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1 Latin Squares

Latin Squares
Example: 

0 1 2 3
1 2 3 0
2 3 0 1
3 0 1 2


Every number 0,1,2,3 appears once in every row and column.

Definition
Let n be a positive integer.

A Latin square of order n is an array A with n rows and n columns such that

• all entries are elements of {0,1,2, . . . ,n−1}= Zn, and
• each element of Zn appears in every row of A, and
• each element of Zn appears in every column of A.
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23.3

Using the pigeonhole principle, every element of Zn appears precisely once in every row and column of
a Latin square A.

Presentation of a Latin square
If A is an n×n array, then we write A = (ai j) (0≤ i, j ≤ n−1).

Then the rows of A are numbered 0,1,2, . . . ,n−1 from top to bottom.

And the columns of A are numbered 0,1,2, . . . ,n−1 from left to right.

The entry in row number i and column number j of a Latin square is the number ai j ∈ Zn.

The array (ai j) (0≤ i, j < n) is a Latin square if for every k ∈ Zn :

• for every i ∈ Zn there is a j ∈ Zn such that ai j = k, and
• for every j ∈ Zn there is an i ∈ Zn such that ai j = k.

23.4

Latin squares from modular addition

Theorem 10.4.1
Let

ai j = i⊕ j (i, j ∈ Zn).

Then A = (ai j) is a Latin square of order n.

Proof of Theorem 10.4.1
Let k ∈ Zn.

Then for every i ∈ Zn we can choose j =−i⊕ k, so that ai j = i⊕ (−i⊕ k) = k.

And for every j ∈ Zn we can choose i = k⊕ (− j), so that ai j = (k⊕ (− j))⊕ j = k.

This proves that A = (ai j) is a Latin square. �

23.5

Latin squares from modular multiplication

Theorem 10.4.2
Let r be an element of Zn with a multiplicative inverse r−1.

Define A = (ai j) (i, j ∈ Zn) by the rule:

ai j = (r⊗ i)⊕ j (i, j ∈ Zn).

Then A is a Latin square of order n.

Proof of Theorem 10.4.2
Let k ∈ Zn.

Then for every i ∈ Zn we can choose j =−(r⊗ i)⊕k, so that ai j = (r⊗ i)⊕ (−(r⊗ i)⊕k) = ((r⊗ i)⊕
−(r⊗ i))⊕ k = k.

And for every j ∈ Zn we can choose i = r−1 ⊗ (k⊕− j), so that ai j = r⊗ (r−1 ⊗ (k⊕− j))⊕ j =
(k⊕− j)⊕ j = k.

This proves that A = (ai j) is a Latin square. �
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This special Latin square has the name Lr
n.

23.6

Example of a latin square Lr
n

Let n = 8 and r = 3.

Then gcd(n,r) = gcd(8,3) = 1, this implies that r = 3 has a multiplicative inverse in Z8.

To calculate the entry ai j of L3
8 for i, j ∈ Z8 we have to calculate the remainder after division by 8 of

3 · i+ j.

So we get the rules, using addition in Z8 :

• the entry in the first row and the first column is a00 = 0,
• we get the next entry to the right by adding 1, and
• we get the next lower entry of the column by adding 3.

23.7

L3
8

Following these rules it is easy to construct L3
8 :

0 1 2 3 4 5 6 7
3 4 5 6 7 0 1 2
6 7 0 1 2 3 4 5
1 2 3 4 5 6 7 0
4 5 6 7 0 1 2 3
7 0 1 2 3 4 5 6
2 3 4 5 6 7 0 1
5 6 7 0 1 2 3 4



0 1 2 3 4 5 6 7
3 4 5 6 7 0 1 2
6 7 0 1 2 3 4 5
1 2 3 4 5 6 7 0
4 5 6 7 0 1 2 3
7 0 1 2 3 4 5 6
2 3 4 5 6 7 0 1
5 6 7 0 1 2 3 4
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2 Orthogonal Latin Squares

Orthogonal Latin squares

Definition
Let A = (ai j) and B = (bi j) be Latin squares.

They are called orthogonal Latin squares if they satisfy the following condition:

For any two elements k and ` of Zn, there exist i and j in Zn so that ai j = k and bi j = `.

We can write another array (called the juxtaposed array) in which the position of row i and column j
contains the pair (ai j,bi j).

Then A and B satisfy the condition for being ortogonal, precisely if each possible pair (k, `) of elements
from Zn appear in this array.

23.9
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Example of orthogonal Latin squares
0 1 2 3
3 2 1 0
1 0 3 2
2 3 0 1

 and


0 1 2 3
1 0 3 2
2 3 0 1
3 2 1 0


produce a juxtaposed array: 

(0,0) (1,1) (2,2) (3,3)
(3,1) (2,0) (1,3) (0,2)
(1,2) (0,3) (3,0) (2,1)
(2,3) (3,2) (0,1) (1,0)


We can check that all pairs of elements from Z4 appear in the array.
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3 MOLS

Mutually orthogonal Latin squares

Definition
Let A1,A2, . . . ,Ak be Latin squares of order n.

They are called mutually orthogonal if Ar and As are orthogonal for all r and s with 1≤ r < s≤ k.

A set of Mutually Orthogonal Latin Squares is called a MOLS.

Theorem 10.4.3
If n is a prime number, then

L1
n,L

2
n, . . . ,L

n−1
n

form a set of MOLS with n−1 squares each of order n.

Proof of Theorem 10.4.3
We know from Theorem 10.4.2 that Lr

n is always a Latin square of order n. It remains to prove that Lr
n and

Ls
n are orthogonal for all r 6= s with r,s ∈ {1,2, . . . ,n−1}.

23.11

Proof that Lr
n and Ls

n are orthogonal for all r 6= s.
By definition of orthogonal Latin squares, we have to show, for each k and each ` in Zn that (k, `) is in

some entry of the juxtaposed array of Lr
n and Ls

n

We know that Lr
n contains the number r⊗ i⊕ j in its i j-entry.

And Ls
n contains the number s⊗ i⊕ j in its i j-entry.

If we can find i and j so that
r⊗ i⊕ j = k
s⊗ i⊕ j = `

are satisfied, then we know that (k, `) is in the i j-entry of the juxtaposed square.

23.12
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Proof that Lr
n and Ls

n are orthogonal for all r 6= s, continued
We want to find i and j to solve the equations

r⊗ i⊕ j = k
s⊗ i⊕ j = `

Finding additive inverses of the second equation we get:

r⊗ i⊕ j = k
−s⊗ i⊕− j = −`

We can add these two equations, and we get:

r⊗ i⊕−s⊗ i = (r⊕−s)⊗ i = k⊕−`.

Since r 6= s, it follows that r⊕−s 6= 0, and therefore the multiplicative inverse (r⊕−s)−1 exists in Zn, since
n is a prime.

Now i = (r⊕−s)−1⊗ (r⊕−s)⊗ i = (r⊕−s)−1⊗ (k⊕−`).
From r⊗ i⊕ j = k we get j = k⊕−r⊗ i.

We have now calculated the entry in which the pair (k, `) appears in the juxtaposed square from Lr
n and

Ls
n. �
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Constructing a MOLS of prime power order

Theorem 10.4.4
If p is a prime and n = pk for some positive number k, then there exists a MOLS of n−1 squares of order
n.

Proof of Theorem 10.4.4
The proof is the same as for Theorem 10.4.3, using addition and multiplication of the finite field of order
n = pk. �

23.14

The maximal number of squares in a MOLS

Theorem 10.4.5
If a MOLS consists of squares of order n, then it has at most n−1 squares.

Theorem (Tarry 1900)
There are no two orthogonal Latin squares of order 6.

Theorem 10.4.6
For every odd number n, there exist orthogonal Latin squares of order n.

Theorem (Parker, Bose and Shrikhande 1959)
For every number n > 6 there exist orthogonal Latin squares of order n.

23.15
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4 Conclusion

Conclusion

This ends the lecture!

23.16

Next time:
Graph Theory

23.17
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