Part 23

Latin Squares

Printed version of the lecture Discrete Mathematics on 4. December 2012
Tommy R. Jensen, Department of Mathematics, KNU

Contents

1 Latin Squares 1
2 Orthogonal Latin Squares 3
3 MOLS 4
4 Conclusion

1 Latin Squares
Latin Squares
Example:
$\left[\begin{array}{llll}0 & 1 & 2 & 3 \\ 1 & 2 & 3 & 0 \\ 2 & 3 & 0 & 1 \\ 3 & 0 & 1 & 2\end{array}\right]$

Every number $0,1,2,3$ appears once in every row and column.

Definition

Let n be a positive integer.
A Latin square of order n is an array A with n rows and n columns such that

- all entries are elements of $\{0,1,2, \ldots, n-1\}=Z_{n}$, and
- each element of Z_{n} appears in every row of A, and
- each element of Z_{n} appears in every column of A.

Using the pigeonhole principle, every element of Z_{n} appears precisely once in every row and column of a Latin square A.

Presentation of a Latin square

If A is an $n \times n$ array, then we write $A=\left(a_{i j}\right)(0 \leq i, j \leq n-1)$.
Then the rows of A are numbered $0,1,2, \ldots, n-1$ from top to bottom.
And the columns of A are numbered $0,1,2, \ldots, n-1$ from left to right.
The entry in row number i and column number j of a Latin square is the number $a_{i j} \in Z_{n}$.
The array $\left(a_{i j}\right)(0 \leq i, j<n)$ is a Latin square if for every $k \in Z_{n}$:

- for every $i \in Z_{n}$ there is a $j \in Z_{n}$ such that $a_{i j}=k$, and
- for every $j \in Z_{n}$ there is an $i \in Z_{n}$ such that $a_{i j}=k$.

Latin squares from modular addition

Theorem 10.4.1

Let

$$
a_{i j}=i \oplus j\left(i, j \in Z_{n}\right)
$$

Then $A=\left(a_{i j}\right)$ is a Latin square of order n.

Proof of Theorem 10.4.1

Let $k \in Z_{n}$.

Then for every $i \in Z_{n}$ we can choose $j=-i \oplus k$, so that $a_{i j}=i \oplus(-i \oplus k)=k$.
And for every $j \in Z_{n}$ we can choose $i=k \oplus(-j)$, so that $a_{i j}=(k \oplus(-j)) \oplus j=k$.
This proves that $A=\left(a_{i j}\right)$ is a Latin square.

Latin squares from modular multiplication

Theorem 10.4.2
Let r be an element of Z_{n} with a multiplicative inverse r^{-1}.
Define $A=\left(a_{i j}\right)\left(i, j \in Z_{n}\right)$ by the rule:

$$
a_{i j}=(r \otimes i) \oplus j\left(i, j \in Z_{n}\right) .
$$

Then A is a Latin square of order n.

Proof of Theorem 10.4.2

Let $k \in Z_{n}$.

Then for every $i \in Z_{n}$ we can choose $j=-(r \otimes i) \oplus k$, so that $a_{i j}=(r \otimes i) \oplus(-(r \otimes i) \oplus k)=((r \otimes i) \oplus$ $-(r \otimes i)) \oplus k=k$.

And for every $j \in Z_{n}$ we can choose $i=r^{-1} \otimes(k \oplus-j)$, so that $a_{i j}=r \otimes\left(r^{-1} \otimes(k \oplus-j)\right) \oplus j=$ $(k \oplus-j) \oplus j=k$.

This proves that $A=\left(a_{i j}\right)$ is a Latin square.

This special Latin square has the name L_{n}^{r}.

Example of a latin square L_{n}^{r}
Let $n=8$ and $r=3$.
Then $\operatorname{gcd}(n, r)=\operatorname{gcd}(8,3)=1$, this implies that $r=3$ has a multiplicative inverse in Z_{8}.
To calculate the entry $a_{i j}$ of L_{8}^{3} for $i, j \in Z_{8}$ we have to calculate the remainder after division by 8 of

$$
3 \cdot i+j
$$

So we get the rules, using addition in Z_{8} :

- the entry in the first row and the first column is $a_{00}=0$,
- we get the next entry to the right by adding 1 , and
- we get the next lower entry of the column by adding 3 .
L_{8}^{3}
Following these rules it is easy to construct L_{8}^{3} :
$\left[\begin{array}{llllllll}0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 9 & 4 & 3 & 9 & 4 & 9 & \Phi & 2 \\ 6 & 4 & 0 & \Phi & 2 & 9 & 4 & 3 \\ \Phi & 2 & 9 & 4 & 3 & 6 & 4 & 0 \\ 4 & 3 & 6 & 4 & 0 & 9 & 2 & 9 \\ 4 & 9 & \Phi & 2 & 9 & 4 & 3 & 3 \\ 2 & 9 & 4 & 3 & 3 & 4 & 9 & 9 \\ 3 & 3 & 4 & 5 & 9 & 2 & 9 & 4 \\ 5 & 6 & 7 & 0 & 1 & 2 & 3 & 4\end{array}\right]$

2 Orthogonal Latin Squares

Orthogonal Latin squares

Definition

Let $A=\left(a_{i j}\right)$ and $B=\left(b_{i j}\right)$ be Latin squares.
They are called orthogonal Latin squares if they satisfy the following condition:
For any two elements k and ℓ of Z_{n}, there exist i and j in Z_{n} so that $a_{i j}=k$ and $b_{i j}=\ell$.
We can write another array (called the juxtaposed array) in which the position of row i and column j contains the pair $\left(a_{i j}, b_{i j}\right)$.

Then A and B satisfy the condition for being ortogonal, precisely if each possible pair (k, ℓ) of elements from Z_{n} appear in this array.

Example of orthogonal Latin squares

$\left[\begin{array}{llll}0 & 1 & 2 & 3 \\ 3 & 2 & 1 & 0 \\ 1 & 0 & 3 & 2 \\ 2 & 3 & 0 & 1\end{array}\right] \quad$ and $\quad\left[\begin{array}{llll}0 & 1 & 2 & 3 \\ 1 & 0 & 3 & 2 \\ 2 & 3 & 0 & 1 \\ 3 & 2 & 1 & 0\end{array}\right]$
produce a juxtaposed array:
$\left[\begin{array}{llll}(0,0) & (1,1) & (2,2) & (3,3) \\ (3,1) & (2,0) & (1,3) & (0,2) \\ (1,2) & (0,3) & (3,0) & (2,1) \\ (2,3) & (3,2) & (0,1) & (1,0)\end{array}\right]$

We can check that all pairs of elements from Z_{4} appear in the array.

3 MOLS

Mutually orthogonal Latin squares

Definition

Let $A_{1}, A_{2}, \ldots, A_{k}$ be Latin squares of order n.
They are called mutually orthogonal if A_{r} and A_{s} are orthogonal for all r and s with $1 \leq r<s \leq k$.
A set of Mutually Orthogonal Latin Squares is called a MOLS.

Theorem 10.4.3

If n is a prime number, then

$$
L_{n}^{1}, L_{n}^{2}, \ldots, L_{n}^{n-1}
$$

form a set of MOLS with $n-1$ squares each of order n.

Proof of Theorem 10.4.3

We know from Theorem 10.4.2 that L_{n}^{r} is always a Latin square of order n. It remains to prove that L_{n}^{r} and L_{n}^{s} are orthogonal for all $r \neq s$ with $r, s \in\{1,2, \ldots, n-1\}$.

Proof that L_{n}^{r} and L_{n}^{s} are orthogonal for all $r \neq s$.
By definition of orthogonal Latin squares, we have to show, for each k and each ℓ in Z_{n} that (k, ℓ) is in some entry of the juxtaposed array of L_{n}^{r} and L_{n}^{s}

We know that L_{n}^{r} contains the number $r \otimes i \oplus j$ in its $i j$-entry.
And L_{n}^{S} contains the number $s \otimes i \oplus j$ in its $i j$-entry.
If we can find i and j so that

$$
\begin{aligned}
& r \otimes i \oplus j=k \\
& s \otimes i \oplus j=\ell
\end{aligned}
$$

are satisfied, then we know that (k, ℓ) is in the $i j$-entry of the juxtaposed square.

Proof that L_{n}^{r} and L_{n}^{s} are orthogonal for all $r \neq s$, continued
We want to find i and j to solve the equations

$$
\begin{aligned}
r \otimes i \oplus j & =k \\
s \otimes i \oplus j & =\ell
\end{aligned}
$$

Finding additive inverses of the second equation we get:

$$
\begin{array}{cll}
r \otimes i \oplus j & = & k \\
-s \otimes i \oplus-j & = & -\ell
\end{array}
$$

We can add these two equations, and we get:

$$
r \otimes i \oplus-s \otimes i=(r \oplus-s) \otimes i=k \oplus-\ell
$$

Since $r \neq s$, it follows that $r \oplus-s \neq 0$, and therefore the multiplicative inverse $(r \oplus-s)^{-1}$ exists in Z_{n}, since n is a prime.

Now $i=(r \oplus-s)^{-1} \otimes(r \oplus-s) \otimes i=(r \oplus-s)^{-1} \otimes(k \oplus-\ell)$.
From $r \otimes i \oplus j=k$ we get $j=k \oplus-r \otimes i$.
We have now calculated the entry in which the pair (k, ℓ) appears in the juxtaposed square from L_{n}^{r} and L_{n}^{s}.

Constructing a MOLS of prime power order

Theorem 10.4.4

If p is a prime and $n=p^{k}$ for some positive number k, then there exists a MOLS of $n-1$ squares of order n.

Proof of Theorem 10.4.4

The proof is the same as for Theorem 10.4.3, using addition and multiplication of the finite field of order $n=p^{k}$.

The maximal number of squares in a MOLS

Theorem 10.4.5

If a MOLS consists of squares of order n, then it has at most $n-1$ squares.
Theorem (Tarry 1900)
There are no two orthogonal Latin squares of order 6 .

Theorem 10.4.6

For every odd number n, there exist orthogonal Latin squares of order n.
Theorem (Parker, Bose and Shrikhande 1959)
For every number $n>6$ there exist orthogonal Latin squares of order n.

Conclusion
This ends the lecture!

Next time:
Graph Theory

