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Winter 2005

Bernard Russo

March 6, 2005

For all aspects of the course, consult

http://math.uci.edu/ brusso/.

1 January 5,2005—The Prime Number Theorem I

Our first objective is to explore an elementary proof of the prime number theorem, following [6].

The prime number theorem was first conjectured by Gauss and Legendre at the end of the 18th century. It
was proved, using complex analysis, at the end of the 19th century by de la Vallée Poussin and Hadamard. In
the middle of the 19th century, significant tools were developed by Chebyshev and Riemann. An elementary
proof, that is, not using complex analysis, was discovered in the middle of the 20th century by Erdés and
Selberg.

Let m(z) := >_ ., 1 be the number of primes less than the positive number = and let Li(z) :=
7 ()

z/logx

T dt
J2 logt

be the “log integral” function. Legendre conjectured that lim, = 1 and Gauss conjectured that

lim, o % = 1.

For a history of the prime number theorem and the Riemann hypothesis, see the NY Times bestseller
[4], and my Freshman seminar (University Studies 3, Winter 2005).

2 January 7,2005—The Prime Number Theorem II

By the fundamental theorem of arithmetic, each positive integer n # 1 has the form n = p’fl ---pFm  where
m > 1, p1,...,pm are distinct primes and 1 < k;, so that logn = Z;n:l k;logp;. Define the von Mangoldt
symbol (1895) by A(n) :=logp if n is a positive integral power of the prime p, and A(n) = 0 if n is divisible
by the square of some prime.

Exercise 1 logn =3, A(j).

Define functions ¢,6,T" as follows: ¢(z) := >, A(j); 0(x) = 3, logp; T'(z) = ., ., logn.
Then (for example) ¢ (z) = 6(z) + 6(z'/?) + #(z'/?) + ---. The prime number theorem is the assertion
lim, o m(z)/(z/logz) = 1, which is equivalent to lim, ,. ¥ (z)/2 = 1. This equivalence, as well as the
proof of the latter are the objectives of [6] and the first week or two of our class.

For a function F(z) defined for > 1, define a transform F' — G by G(z) = >, ., F(z/n) = F(z) +
F(z/2)+ F(z/3) + -+ F(x/[z]). B

Proposition 2.1 F(x) =Y, n(k)G(x/k) where p is defined as follows: p(1) =1, p(n) = (=1)™ if n is
the product of m distinct primes, and u(n) = 0 otherwise (that is, u(n) = 0 if n is divisible by the square of
some prime).

Proof. See [6, pp.228-230].



Applying this Mdbius inversion formulato T'(x) = >, ¥(x/i), youget ¥ (z) =, ., p(k)T(x/k) which
can be rewritten (see [6, p.230]) as - -

ZA Zz,u ) log(n/k).

n<z n<z kin

Exercise 2 A(n) =y, u(k) log(n/k)

3 January 10,2005—The Prime Number Theorem III

The following five lemmas are the objective of today’s class. In the class we only proved the second and
fourth (Lemmas 3.2 and 3.4 in [6]). For the proof of the others, please consult [6].

Lemma 3.1 ([6, Lemma 3.1]) If f'(t) is continuous for t > 1, and C(u) := >
of numbers {c,, : n > 1}, then

n<u Cn for some sequence

S eafln) = / rie

n<lx

and

/f dt+/(t*[])f()dt+f() (& — [2])f ().

n<:£

The notation f(z) = O(g(z)) (z — oo) for a function f and a non-negative function g means that there
are constants Ky and K, such that |f(z)| < Kyg(x) for all z > K.

Exercise 3 Put f(t) = logt in Lemma 3.1 to get T(z) = xlogx — z + O(log x).
Lemma 3.2 ([6, Lemma 3.2]) ¥(z) < (3/2)x for large x.

Lemma 3.3 ([6, Lemma 3.3]) > __A(n)/n =logz + O(1)

n<lx
Lemma 3.4 ([6, Lemma 3.4]) ¥(z) = m(x) logz + O(xloglog z/ log )
Exercise 4 Show that the inequality

dzloglogz = z'/?(log z)?

< < 1
< U(@) < wla)logz + 5108

1 - -
m(w)log @ logz logx

proved in [6, pp.233-234] implies the assertion of Lemma 3.4.
Exercise 5 Use Lemma 3.4 to show that lim,_, . ¢ (z)/x =1 if and only if lim,_,oc w(x)/(z/logz) =1

Lemma 3.5 ([6, Lemma 3.5]) > __1/n=logz+~v+ O(1/x)

n<lx

4 January 14,2005—The Prime Number Theorem IV

Let’s apply Mobius inversion to F' = ¢ — G =T with the following strategy. Start with F simpler than F
and try to make G close to 7. Mobius inversion then gives you

Y(x =Y u(k)(T(x/k) — G(z/k)) (equation (4.1)).

k<wz

Since the desired goal is ¢(z)/z — 1, we initially choose F'(x) = Fy(x) = = which results (using Lemma 3.5)
in Go(z) = zlogz + 2y + O(1). Using T(z) = zlogx — z + O(logx), this results in T(x) — Go(z) =



—2(1+7) +O(logz). This is not good enough for our purposes, so the next guess is F(z) = Fy(z) =z — C.
This results in G1 (z) = zlogx — (C' — )z + O(1). Then choosing C =1 + =, you get

T(z) — Gi(x) = O(logz) (equation (4.2)).
By (4.1) with F(z) =z — C

() —x+C = Z,u T(z/k) — G1(z/k)) (equation (4.3)),

k<z

and T(z/k) — G1(z/k) = O(log(z/k)).
Even if we replace the O(log z) implicit in (4.3) by O(z'/?), we can still derive the (known fact)

Y(z) = O(x) (equation (4.4)),

as shown by equation (4.6). This suggests the Tatuzawa-Iseki identity (at least to the author Norman
Levinson!), which states

x)logx + Z F(%) Zu log G ) (equation (4.9)),

n<wz k<z

and which leads easily to the inequality of Selberg, which states

(W(z) — 2)logz + Z(w(%) - %)A(n) = O(z) (equation (4.10)).

n<wz

Exercise 6 Prove the following, which was used in the proof of (4.10).

S k) log((T () = Gi (1)) = O(z).

k<z

There are eight lemmas in [6, section 5] which constitute the proof of PNT. We now state and prove the
first one.
Define R(z) = ¢ (= ) —x for x > 2 and R(z) = 0 for 0 < z < 2. Then PNT is obviously equivalent to
R(z)/z — 0. Define S(y) = [} R(z)/z dx for y > 2 and S(y) = 0 for 0 < y < 2. Later, we will show that if
S(y)/y — 0 then S(z )/a: — 0, whence PNT. Of course, we have also to prove S(y)/y — 0!

Lemma 4.1 ([6, Lemma 5.1]) There is a constant ¢ such that

(equation (5.5)) |S(y)| < cy fory > 2
(equation (5.6))  |S(y2) — S(y1)| < ¢|y2 — v1]
(equation (5.7))  S(y)logy + > ., A(j)S(y/j) = O(y)

5 January 17,2005—Holiday
6 January 21,2005—The Prime Number Theorem V

By using Lemma 3.3, equation (4.10) above can be rewritten as

z)logz + Z A(n)z/)(%) =2zlogz + O(z). (equation (4.11))
n<x

Using Lemma 3.1 with ¢, = A(n) and f(t) = logt and Lemma 3.2 results in

Z A(n)logn = ¢(x)logz + O(z). (equation (4.12))
n<z



Also

ZA(J') =D AG) Y Ak) =D A()A(k). (equation (4.13))

i<z i<z k<z/j jk<z

Thus, if we define Ax(n) := A(n)logn + > ,,_, A(j)A(k) and plug (4.12) and (4.13) into (4.11), we get
> <y A2(n) = 2zlogz + O(z). From Exercise 3 you get ), - logn = zlogz + O(z). Finally, if we define
Q(n) := 3, <, (A2(k) — 2logk), then

Q(n) = O(n) (equation (4.15))
for n > 2 while Q(1) =

Lemma 6.1 ([6, Lemma 5.2]) There is a constant K, such that

log? y|S(y)| < Z Ao(m \-I—Klylogy (equation (5.13))

m<y

7 The Prime Number Theorem VI (not done in class)
Lemma 7.1 ([6, Lemma 5.3]) There is a constant Ko such that

log?y|S(y)l <2 3" logm|5(%)| + Kaylogy. (equation (5.14))

m<y

Lemma 7.2 ([6, Lemma 5.4]) There is a constant K4 such that
log? y|S(y)| < 2/ |S( Q Ylogudu + Ksylogy. (equation (5.16))
‘ u
In (5.16), let v = log(y/u) and = = logy. Then
xz—log 2
2% S(e®)| < 2 / |S(e”)|(x —v)e® " dv + Kqze®. (equation (5.18))
Jo

Set W(x) := e "S(e”). Then (5.18) becomes
2

[W(z)| < = = /OI(:U —0)|[W(v)|dv + % (equation (5.20))

Lemma 7.3 ([6, Lemma 5.5])

1 x
a :=limsup |W(z)| < min{1, v := limsup — / W ()| dE}  (equation (5.22))
z—o00 T Jgo

T —r 00

NOTE: PNT will follow from the assertion oo = 0.
Lemma 7.4 ([6, Lemma 5.6]) If k := 2¢, then
W ()| — W () | < W(as) ~ W(a)| < Kis — 1] (equations (5.26) and (5.27))
Lemma 7.5 ([6, Lemma 5.7]) If W(v) # 0 for v1 < v < vy, then IM > 0 such that

/W |[W(v)|dv < M (equation (5.28))

Juy

Lemma 7.6 ([6, Lemma 5.8]) If a function W satisfies (5.22), (5.27), and (5.28), then a = 0.

Discussion: The proofs of Lemmas 7.1-7.5, as well as the proof that PNT follows from a = 0 are easy to
follow from [6]. Lemma 7.6 is another matter.

Exercise 7 Give an understandable proof of Lemma 7.6.



8 January 24,2005—Continued Fractions I

Consider the following problem: given positive integers a, b, ¢, obtain solutions of the Diophantine equation
ax £ by = ¢ (equation (4.1)). It is enough to consider the case with the plus sign, and we can assume that
a and b have no common factor.

Write a/b = g + 1/r1, where Sy = [a/b] and 1 < rq < co. (The meaning here of “r; = 00” is thata/b is
an integer, so the construction ends.) If “ry # c0”, write 11 = 81 + 1/r2, where 81 = [r1] and 1 < 9 < 0.
At this point we have

1 1
EZﬂo+71 <0rﬂo+ﬁ—ifrgzoo>

b 51+ = 1
Continue this construction to obtain r, = 8, + 1/r,41, where 8, = [r,] and 1 < r, < co. This
construction ends in finite sequences By, 51 ...,0n and ri,rq, ..., 7, if some r,41 = 0o0; otherwise it is an
infinite process generating infinite sequences g, 51 ... and r1,79,.... Therefore we have
a 1 .
7= Bo+ or By + ——— if r4 (for example) = oo
Pt G it
This suggests considering expressions of the form
an
Bo+
B1 + Bat ol

where {a;};>1 and {f;}i>0 are sequences of real numbers. For sanity’s sake, we shall denote such an
expression (which could be finite or infinite) by

a1 Qg Q3
A
B+ Bat+ Bs+
Given the continued fraction (1), consider the convergents

(1)

_ 0 0s
On = Qnllo,casfrosoms o) = Pot g g B B

The continued fraction (1) converges if lim,, @,, exists, and we write 8o + ,6‘(?1+ 6";1 <o = lim, Q.

Given the two sequences {a;};>1 and {f;};>0, consider the two three-term recurrence sequences

R*l = 17 RO = 607 and for n Z ]-7 Rn = 6an71 + aTLRTL727

and
S 1=0, Sy=1, andforn>1, S, =/8,5._-1+a,S,_s.

It is important to note that R, = R,,(Bo, 1,81, ,n, Bn) and S, = Sp(a1,B1, -, @, Bn).

Proposition 8.1 J. Wallis 1655 ([3, section 4.1])
For the continued fraction (1), @, = R,,/Sn for every n.

Proposition 8.2 ([3, section 4.1])
R,Sn 1~ R, 1S, = (—1)""lay -, for everyn > 1.

Exercise 8 The proof of Proposition 8.2 was given under the assumption that oy ---«,, # 0. What is the
proof in case some «s are zero?

9 January 28,2005—Continued Fractions II

Theorem 9.1 ([3, Theorem 4.8]) For each real number v, there is a unique continued fraction with value
v of the form

(i) (v irrational) v =+ 611+ 62% -+ with fo € Z and {B;}i>1 positive integers.
1

(ii) (v ratiomal) =0+ 61%62%

Exercise 9 Prove the uniqueness part of Theorem 9.1.

BL with fo € Z and {fi}1<i<n positive integers



10 January 31,2005—Continued Fractions I1I

10.1 Application to a Diophantine Equation

We return to the Diophantine equation az + by = ¢ (equation (4.1)). We know that a/b = @, = R,/S»
where R; = B;R;_1 + Rj_» and S; = ;51 + Sj_» for 1 < j < n and the initial conditions are R_; =
1,Ry = 30,81 =0,8 = 1. Since R,S,, 1 — R, 1S, = (—1)""! we have (R,,,S,) = 1, and since (a,b) = 1,
we have a = R,, and b = S,,. It follows that for every t, x := bt+(—1)"*'¢S,, ; and y := —at—(—1)""'cR,,_;
are solutions of ax 4+ by = ¢ which are integers if ¢ is an integer.

10.2 Suggestions for projects on continued fractions

Quadratic irrationals and continued fractions References: two papers of Lewittes ([7],[8]) and the
book of Ono (]9]).

Applications of continued fractions Chapter 4 of the book by Rockett and Sziisz, [10].

Continued fractions and orthogonal polynomials Searching the AMS website (MathSciNet) using the
key words “continued fractions” and “orthogonal polynomials” leads to 191 entries!

10.3 Regular continued fractions

(This subsection is from [10, p. 3-4].)

Another notation for the continued fraction (1) with all the a; = 1 1is [8o;B1,...,0n,.-.]. A regular
continued fraction is one for which fy is an integer and i is a positive integer for k£ > 1. In such a case, we
have (Rk Sk) = (Rk7Rk+1) = (Sk,Sk+1) =landt= limkﬁoo Rk/Sk exists.

Exercise 10 Show that Ry /Sk approzimates t alternatively from above and below.

Ift = [ag;aq, ..., ay,] is a regular continued fraction, then ¢ is rational. If a,, > 1, then ¢t = [ag; a1, ..., a,—
1,1]; if a, = 1, then ¢ = [ag; a1, ...,a,—1 + 1]. You could have uniqueness by insisting that a,, > 2, but we
won’t do this. Finally, if ¢ = [ag; a1, ...,an,...] doesn’t terminate, then ¢ is irrational.

11 February 4,2005—No class
12 February 7,2005—Braid Group 1

For this topic, we are following [5].

Braids can be made of several types of material (e.g., rope, hair, dough), can have cultural significance
(e.g., Ukrainian bread, Mexican belts), and can occur in nature (e.g., rings of Saturn, DNA, periodic orbits).

The definition of a braid must use mathematical concepts and ideas. A braid is a geometric object, and
the material it is made of is irrelevant. Algebra is used to study properties of braids. Braids were developed
first by Emil Artin in two papers (1925—a geometric approach, in German [1]; 1947—an algebraic approach,
in English [2])

An n-braid consists of the unit cube D in R3, n points A;,..., 4, on the top of the cube, n points
By, ..., B, on the bottom and n polygonal segments dy,...,d, (called braid strings and drawn as smooth

3 3

arcs) which satisfy the following conditions

e dyi,...,d, are pairwise disjoint

3

e Each d; connects some A; to some By,

e Each horizontal place E; = {(2,y,2) : 0 < z,y < 1,z = s}, with 0 < s < 1 meets each d; in exactly
one point.



The set of all n-braids is denoted B,,. Two braids are said to be equivalent if one can be obtained from
the other with a finite sequence of elementary moves. An elementary move on a braid is the process of
replacing a segment of one string d, by two segments which together with the original segment forms a
triangle which doesn’t intersect any other string and intersects d only in this segment. (The inverse process
is also considered to be an elementary move). This is an equivalence relation 8 ~ ', and B,, = B,/ ~
denotes the set of all equivalence classes.

13 February 11,2005—Braid Group II

Braids are visualized by means of the braid projection p : D — D, p(z,y,2) = (0,y, z). By performing some
elementary moves on a braid 3, we assume the curves p(d;) satisfy

e p(f) has only a finite numbe of intersection points
o If () is such an intersection point (called a double point), then p~1(Q) N B has exactly two points
e A vertex (obvious definition) of 3 is never mapped by p onto a double point of p(5).

At this point, p(5) represents 5 except at double points. To indicate which string is in front of the other,
the projection diagram (but not the string!) which is behind the other one is cut.

Non-equivalence of braids can be shown by use of invariants, that is, functions f : B,, — some algebraic structure
such that 8 ~ 8’ = f(8) = f(B'). Simple examples of invariants are: f()= the number of strings of §; and

the braid permutation, where d; connects A; to Bj().

Theorem 13.1 ([5, Theorem 1.5,p.15]) B,, is a group, under [5][8'] = [88'], where [§] is the equivalence
class of B € B,, and B is the multiplication of braids, obtained by putting the projection diagram of B on
top of the projection diagram of B8' and removing the horizontal line through the points of connection.

14 February 14,2005—Braid Group III

You can partition any braid diagram by horizontal lines such that between two consecutive lines, only two
strings are braided with a solitary double point and the other strings remain vertical. This immediately leads
to the conclusion that the braid group B,, is generated by n — 1 elements o1,...,0,_1. These generators
satisfy two types of relations, o;0; = 0j0;, 1 <i<j<n-—1, j—¢>2, and 0;0,410; = 0i410,0i+1, 1 <
i <n — 2, which leads to a (so-called) presentation of the group B,,.

Theorem 14.1 ([5, Theorem 2.2,p.18])
B, =(01,...,0n_1|0i0; = 0j0;, 0:0i410; = 0;110;0i4+1)

For the present, we shall take the meaning of “presentation” to be that the group is specified by a set of
generators and a set of relations satisfied by those generators. We do not at this time address the precise
meaning of this, which is explained in the appendix of [5].

15 February 18,2005—Braid Group IV and V

15.1 Free Groups

Let S = {x1,...,2,} be a set and let S~' = {x;',...,2,'} be another set with the same number of
elements (n is supposed finite, but the same reasoning will apply to a set of any cardinality). A word in
SUS~!is an expression W = zyiwg? gk, where 1 <y, ... i < n, ¢ = £1. Let W be the set of all

2



such words, together with the empty word, denoted by 1 and define the product of words by juxtaposition:
WiWy = x3la;? "'CUZ?J?;?J?; y:: and 1W, = Wil = W if Wy = 27232 azfj and Wy = y"y” y::
Clearly, W is an associative semigroup with identity.
Define two words to be equivalent if you can get from one to the other by a finite sequence of “insertions”
and “deletions” of terms of the form z,7z;,
Theorem 15.1 ([5, Theorem 3.1,p.233]) The set W of equivalence classes is a group under [W,][Ws] =
(Wi Ws] and W]t = [m;f” sy Py if W= wglag? ’EZ’
W is said to be a free group of rank n and is denoted by Flxy,...,z,).
Theorem 15.2 ([5, Theorem 3.2,p.233]) Two free groups of the same rank are isomorphic.

The free group F' = F{z1,...,Zn) has the following universal property. Let G be any group with n
generators gi,...,gn. Then the map f:z; — ¢; (1 <i < n) extends to a homomorphism f of F' onto G,

€1 €2 €p

given by f(zj 22 - TZ’) =9i 95 9i

15.2 The word problem

Given a group G represented as G = (x1,...,z,|R; = 1,..., R,, = 1), the word problem for G is to find a
“reasonably practical” method that will be able to decide whether or not two arbitrary words (=elements of
G) g1 and g9 are equal; equivalently, given g € G, when is g = 17

Theorem 15.3 ([5, Theorem 5.1,p.239]) The word problem is solvable for the free groups.

f— El E2 PR Ep
Proof. A word g = z}' w2 - x;

p

is equal to 1 if it is either the empty word or if we can eliminate each ’I‘:]]
by means of insertions and/or deletions. If we cannot find such transformations, then g # 1. O

Theorem 15.4 ([5, Theorem 5.3,p.239]) The word problem is solvable for any finitely generated abelian
group. (Neither a proof nor a reference is given in [5])

Theorem 15.5 ([5, Theorem 5.4,p.240]) There ezxists a group whose word problem is not solvable. (A
reference, but not a proof is given in [5])

15.3 Solution of the word problem for the Braid group

The word problem for the braid group B,, is: given a braid g € B,,, is # = 1 or not? The solution consists
of three steps.

Step (I) Is the braid a pure braid, that is d; connects A; to B;. If not, then § # 1 and you are done. If
yes, proceed to step (II). NOTE: § is pure if and only if its braid permutation is the identity.

Step (II) Given f a pure braid, let v be the braid obtained from £ by replacing the last string d,, by
a straight line joining A, to B,. The set a := $y~!. The braid « is “combed”, that is, all but one of its
strings is vertical. Let us write 73 = 7, @1 = « and repeat the process starting with v = ~; in place of
B, that is, replace the string d, 1 by a vertical string to get v, and set ay = 'yl'y;l. Then 8 = ajasys.
Continue the process until you arrive at f = ajas -+ - @, _1, where each n-braid «; is “combed”.

Proposition 15.6 ([5, Proposition 1.1,p.32]) Let § be a pure n-braid. Then (3 is the trivial braid if and
only if each of the a; in the decomposition given above is the trivial braid.

Step (III) Determine whether or not each «; is the trivial braid. (This is the most involved of the three
steps. One shows that each «; is an element of a free group, in which the word problem is solvable. This
may be done next in this course/seminar.)



16 February 25,2005—Braid Group VI

16.1 Presentation of the Symmetric Group
17 February 28,2005—Fermat’s Last Theorem I

17.1 Pythagorian Triples
17.2 Fermat’s Last Theorem n =4

18 March 4,2005—no class meeting
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