Part 23 Latin Squares

Printed version of the lecture Discrete Mathematics on 4. December 2012

Tommy R. Jensen, Department of Mathematics, KNU

Contents

1	Latin Squares	1
2	Orthogonal Latin Squares	3
3	MOLS	4
4	Conclusion	6

1 Latin Squares

Latin Squares

Example:

ΓO	1	2	3]	
1	2	3	0	
2	3	0	1	
3	0	1	2	

Every number 0,1,2,3 appears once in every row and column.

Definition

Let *n* be a positive integer.

A Latin square of order n is an array A with n rows and n columns such that

- all entries are elements of $\{0, 1, 2, \dots, n-1\} = Z_n$, and
- each element of Z_n appears in every row of A, and
- each element of Z_n appears in every column of A.
 - 1

Using the pigeonhole principle, every element of Z_n appears precisely once in every row and column of a Latin square A.

Presentation of a Latin square

If *A* is an $n \times n$ array, then we write $A = (a_{ij})$ $(0 \le i, j \le n-1)$.

Then the rows of A are numbered 0, 1, 2, ..., n-1 from top to bottom.

And the columns of A are numbered 0, 1, 2, ..., n-1 from left to right.

The entry in row number *i* and column number *j* of a Latin square is the number $a_{ij} \in Z_n$.

The array (a_{ij}) $(0 \le i, j < n)$ is a Latin square if for every $k \in \mathbb{Z}_n$:

- for every $i \in Z_n$ there is a $j \in Z_n$ such that $a_{ij} = k$, and
- for every $j \in Z_n$ there is an $i \in Z_n$ such that $a_{ij} = k$.

Latin squares from modular addition

Theorem 10.4.1 Let

$$a_{ij} = i \oplus j \ (i, j \in \mathbb{Z}_n).$$

Then $A = (a_{ij})$ is a Latin square of order *n*.

Proof of Theorem 10.4.1

Let $k \in Z_n$.

Then for every $i \in Z_n$ we can choose $j = -i \oplus k$, so that $a_{ij} = i \oplus (-i \oplus k) = k$. And for every $j \in Z_n$ we can choose $i = k \oplus (-j)$, so that $a_{ij} = (k \oplus (-j)) \oplus j = k$. This proves that $A = (a_{ij})$ is a Latin square.

Latin squares from modular multiplication

Theorem 10.4.2

Let *r* be an element of Z_n with a multiplicative inverse r^{-1} .

Define $A = (a_{ij})$ $(i, j \in Z_n)$ by the rule:

$$a_{ij} = (r \otimes i) \oplus j \ (i, j \in Z_n).$$

Then A is a Latin square of order n.

Proof of Theorem 10.4.2

Let $k \in Z_n$.

Then for every $i \in Z_n$ we can choose $j = -(r \otimes i) \oplus k$, so that $a_{ij} = (r \otimes i) \oplus (-(r \otimes i) \oplus k) = ((r \otimes i) \oplus -(r \otimes i)) \oplus k = k$. And for every $j \in Z_n$ we can choose $i = r^{-1} \otimes (k \oplus -j)$, so that $a_{ij} = r \otimes (r^{-1} \otimes (k \oplus -j)) \oplus j = (k \oplus -j) \oplus j = k$.

This proves that $A = (a_{ij})$ is a Latin square.

23.3

23.5

Example of a latin square L_n^r

Let n = 8 and r = 3.

Then gcd(n,r) = gcd(8,3) = 1, this implies that r = 3 has a multiplicative inverse in Z_8 .

To calculate the entry a_{ij} of L_8^3 for $i, j \in \mathbb{Z}_8$ we have to calculate the remainder after division by 8 of

 $3 \cdot i + j$.

So we get the rules, using addition in Z_8 :

- the entry in the first row and the first column is $a_{00} = 0$,
- we get the next entry to the right by adding 1, and
- we get the next lower entry of the column by adding 3.

L_{8}^{3}

Following these rules it is easy to construct L_8^3 :

			× ·					
0	1	2	°3	4	5	6	7	1
9	4	3	6	4	õ	6	2	
ð	4	õ	6	2	9	4	3	
6	2	9	4	3	6	4	ð	
4	3	6	4	õ	6	2	9	
4	ð	6	2	9	4	3	6	
2	9	4	3	6	4	ð	6	
3	6	4	б	6	2	9	4	
5	6	7	0	1	2	3	4	

2 Orthogonal Latin Squares

Orthogonal Latin squares

Definition

Let $A = (a_{ij})$ and $B = (b_{ij})$ be Latin squares.

They are called *orthogonal* Latin squares if they satisfy the following condition:

For any two elements k and ℓ of Z_n , there exist i and j in Z_n so that $a_{ij} = k$ and $b_{ij} = \ell$.

We can write another array (called the *juxtaposed* array) in which the position of row *i* and column *j* contains the pair (a_{ij}, b_{ij}) .

Then A and B satisfy the condition for being ortogonal, precisely if each possible pair (k, ℓ) of elements from Z_n appear in this array.

23.6

23.7

Example of orthogonal Latin squares

	$\begin{bmatrix} 0\\ 3\\ 1\\ 2 \end{bmatrix}$	1 2 0 3	2 1 3 0	3 0 2 1	aı	and		1 0 3 2	2 3 0 1	3 2 1 0	
produce a juxtaposed array:	L -	[(0,0 (3,1)) L)	(1,1) (2,0)	(2,2) (1,3)	L) ((- 3,3) 0,2)			

 $\begin{bmatrix} (1,2) & (0,3) & (3,0) & (2,1) \\ (2,3) & (3,2) & (0,1) & (1,0) \end{bmatrix}$

We can check that all pairs of elements from Z_4 appear in the array.

3 MOLS

Mutually orthogonal Latin squares

Definition

Let A_1, A_2, \ldots, A_k be Latin squares of order n.

They are called *mutually orthogonal* if A_r and A_s are orthogonal for all r and s with $1 \le r < s \le k$. A set of Mutually Orthogonal Latin Squares is called a *MOLS*.

Theorem 10.4.3

If n is a prime number, then

 $L_{n}^{1}, L_{n}^{2}, \ldots, L_{n}^{n-1}$

form a set of MOLS with n - 1 squares each of order n.

Proof of Theorem 10.4.3

We know from Theorem 10.4.2 that L_n^r is always a Latin square of order *n*. It remains to prove that L_n^r and L_n^s are orthogonal for all $r \neq s$ with $r, s \in \{1, 2, ..., n-1\}$.

Proof that L_n^r and L_n^s are orthogonal for all $r \neq s$.

By definition of orthogonal Latin squares, we have to show, for each k and each ℓ in Z_n that (k, ℓ) is in some entry of the juxtaposed array of L_n^r and L_n^s

We know that L_n^r contains the number $r \otimes i \oplus j$ in its *ij*-entry.

And L_n^s contains the number $s \otimes i \oplus j$ in its *ij*-entry.

If we can find i and j so that

$$\begin{array}{rcl} r \otimes i \oplus j &=& k \\ s \otimes i \oplus j &=& \ell \end{array}$$

are satisfied, then we know that (k, ℓ) is in the *ij*-entry of the juxtaposed square.

Proof that L_n^r and L_n^s are orthogonal for all $r \neq s$, continued

We want to find i and j to solve the equations

$$\begin{array}{rcl} r \otimes i \oplus j &=& k \\ s \otimes i \oplus j &=& \ell \end{array}$$

Finding additive inverses of the second equation we get:

$$\begin{array}{rcl} r \otimes i \oplus j &=& k \\ -s \otimes i \oplus -j &=& -\ell \end{array}$$

We can add these two equations, and we get:

$$r \otimes i \oplus -s \otimes i = (r \oplus -s) \otimes i = k \oplus -\ell.$$

Since $r \neq s$, it follows that $r \oplus -s \neq 0$, and therefore the multiplicative inverse $(r \oplus -s)^{-1}$ exists in Z_n , since *n* is a prime.

Now $i = (r \oplus -s)^{-1} \otimes (r \oplus -s) \otimes i = (r \oplus -s)^{-1} \otimes (k \oplus -\ell)$.

From $r \otimes i \oplus j = k$ we get $j = k \oplus -r \otimes i$.

We have now calculated the entry in which the pair (k, ℓ) appears in the juxtaposed square from L_n^r and L_n^s .

Constructing a MOLS of prime power order

Theorem 10.4.4

If p is a prime and $n = p^k$ for some positive number k, then there exists a MOLS of n - 1 squares of order n.

Proof of Theorem 10.4.4

The proof is the same as for Theorem 10.4.3, using addition and multiplication of the finite field of order $n = p^k$.

The maximal number of squares in a MOLS

Theorem 10.4.5

If a MOLS consists of squares of order n, then it has at most n - 1 squares.

Theorem (Tarry 1900)

There are no two orthogonal Latin squares of order 6.

Theorem 10.4.6

For every odd number n, there exist orthogonal Latin squares of order n.

Theorem (Parker, Bose and Shrikhande 1959)

For every number n > 6 there exist orthogonal Latin squares of order n.

4 Conclusion

Conclusion

This ends the lecture!

Next time: Graph Theory

