
Mathematis 195A|Honors SeminarWinter 2005Bernard RussoMarh 6, 2005For all aspets of the ourse, onsulthttp://math.ui.edu/~brusso/.1 January 5,2005|The Prime Number Theorem IOur �rst objetive is to explore an elementary proof of the prime number theorem, following [6℄.The prime number theorem was �rst onjetured by Gauss and Legendre at the end of the 18th entury. Itwas proved, using omplex analysis, at the end of the 19th entury by de la Vall�ee Poussin and Hadamard. Inthe middle of the 19th entury, signi�ant tools were developed by Chebyshev and Riemann. An elementaryproof, that is, not using omplex analysis, was disovered in the middle of the 20th entury by Erd�os andSelberg.Let �(x) := Pp�x 1 be the number of primes less than the positive number x and let Li(x) := R x2 dtlog tbe the \log integral" funtion. Legendre onjetured that limx!1 �(x)x= log x = 1 and Gauss onjetured thatlimx!1 �(x)Li(x) = 1.For a history of the prime number theorem and the Riemann hypothesis, see the NY Times bestseller[4℄, and my Freshman seminar (University Studies 3, Winter 2005).2 January 7,2005|The Prime Number Theorem IIBy the fundamental theorem of arithmeti, eah positive integer n 6= 1 has the form n = pk11 � � � pkmm , wherem � 1, p1; : : : ; pm are distint primes and 1 � kj , so that logn =Pmj=1 kj log pj . De�ne the von Mangoldtsymbol (1895) by �(n) := log p if n is a positive integral power of the prime p, and �(n) = 0 if n is divisibleby the square of some prime.Exerise 1 logn =Pjjn �(j).De�ne funtions  ; �; T as follows:  (x) := Pj�x �(j); �(x) := Pp�x log p; T (x) := Pn�x logn.Then (for example)  (x) = �(x) + �(x1=2) + �(x1=3) + � � �. The prime number theorem is the assertionlimx!1 �(x)=(x= log x) = 1, whih is equivalent to limx!1  (x)=x = 1. This equivalene, as well as theproof of the latter are the objetives of [6℄ and the �rst week or two of our lass.For a funtion F (x) de�ned for x > 1, de�ne a transform F 7! G by G(x) = Pn�x F (x=n) = F (x) +F (x=2) + F (x=3) + � � �+ F (x=[x℄).Proposition 2.1 F (x) =Pk�x �(k)G(x=k) where � is de�ned as follows: �(1) = 1, �(n) = (�1)m if n isthe produt of m distint primes, and �(n) = 0 otherwise (that is, �(n) = 0 if n is divisible by the square ofsome prime).Proof. See [6, pp.228-230℄. 1



Applying this M�obius inversion formula to T (x) =Pi�x  (x=i), you get  (x) =Pk�x �(k)T (x=k) whihan be rewritten (see [6, p.230℄) as Xn�x�(n) =Xn�xXkjn �(k) log(n=k):Exerise 2 �(n) =Pkjn �(k) log(n=k)3 January 10,2005|The Prime Number Theorem IIIThe following �ve lemmas are the objetive of today's lass. In the lass we only proved the seond andfourth (Lemmas 3.2 and 3.4 in [6℄). For the proof of the others, please onsult [6℄.Lemma 3.1 ([6, Lemma 3.1℄) If f 0(t) is ontinuous for t � 1, and C(u) := Pn�u n for some sequeneof numbers fn : n � 1g, then Xn�x nf(n) = f(x)C(x) � Z x1 f 0(t)C(t) dt;and Xn�x f(n) = Z x1 f(t) dt+ Z x1 (t� [t℄)f 0(t) dt+ f(1)� (x � [x℄)f(x):The notation f(x) = O(g(x)) (x!1) for a funtion f and a non-negative funtion g means that thereare onstants K1 and K2 suh that jf(x)j � K1g(x) for all x � K2.Exerise 3 Put f(t) = log t in Lemma 3.1 to get T (x) = x log x� x+O(log x).Lemma 3.2 ([6, Lemma 3.2℄)  (x) < (3=2)x for large x.Lemma 3.3 ([6, Lemma 3.3℄) Pn�x�(n)=n = logx+O(1)Lemma 3.4 ([6, Lemma 3.4℄)  (x) = �(x) log x+O(x log logx= logx)Exerise 4 Show that the inequality�(x) log x� 4x log logxlogx xlogx �  (x) � �(x) log x+ x1=2(logx)22 log 2proved in [6, pp.233-234℄ implies the assertion of Lemma 3.4.Exerise 5 Use Lemma 3.4 to show that limx!1  (x)=x = 1 if and only if limx!1 �(x)=(x= log x) = 1Lemma 3.5 ([6, Lemma 3.5℄) Pn�x 1=n = logx+  +O(1=x)4 January 14,2005|The Prime Number Theorem IVLet's apply M�obius inversion to F =  7! G = T with the following strategy. Start with ~F simpler than Fand try to make ~G lose to T . M�obius inversion then gives you (x) � ~F (x) =Xk�x�(k)(T (x=k)� ~G(x=k)) (equation (4.1)):Sine the desired goal is  (x)=x! 1, we initially hoose ~F (x) = F0(x) = x whih results (using Lemma 3.5)in G0(x) = x logx + x + O(1). Using T (x) = x logx � x + O(log x), this results in T (x) � G0(x) =2



�x(1+ ) +O(log x). This is not good enough for our purposes, so the next guess is ~F (x) = F1(x) = x�C.This results in G1(x) = x logx� (C � )x+O(1). Then hoosing C = 1 + , you getT (x)�G1(x) = O(log x) (equation (4.2)):By (4.1) with ~F (x) = x� C (x) � x+ C =Xk�x�(k)(T (x=k)�G1(x=k)) (equation (4.3));and T (x=k)�G1(x=k) = O(log(x=k)).Even if we replae the O(log x) impliit in (4.3) by O(x1=2), we an still derive the (known fat) (x) = O(x) (equation (4.4));as shown by equation (4.6). This suggests the Tatuzawa-Iseki identity (at least to the author NormanLevinson!), whih statesF (x) log x+Xn�xF (xn )�(n) =Xk�x�(k) log xkG(xk ) (equation (4.9));and whih leads easily to the inequality of Selberg, whih states( (x) � x) logx+Xn�x( (xn )� xn )�(n) = O(x) (equation (4.10)):Exerise 6 Prove the following, whih was used in the proof of (4.10).Xk�x�(k) log(xk )(T (xk )�G1(xk )) = O(x):There are eight lemmas in [6, setion 5℄ whih onstitute the proof of PNT. We now state and prove the�rst one.De�ne R(x) =  (x) � x for x � 2 and R(x) = 0 for 0 < x < 2. Then PNT is obviously equivalent toR(x)=x! 0. De�ne S(y) = R y2 R(x)=x dx for y � 2 and S(y) = 0 for 0 < y < 2. Later, we will show that ifS(y)=y ! 0 then S(x)=x! 0, whene PNT. Of ourse, we have also to prove S(y)=y ! 0!Lemma 4.1 ([6, Lemma 5.1℄) There is a onstant  suh that(equation (5.5)) jS(y)j � y for y � 2(equation (5.6)) jS(y2)� S(y1)j � jy2 � y1j(equation (5.7)) S(y) log y +Pj�y �(j)S(y=j) = O(y)5 January 17,2005|Holiday6 January 21,2005|The Prime Number Theorem VBy using Lemma 3.3, equation (4.10) above an be rewritten as (x) log x+Xn�x�(n) (xn ) = 2x logx+O(x): (equation (4.11))Using Lemma 3.1 with n = �(n) and f(t) = log t and Lemma 3.2 results inXn�x�(n) logn =  (x) log x+O(x): (equation (4.12))3



Also Xj�x�(j) (xj ) =Xj�x�(j) Xk�x=j �(k) = Xjk�x�(j)�(k): (equation (4.13))Thus, if we de�ne �2(n) := �(n) logn +Pjk=n �(j)�(k) and plug (4.12) and (4.13) into (4.11), we getPn�x�2(n) = 2x logx + O(x). From Exerise 3 you get Pn�x logn = x logx + O(x). Finally, if we de�neQ(n) :=Pk�n(�2(k)� 2 log k), then Q(n) = O(n) (equation (4.15))for n � 2 while Q(1) = 0.Lemma 6.1 ([6, Lemma 5.2℄) There is a onstant K1 suh thatlog2 yjS(y)j � Xm�y�2(m)jS( ym )j+K1y log y: (equation (5.13))7 The Prime Number Theorem VI (not done in lass)Lemma 7.1 ([6, Lemma 5.3℄) There is a onstant K2 suh thatlog2 yjS(y)j � 2Xm�y logmjS( ym )j+K2y log y: (equation (5.14))Lemma 7.2 ([6, Lemma 5.4℄) There is a onstant K4 suh thatlog2 yjS(y)j � 2 Z y2 jS(yu) log u du+K4y log y: (equation (5.16))In (5.16), let v = log(y=u) and x = log y. Thenx2jS(ex)j � 2 Z x�log 20 jS(ev)j(x � v)ex�v dv +K4xex: (equation (5.18))Set W (x) := e�xS(ex). Then (5.18) beomesjW (x)j � 2x2 Z x0 (x� v)jW (v)j dv + K4x : (equation (5.20))Lemma 7.3 ([6, Lemma 5.5℄)� := lim supx!1 jW (x)j � minf1;  := lim supx!1 1x Z x0 jW (�)j d�g (equation (5.22))NOTE: PNT will follow from the assertion � = 0.Lemma 7.4 ([6, Lemma 5.6℄) If k := 2, thenj jW (x2)j � jW (x1)j j � jW (x2)�W (x1)j � kjx2 � x1j (equations (5.26) and (5.27))Lemma 7.5 ([6, Lemma 5.7℄) If W (v) 6= 0 for v1 < v < v2, then 9M > 0 suh thatZ v2v1 jW (v)j dv �M (equation (5.28))Lemma 7.6 ([6, Lemma 5.8℄) If a funtion W satis�es (5.22), (5.27), and (5.28), then � = 0.Disussion: The proofs of Lemmas 7.1-7.5, as well as the proof that PNT follows from � = 0 are easy tofollow from [6℄. Lemma 7.6 is another matter.Exerise 7 Give an understandable proof of Lemma 7.6.4



8 January 24,2005|Continued Frations IConsider the following problem: given positive integers a; b; , obtain solutions of the Diophantine equationax� by =  (equation (4.1)). It is enough to onsider the ase with the plus sign, and we an assume thata and b have no ommon fator.Write a=b = �0 + 1=r1, where �0 = [a=b℄ and 1 < r1 � 1. (The meaning here of \r1 =1" is thata=b isan integer, so the onstrution ends.) If \r1 6= 1", write r1 = �1 + 1=r2, where �1 = [r1℄ and 1 < r2 � 1.At this point we have ab = �0 + 1�1 + 1r2 � or �0 + 1�1 if r2 =1�Continue this onstrution to obtain rn = �n + 1=rn+1, where �n = [rn℄ and 1 < rn � 1. Thisonstrution ends in �nite sequenes �0; �1 : : : ; �n and r1; r2; : : : ; rn if some rn+1 = 1; otherwise it is anin�nite proess generating in�nite sequenes �0; �1 : : : and r1; r2; : : :. Therefore we haveab = �0 + 1�1 + 1�2+ 1�3+ ��� 0� or �0 + 1�1 + 1�2+ 1�3 if r4 (for example) =11AThis suggests onsidering expressions of the form�0 + �1�1 + �2�2+ �3�3+ ���where f�igi�1 and f�igi�0 are sequenes of real numbers. For sanity's sake, we shall denote suh anexpression (whih ould be �nite or in�nite) by�0 + �1�1+ �2�2+ �3�3+ � � � : (1)Given the ontinued fration (1), onsider the onvergentsQn = Qn(�0; �1; �1; � � � ; �n; �n) = �0 + �1�1+ �2�2+ �3�3+ � � � �n�n :The ontinued fration (1) onverges if limnQn exists, and we write �0 + �1�1+ �2�2+ � � � = limnQn.Given the two sequenes f�igi�1 and f�igi�0, onsider the two three-term reurrene sequenesR�1 = 1; R0 = �0; and for n � 1; Rn = �nRn�1 + �nRn�2;and S�1 = 0; S0 = 1; and for n � 1; Sn = �nSn�1 + �nSn�2:It is important to note that Rn = Rn(�0; �1; �1; � � � ; �n; �n) and Sn = Sn(�1; �1; � � � ; �n; �n).Proposition 8.1 J. Wallis 1655 ([3, setion 4.1℄)For the ontinued fration (1), Qn = Rn=Sn for every n.Proposition 8.2 ([3, setion 4.1℄)RnSn�1 �Rn�1Sn = (�1)n+1�1 � � ��n for every n � 1.Exerise 8 The proof of Proposition 8.2 was given under the assumption that �1 � � ��n 6= 0. What is theproof in ase some �s are zero?9 January 28,2005|Continued Frations IITheorem 9.1 ([3, Theorem 4.8℄) For eah real number , there is a unique ontinued fration with value of the form(i) ( irrational)  = �0 + 1�1+ 1�2+ � � � with �0 2 Z and f�igi�1 positive integers.(ii) ( rational)  = �0 + 1�1+ 1�2+ � � � 1�n with �0 2 Z and f�ig1�i�n positive integersExerise 9 Prove the uniqueness part of Theorem 9.1.5



10 January 31,2005|Continued Frations III10.1 Appliation to a Diophantine EquationWe return to the Diophantine equation ax � by =  (equation (4.1)). We know that a=b = Qn = Rn=Snwhere Rj = �jRj�1 + Rj�2 and Sj = �jSj�1 + Sj�2 for 1 � j � n and the initial onditions are R�1 =1; R0 = �0; S�1 = 0; S0 = 1. Sine RnSn�1�Rn�1Sn = (�1)n+1 we have (Rn; Sn) = 1, and sine (a; b) = 1,we have a = Rn and b = Sn. It follows that for every t, x := bt+(�1)n+1Sn�1 and y := �at�(�1)n+1Rn�1are solutions of ax+ by =  whih are integers if t is an integer.10.2 Suggestions for projets on ontinued frationsQuadrati irrationals and ontinued frations Referenes: two papers of Lewittes ([7℄,[8℄) and thebook of Ono ([9℄).Appliations of ontinued frations Chapter 4 of the book by Rokett and Sz�usz, [10℄.Continued frations and orthogonal polynomials Searhing the AMS website (MathSiNet) using thekey words \ontinued frations" and \orthogonal polynomials" leads to 191 entries!10.3 Regular ontinued frations(This subsetion is from [10, p. 3-4℄.)Another notation for the ontinued fration (1) with all the �j = 1 is [�0;�1; : : : ; �n; : : :℄. A regularontinued fration is one for whih �0 is an integer and �k is a positive integer for k � 1. In suh a ase, wehave (Rk ; Sk) = (Rk; Rk+1) = (Sk; Sk+1) = 1 and t = limk!1 Rk=Sk exists.Exerise 10 Show that Rk=Sk approximates t alternatively from above and below.If t = [a0; a1; : : : ; an℄ is a regular ontinued fration, then t is rational. If an > 1, then t = [a0; a1; : : : ; an�1; 1℄; if an = 1, then t = [a0; a1; : : : ; an�1 + 1℄. You ould have uniqueness by insisting that an � 2, but wewon't do this. Finally, if t = [a0; a1; : : : ; an; : : :℄ doesn't terminate, then t is irrational.11 February 4,2005|No lass12 February 7,2005|Braid Group IFor this topi, we are following [5℄.Braids an be made of several types of material (e.g., rope, hair, dough), an have ultural signi�ane(e.g., Ukrainian bread, Mexian belts), and an our in nature (e.g., rings of Saturn, DNA, periodi orbits).The de�nition of a braid must use mathematial onepts and ideas. A braid is a geometri objet, andthe material it is made of is irrelevant. Algebra is used to study properties of braids. Braids were developed�rst by Emil Artin in two papers (1925|a geometri approah, in German [1℄; 1947|an algebrai approah,in English [2℄)An n-braid onsists of the unit ube D in R3, n points A1; : : : ; An on the top of the ube, n pointsB1; : : : ; Bn on the bottom and n polygonal segments d1; : : : ; dn (alled braid strings and drawn as smoothars) whih satisfy the following onditions� d1; : : : ; dn are pairwise disjoint� Eah di onnets some Aj to some Bk� Eah horizontal plae Es = f(x; y; z) : 0 � x; y � 1; z = sg, with 0 � s � 1 meets eah dj in exatlyone point. 6



The set of all n-braids is denoted Bn. Two braids are said to be equivalent if one an be obtained fromthe other with a �nite sequene of elementary moves. An elementary move on a braid is the proess ofreplaing a segment of one string d, by two segments whih together with the original segment forms atriangle whih doesn't interset any other string and intersets d only in this segment. (The inverse proessis also onsidered to be an elementary move). This is an equivalene relation � � �0, and Bn = Bn= �denotes the set of all equivalene lasses.13 February 11,2005|Braid Group IIBraids are visualized by means of the braid projetion p : D! D, p(x; y; z) = (0; y; z). By performing someelementary moves on a braid �, we assume the urves p(di) satisfy� p(�) has only a �nite numbe of intersetion points� If Q is suh an intersetion point (alled a double point), then p�1(Q) \ � has exatly two points� A vertex (obvious de�nition) of � is never mapped by p onto a double point of p(�).At this point, p(�) represents � exept at double points. To indiate whih string is in front of the other,the projetion diagram (but not the string!) whih is behind the other one is ut.Non-equivalene of braids an be shown by use of invariants, that is, funtions f : Bn ! some algebrai struturesuh that � � �0 ) f(�) = f(�0). Simple examples of invariants are: f(�)= the number of strings of �; andf(�) = � 1 2 3 � � � nj(1) j(2) j(3) � � � j(n) �the braid permutation, where di onnets Ai to Bj(i).Theorem 13.1 ([5, Theorem 1.5,p.15℄) Bn is a group, under [�℄[�0℄ = [��0℄, where [�℄ is the equivalenelass of � 2 Bn and ��0 is the multipliation of braids, obtained by putting the projetion diagram of � ontop of the projetion diagram of �0 and removing the horizontal line through the points of onnetion.14 February 14,2005|Braid Group IIIYou an partition any braid diagram by horizontal lines suh that between two onseutive lines, only twostrings are braided with a solitary double point and the other strings remain vertial. This immediately leadsto the onlusion that the braid group Bn is generated by n � 1 elements �1; : : : ; �n�1. These generatorssatisfy two types of relations, �i�j = �j�i; 1 � i < j � n � 1; j � i � 2, and �i�i+1�i = �i+1�i�i+1; 1 �i � n� 2, whih leads to a (so-alled) presentation of the group Bn.Theorem 14.1 ([5, Theorem 2.2,p.18℄)Bn = h�1; : : : ; �n�1j�i�j = �j�i; �i�i+1�i = �i+1�i�i+1iFor the present, we shall take the meaning of \presentation" to be that the group is spei�ed by a set ofgenerators and a set of relations satis�ed by those generators. We do not at this time address the preisemeaning of this, whih is explained in the appendix of [5℄.15 February 18,2005|Braid Group IV and V15.1 Free GroupsLet S = fx1; : : : ; xng be a set and let S�1 = fx�11 ; : : : ; x�1n g be another set with the same number ofelements (n is supposed �nite, but the same reasoning will apply to a set of any ardinality). A word inS [ S�1 is an expression W = x�1i1x�2i2 � � �x�kik , where 1 � i1; : : : ; ik � n; �i = �1. Let W be the set of all7



suh words, together with the empty word, denoted by 1 and de�ne the produt of words by juxtaposition:W1W2 = x�1i1x�2i2 � � �x�pip y�1i1 y�2i2 � � � y�qiq and 1W1 = W11 = W1 if W1 = x�1i1x�2i2 � � �x�pip and W2 = y�1i1 y�2i2 � � � y�qiq .Clearly, W is an assoiative semigroup with identity.De�ne two words to be equivalent if you an get from one to the other by a �nite sequene of \insertions"and \deletions" of terms of the form x�pp x��pp .Theorem 15.1 ([5, Theorem 3.1,p.233℄) The set ~W of equivalene lasses is a group under [W1℄[W2℄ =[W1W2℄ and [W ℄�1 = [x��pip � � �x��2i2 x��1i1 ℄ if W = x�1i1x�2i2 � � �x�pip .~W is said to be a free group of rank n and is denoted by F hx1; : : : ; xni.Theorem 15.2 ([5, Theorem 3.2,p.233℄) Two free groups of the same rank are isomorphi.The free group F = F hx1; : : : ; xni has the following universal property. Let G be any group with ngenerators g1; : : : ; gn. Then the map f : xi 7! gi (1 � i � n) extends to a homomorphism f̂ of F onto G,given by f̂(x�1i1x�2i2 � � �x�pip ) = g�1i1 g�2i2 � � � g�pip .15.2 The word problemGiven a group G represented as G = hx1; : : : ; xnjR1 = 1; : : : ; Rm = 1i, the word problem for G is to �nd a\reasonably pratial" method that will be able to deide whether or not two arbitrary words (=elements ofG) g1 and g2 are equal; equivalently, given g 2 G, when is g = 1?Theorem 15.3 ([5, Theorem 5.1,p.239℄) The word problem is solvable for the free groups.Proof. A word g = x�1i1x�2i2 � � �x�pip is equal to 1 if it is either the empty word or if we an eliminate eah x�jijby means of insertions and/or deletions. If we annot �nd suh transformations, then g 6= 1. 2Theorem 15.4 ([5, Theorem 5.3,p.239℄) The word problem is solvable for any �nitely generated abeliangroup. (Neither a proof nor a referene is given in [5℄)Theorem 15.5 ([5, Theorem 5.4,p.240℄) There exists a group whose word problem is not solvable. (Areferene, but not a proof is given in [5℄)15.3 Solution of the word problem for the Braid groupThe word problem for the braid group Bn is: given a braid � 2 Bn, is � = 1 or not? The solution onsistsof three steps.Step (I) Is the braid a pure braid, that is di onnets Ai to Bi. If not, then � 6= 1 and you are done. Ifyes, proeed to step (II). NOTE: � is pure if and only if its braid permutation is the identity.Step (II) Given � a pure braid, let  be the braid obtained from � by replaing the last string dn bya straight line joining An to Bn. The set � := ��1. The braid � is \ombed", that is, all but one of itsstrings is vertial. Let us write 1 = , �1 = � and repeat the proess starting with  = 1 in plae of�, that is, replae the string dn�1 by a vertial string to get 2 and set �2 = 1�12 . Then � = �1�22.Continue the proess until you arrive at � = �1�2 � � ��n�1, where eah n-braid �i is \ombed".Proposition 15.6 ([5, Proposition 1.1,p.32℄) Let � be a pure n-braid. Then � is the trivial braid if andonly if eah of the �i in the deomposition given above is the trivial braid.Step (III) Determine whether or not eah �i is the trivial braid. (This is the most involved of the threesteps. One shows that eah �i is an element of a free group, in whih the word problem is solvable. Thismay be done next in this ourse/seminar.)
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16 February 25,2005|Braid Group VI16.1 Presentation of the Symmetri Group17 February 28,2005|Fermat's Last Theorem I17.1 Pythagorian Triples17.2 Fermat's Last Theorem n = 418 Marh 4,2005|no lass meetingReferenes[1℄ Emil Artin, Abhandlungen aus dem Mathematishen, Abh. Math. Sem. Univ. Hamburg 4 (1925), 47{72.[2℄ Emil Artin, Theory of braids, Ann. of Math (2) 48 (1947), 101{126.[3℄ Pery Deift, Orthogonal Polynomials and Random Matries: A Riemann-Hilbert Approah, AmerianMathematial Soiety, Providene, R. I. 2000[4℄ John Derbyshire, Prime Obsession. Bernhard Riemann and the Greatest Unsolved Problem in Mathe-matis, Joseph Henry Press, Washington D.C. 2003[5℄ Kunio Murasugi and Bohdan I. Kurpita, A Study of Braids, Kluwer Aademi Publishers 1999,[6℄ Norman Levinson, A motivated aount of an elementary proof of the prime number theorem, AmerianMathematial Monthly 76 (1969), 225{245.[7℄ Joseph Lewittes, Quadrati irrationals and ontinued frations Number theory (New York, 1991{1995),253{268, Springer, New York, 1996.[8℄ Joseph Lewittes, Continued frations and quadrati irrationals, Number theory (New York, 2003), 221{252, Springer, New York, 2004.[9℄ Takashi Ono, An introdution to algebrai number theory. The University Series in Mathematis.Plenum Press, New York, 1990.[10℄ Andrew M. Rokett and Peter Sz�usz, Continued Frations, World Sienti�, 1992.
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