S) contains an element E such that the E-
constants are precisely &. Hence R(D(S)) cannot be larger than & and so

R(D©)) =6G.

We have therefore proved

THEOREM 12. There is a (1-1) correspondence between the subfields S of R
containing § and the restricted R-subalgebras € of the d-algebra T of R over §.
The correspondence is given by either € =D(S) or S =R(E).

10. We now suppose that & is simple and that ®>€ > § where €=
(1, ¢y - -+, Cm), c? =7v; and p0. Let D denote the d-algebra of R over
% and € that of € over §. If De®D, D induces a derivation in € and hence ©
is homomorphic with a subalgebra G, of €. Since D(€) is the set of elements
corresponding to 0 in this homomorphism, we have €;~9/D(€). But by
the corollary to Theorem 8, D(€) =3 and hence ¢,~D/3. We wish to show
that €;=G.

R may be regarded as a normal simple algebra over € and there exists a
separable field €(s) over € such that % XE(s) =E(s), the matrix algebra of
order #? with elements in €(s). As has been shown by Albertf the separable
extension €(s) of the inseparable field € has the form R(ci, - - -, ¢n) =€
where R is a separable field over §. Now consider Rg. The centrum of this
algebra is g =C(s) and if #1, %3, - - -, . form a basis of R over € they are
also a basis for R over Cg = E(s). It follows that Rg =R X C(s) =C(5), = (Cg)n.

The d-algebra of R is Dy and the ideal of inner derivations of Dy is Jg.
If E*is any derivation in € over &, the correspondence D _ejc.f—p_e:;(c.}E¥),
cifeCy is readily verified to be a derivation in Rg inducing E* in €. Hence
Dgp/Je is isomorphic to the complete d-algebra of €, and so has order mp™
over . Since Dg/Ie2(D/)e, D/ has order mp™ over §F. Comparing or-
ders we have §>D/3.

THEOREM 13. Suppose R is a simple algebra of order n® over its centrum
C=F (cy, co, - - -, Cm), c® =73, p=0. Then the d-algebra of D over R is semi-
simple unless p=2 and either n=<2 or m=1.

Let B be a solvable ideal in ©. 8431 is an ideal and (8+3)/J is a solva-

t A. A. Albert, Simple algebras of degree p° over a centrum of characteristic p, these Transactions,
vol. 40 (1936), p. 113.
1 B+ denotes the smallest space containing B and J.
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ble ideal in D/32E. But by Theorem 11, € is simple. Hence (3+3)/3=0
or B+3 =3 and B ¢ J. However, by Theorem 10, & is semi-simple and so
B=0.

® is not a direct sum of & and a second ideal. For we have seen (§5) that
the elements commutative with all elements in & are those mapping % into G.
If F is such an element, then F* the extension of F maps Rge into €p (cf.
Theorem 5). If e;;F* =¢,¥eCg, it follows from e;;ex; = §;1¢:; that ¢;;*=0. Hence
(e:;c*) F* =e.;(c*F*) for c*eCq. If this belongs to €, we must have ¢*F*=0.
Thus F¥*=0, F =0, and D is not a direct sum.

ITI. THEORY OF D-FIELDS

11. In this part we propose to study R=F (c1, ¢z, - - , Cm), €2 =i, p#=0
relative to the fixed derivation D and shall obtain several analogues of theo-
rems on automorphisms of cyclic fields. Without loss of generality we may
assume that § is the field of D-constants and hence D is a generator of the
d-algebra of i*. We have seen that D satisfies (24),

D" =D '8 + D?" By + - - - + DB,

and no equation of lower degree of the form D'4D1a;+ - - - 4a,, a:eR.
Suppose y1, ¥z, - - -, Ypm is a basis for R and

(le, y2D7 ) yP"‘D) = (yb Yoy, 7y yp'”)A A= (a»‘i)—

If () is the characteristic function |[A\1—A|, then by the Hamilton-Cayley
theorem, f(D) =0. Since the degree of f(\) is p™ we have

(26) ) = | AN — Al = \r" — )\P"'"lﬁl e V-

Since the characteristic and minimum equations of 4 are identical, 4 is simi-

lar to
(0 0

Bm
1 0
b1
0

10
It follows that ® has a basis of the form z, zD, zD?, - - - | 2D*™! ie.,, Risa
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cyclic space relative to the linear transformation D.}

A polynomial of the form N”4X*""p;4 - - - 4Np, will be called a p-poly-
nomial.} A subfield & of R containing F and vD for every v in & will be called
a D-subfield of R. Thus & is a space invariant under the transformation D.

THEOREM 14. There is a (1-1) correspondence between the D-subfields of R
and the p-polynomial factors of f(N).

Any subspace & of R is cyclic with generator w. If g(\) is a polynomial
of least degree such that wg(D) =0 then g(\) is the minimum function of D
acting in & and the order of &=degree of g(\). g(\) is therefore uniquely
determined by & and is a factor of f(\). For if A(\)=f(\)g(\) +g(N\)7(\)
=(g(\), f\)) then wh(D) =0 and since g(\) is minimal, g(\) =4(\). Con-
versely if g(\) is a factor of f(\), f(\) =g(\)k(\), the vectors v such that
9g(D) =0 form an invariant subspace &. & ozk(D), zd(D)D, - - - if zis a
generator of R, and if the degree of g(\) is 7, 2k(D), zk(D)D, - - - , zk(D)D™!
are linearly independent. Hence the order of & is 7. On the other hand the
minimum function of D in & is g(\) so that order of & is », &= (zk(D),
zk(D)D, - - - ). Thus we have a (1-1) correspondence between the invariant
subspaces & of R and the factors g(A) of f(\). If S is a field, D is a generator
of the d-algebra of & over § and hence g(\) is a p-polynomial. Conversely
if g(A) is a p-polynomial and v;, 1.¢@, i.e., v1g(D) =v,g(D) =0, then since g(D)
is a derivation, v12,¢(D) = (v:1(D))v2+v:(v22(D)) =0 so that & is closed under
multiplication and hence is a D-subfield of %.

Suppose g(\) =N"+N"Tpi4 - - - HNpe, BN) =N NP Tg 4 - - - dhoy
and e<f. Then g(\) —A(\)»” =N*"'r1+ - - - +A7._;. By repeating this pro-
cess we may express g(A) in the form

gN) = BN + AN oy + - -+ B(Nwe—s + r(N) (@ = 71),

where 7(\) is a p-polynomial of degree <p’. Sincer(\) is the remainder ob-
tained by dividing g(\) by %(\), by continuing the euclid algorithm we find
that (g(N\), £(N)) is a p-polynomial.

If £(\) is any polynomial (coefficients in §), then

AP = k()‘)QJ()‘) + S,‘()\) (] = 0’ 11 27 te )’
where degree s;(\) <degree k(\) =. Since there are at most » independent
polynomials of degree <r there exist elements, ao, as, - - - , @, not all 0 such

that s,(N)ao+s,_1(AN)as+ - - - +50(A)a, =0 and hence

t For a discussion of cyclic spaces see Jacobson, Pseudo-linear transformations, Annals of Mathe-
matics, vol. 38 (1937), p. 496.

1 This term is due to O. Ore, On a special class of polynomials, these Transactions, vol. 35 (1933),
p. 560.
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B\ = Nag + N lap 4+ - Ay = BN DL iV e,

i.e., any polynomial is a factor of some p-polynomial.t Since the h.c.f. of p-poly-
nomials is a p-polynomial, the p-polynomial of least degree divisible by £(\)
is unique. We denote it by {&(\)}.

Now suppose & is a subspace of & invariant under D and (M) is the mini-
mum function of D in ©. Let {&} denote the enveloping field of &. {S} is a
D-field and D has minimum function {(¥(\)} in {&}. If &, and &; are in-
variant subspaces, £:(\), £(\) the corresponding minimum functions, then
©:+8; and &, N &, are invariant and the associated functions are respec-
tively [£i(N), £22(\) ] and (B:(N), k2(M)).

12. Let 9% denote the algebra of linear transformations generated by D
and the multiplications of R. Since D*"~'a;+D*™%a,+ - - - +a,»=0 implies
all a;=0, M has order p? over § and hence is isomorphic to F,» the algebra
of all pmX p™ matrices in §. The multiplication of the elements of 9t may be
ascertained from the multiplications of the elements of & and the rules

(27) (@) D =Da+a’, (b) f(D) = D*" — D*" '8 — - .. — DB, = 0.

Let ¢ be an arbitrary element of R and consider the powers of D;=D+c.
From (27a) we obtain by induction

(28) Di* = (D + o)¥ = D* + Ci,\D*"Wi(c) + Cr2D*"W3(c) + - - - + Vilo),

where

(29) Vile) =¢,  Vile) = V(o) + Vialo)e.
For k=pi, (28) specializes to

(30) Dy = (D + ¢)¥ = DY + V,i(c).

D, evidently satisfies (27a), and from (30) and (27b) we have as the con-
dition that D, also satisfies (27b),

(31) V(o) = Vin(e) = Vma(e)B1 — - -+ — Vi()Bm = 0.

On the other hand if D, satisfies (27) the correspondence D—D;, a—a defines
an automorphism of I and conversely. Since every automorphism of
M~ F,m is inner there exists an element BeI such that

B~¢B = g, B-'D\B =D

for all ¢ in R. Since R has maximum order for a commutative subfield of I,
B =beR and hence the second condition gives

t This result is due to Ore, loc. cit., p. 581.
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(32) c=b,

i.e., ¢ is a logarithmic derivative. We have therefore proved

THEOREM 15. A necessary and sufficient condition that ceR be a logarithmic
derivative s that (31) hold.

This is an analogue of Hilbert’s theorem on the elements of norm 1 in a
cyclic field. V(c) takes the part of the norm and derivation that of the gen-
erating automorphism of the cyclic field.

We denote the set of logarithmic derivatives by 2. Since —b' /b
=(0"1)'/(b~)and d'/b+c'/c=(bc)’/bc, R is a group under addition and the
correspondence b—b’/b establishes a homomorphism between the multiplica-
tive group of i and L. The elements corresponding to 0 here are those of §.
Hence 8R/§.

By means of the recursion formula (29) we may prove by induction

@  ve=-xr, r-T L (L) (5)

alg!--- \1! 2!
where the summation in P;; is extended over all non-negative integers such
that
at+B+v+--- =14, a+28+3v+ - =

(The coefficients in P;; are understood to be the integers obtained by cancel-
ling the common factors in j!/(a!B! - - - )(1)=(21)8 - - - .) By (33) it is easily
seen that V,(c) =c?+c®-D. Since

= (D) = (D77 + Vy(9)” = D¥ + V(o)
we have
B4 Vi) = (Vi(e)? + (Vi() #=r,
and hence
(35)  Vyile) = ¢# + (cr V)P 4 (cPP-D)piE 4oL 4 (i1,

Then V,i(c)’=c® and so by (27b), (V(c))’' =0, i.e., V(c)eF for any ¢ in R.
Also by (35), or more directly by (30),

(36) Vb +4c) =V0®) + V().
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