
Monte Carlo Methods Appl. 18 (2012), 147–160
DOI 10.1515/mcma-2012-0004 © de Gruyter 2012

A restarted estimation of distribution algorithm
for solving sudoku puzzles

Sylvain Maire and Cyril Prissette

Abstract. In this paper, we describe a stochastic algorithm to solve sudoku puzzles. Our
method consists in computing probabilities for each symbol of each cell updated at each
step of the algorithm using estimation of distributions algorithms (EDA). This update
is done using the empirical estimators of these probabilities for a fraction of the best
puzzles according to a cost function. We develop also some partial restart techniques
in the RESEDA algorithm to obtain a convergence for the most difficult puzzles. Our
algorithm is tested numerically on puzzles with various levels of difficulty starting from
very easy ones to very hard ones including the famous puzzle AI Escargot. The CPU times
vary from few hundreds of a second for the easy ones to about one minute for the most
difficult one.

Keywords. Stochastic algorithms, estimation of distribution, sudoku puzzles, restart
techniques.

2010 Mathematics Subject Classification. 90C59, 65C05.

1 Introduction

Sudoku is a very popular logic-based puzzle game which appeared in Europe in
the early 2000s. Even though there are many variants of sudoku puzzles, its main
version consists of the 81 cells of a 9�9 grid. Each cell should be filled with sym-
bols that are usually the numbers from one to nine. The main grid is additionally
divided in nine 3 � 3 blocks. Some of the cells are pre-filled by the puzzle builder
such that there is one and only one puzzle that meets the following constraints: the
numbers one to nine must appear only once in each row, each column and each
3 � 3 block. A typical easy puzzle is given in Figure 1.

While human people try to solve sudoku puzzles logically using a certain num-
ber of basic or more sophisticated tricks, most algorithms available do not use logic
but optimization tools. A wide range of deterministic algorithms are used based
on backtracking [16], brutal force search or constraint programming [2]. The most
recent works also include a Sinkhorn balancing algorithm [13] and an algorithm
based on the connections with sparse solution of underdetermined linear systems
[1].



148 S. Maire and C. Prissette

8 6 7 4 2
4 2 3 9
3 7 2

4 5
8 9 2 5 1 6 7

1 3
9 7 3

3 5 2 1
7 5 3 2 9

Figure 1. Easy puzzle.

Stochastic algorithms have also been developed based on simulated annealing
[10] or on different metaheuristic techniques [14] like cultural algorithms [15],
repulsive particle swarm optimization [9] or quantum simulated annealing [4].
The method we propose is also a stochastic algorithm but more based on adaptive
Monte Carlo strategies, that is, sequential Monte Carlo methods. These methods
were introduced by John Halton in the early 1960s [6] to solve in particular linear
systems. They have been used successfully more recently to solve partial differ-
ential equations like transport [3] or diffusion equations [5] but also to compute
approximations on orthonormal bases [12]. In the case of stochastic optimization,
these algorithms are called estimation of distribution algorithms (EDA) [8, 11].
The idea is to compute adaptively probabilities for each number of each cell up-
dated after each step of the algorithm. Empirical estimators of the probabilities
of a fraction of the best puzzles according to the cost function are used to make
these updates. For the most difficult puzzles, we introduce a new method called
RESEDA (for restarted EDA) based on partial restarts of the algorithm while keep-
ing parts of the puzzles that were not hundred percent correct.

Our paper is organized as follows. In Section 2, we describe the basic version
of our algorithm and its main parameters. We give first the cost function that
we use to evaluate the quality of a grid and how we initialize the probabilities
in the different cells. Then, we discuss the updating of these probabilities from
one step to another by making a linear combination of the empirical estimators of
the probabilities of a fraction of the best puzzles at step n C 1 and of the current
probabilities at step n. Finally, we describe the stopping criterion of the algorithm
and the restart procedures in case of failure.



Distribution algorithm for solving sudoku puzzles 149

In Section 3, we test our algorithm on easy or medium examples to analyze its
performances and to make the most efficient choices for its different parameters.
We especially focus on the balance between the probability of success and the
number of steps until convergence. It can be a lot more efficient to restart one or
few times a cheap algorithm that does not always converge than a very consuming
one that always does.

Section 4 is devoted to restart techniques. We observe that the usual full restart
technique of the algorithm is not sufficient to make the algorithm efficient. We
develop partial restart techniques where some parts of the solution obtained after
the first try are considered as fixed to start the algorithm again. This idea is really
useful when the chosen part is a random block, row or column.

Section 5 gives the mean performances of the algorithm on many puzzles with
five different levels of difficulty taken from an open source code. We also solve
the AI Escargot puzzle [7] which is considered as one of the most difficult puzzles
available. Some additional restart tricks are necessary for its numerical resolution.

2 Description of the optimization algorithm

2.1 Initialization and cost function

The principle of our method is to compute a probability for each symbol of each
cell at every step of the algorithm. The cells of the puzzle are denoted by ai;j

with 1 � i; j � 9 like in matrix notations and we denote by p.n/

i;j;k
the probability

P .n/.ai;j D k/ for the cell ai;j to contain the symbol k at step n of the algorithm.
For each puzzle a set G � Œ1; 9�2 � Œ1; 9� constituted of M cells and symbols
is given. This set is assumed to be rich enough so that the puzzle has a unique
solution. We set P .0/.ai;j D k/ D 1 for all .i; j; k/ 2 G. The initialization of the
other probabilities for the 81 �M cells and symbols belonging to Gc is uniform
on the set of possible points. More precisely, for each cell ai;j , we define the set
Vi;j of all the symbols corresponding to the points 2 G that have a column, a row
or a 3 � 3 block in common with the cell ai;j . Then we set

P .0/.ai;j D k/ D

´
0 if k 2 Vi;j ,

1
9�card.Vi;j /

otherwise.

The optimization algorithm involves samples from the p.n/

i;j;k
and we need to

define a cost function to measure the quality of a puzzle and to stop the algorithm
when a sample vanishes this cost function. Many cost functions are possible, the
constraint is that the cost function is zero when all the rows, all the columns and
all the 3 � 3 blocks contains all the 9 symbols. Our cost function is the sum over



150 S. Maire and C. Prissette

all rows, all columns and all blocks of the missing symbols in the rows, columns
and blocks. For example, if a row contains the symbols .2; 2; 3; 3; 3; 5; 6; 7; 8/ its
contribution to the cost function is 3 as the numbers 1, 4 and 9 are missing.

2.2 Optimization algorithm

Once the probability distribution p.n/

i;j;k
is built, we draw Q samples from it and

keep a small numberQ1 of the best ones according to the cost function. These best
samples can be obtained by sorting the Q samples and keep the Q1 with lowest
cost function using insertion for instance. Another possibility is to take the sample
with lowest cost function among Q

Q1
samples of size Q1. The second method has

a smaller complexity but may omit very good samples.
Then for each cell ai;j , we compute the empirical probability distribution r.nC1/

i;j;k
of the k symbols among the Q1 samples. It remains to update the new probability
distribution p.nC1/

i;j;k
by letting

p
.nC1/

i;j;k
D ˛p

.n/

i;j;k
C .1 � ˛/r

.nC1/

i;j;k
;

where 0 � ˛ � 1. The smoothing parameter ˛ represents the fraction of the
probability distribution which is kept from an iteration to the other. It is very
similar to the cooling parameter which appears in simulated annealing. The larger
this fraction is, the slower the convergence but the more robust the algorithm is.
The numberQ1 of the best samples kept amongQ samples plays the same role in
the convergence. If Q1 is large, the algorithm is more robust but the convergence
is slower.

2.3 Stop and restart

The algorithm obviously stops when one of the samples solves the puzzle but we
also need to stop it when the probability to obtain the solution becomes too small.
Our stopping test is based on

�.n/ D min
1�i;j�9

�
max

1�k�9
p

.n/

i;j;k

�
:

We stop the algorithm when �.n/ > ˇ where ˇ is a parameter close to one. Indeed,
if �.n/ > ˇ the algorithm is around a local minimum of the cost function which
is not zero and can only escape from it with a very small probability. In many
optimization problems (solved or not by stochastic algorithms) like for example
the traveling salesman problem, one is not necessarily looking for the optimal
solution but only to a good one according to a given criterion. The main difficulty



Distribution algorithm for solving sudoku puzzles 151

of our optimization problem is that people are not interested in a puzzle with very
few errors but only with the one with none. Moreover, the cost function often
needs to cross a gap of 3 or 4 to reach the exact solution.

Our algorithm may fail to converge in one shot, so it is necessary to start it
again using possibly the approximate solution obtained after this first shot. The
most simple approach consists in a full restart of the algorithm starting again with
the original grid. We will see in some of the numerical examples that this trick
is not efficient enough for very difficult puzzles. For such puzzles, our algorithm
is attracted almost every time towards a local minimum which is not the solution.
Nevertheless, a large proportion of the cells have the right symbol and it is worth
using this information to restart the algorithm. The partial restart algorithm con-
sists in restarting the algorithm with additional fixed symbols or more generally
with symbols with an increased probability.

3 Basic numerical examples without restarting

3.1 Easy example

Our first example (see Figure 1) is an easy puzzle taken from www.e-sudoku.fr
(puzzle 114 949).

Our algorithm is applied without restart procedures using Q1 D 10 puzzles
from a sample of Q D 100 puzzles to update the empirical probabilities. The
algorithm stops when �.n/ D 0:6. These parameters will be used in all following
numerical tests. We compare three algorithms based on different strategies. The
first one is based on the additional constraints described in Section 2.1.

The second one gets rid of these constraints but tries to pick permutations in
each of the nine 3 � 3 blocks whenever it is possible instead of picking each case
individually. To do this, we have to conciliate the probabilities of each symbol of
the individual cells while trying to pick a permutation. We do not know if this can
be done optimally. Our technique is to first pick a symbol in the cell having the
highest probability. Once this symbol is picked, it is removed from the possible
symbols of the remaining cells of the block and the probabilities in these cells are
recomputed knowing that the probability of this symbol is now zero. This method
is iterated until the last cell is filled. Note that it may happen that it is impossible
to pick a permutation especially for the final steps of the process. In this case, we
just pick the remaining symbols uniformly at random.

The third strategy is the combination of the first two: trying to pick permutations
in blocks while taking into account the constraints given by the fixed cells. This
may increase the number of blocks that are not permutations but these ones are
likely to be discarded by the selection procedure. If we go back to the properties

www.e-sudoku.fr


152 S. Maire and C. Prissette

permutations pre-computation both optimizations
˛ success rounds success rounds success rounds

0.99 98 574 100 522 100 188
0.9 82 67 96 60 100 25
0.7 42 25 71 22 100 9
0.5 11 17 35 14 100 6

Table 1. Success rates with the different optimizations.

of EDA [11], the strategy of filling the cells independently is univariate while the
two other ones are multivariate strategies on the nine cells of a block.

Table 2 represents the number of successful algorithms among one hundred and
the number of iteration steps in case of convergence for different values of ˛ for
each of the strategies described above.

These preliminary results show that the algorithm works well in all its versions
and it is better to run our algorithm with the two optimization tools simultaneously.
Indeed these tools reduce the search space and avoid many impossible puzzles.
As a consequence they will be used in all following numerical examples. We
can also remark that increasing ˛ leads to a more successful algorithm but may
increase significantly the number of iterations until convergence. Looking at the
results we obtain on this easy puzzle, it seems to be a lot more efficient in terms
of computational times to take a smaller value of ˛ coupled eventually with a
full restart procedure. We shall investigate on other examples if this still holds
and choose a value of ˛ close to optimality in terms of complexity. Finally, we
can give the performances of the algorithm. If we choose both optimizations and
˛ D 0:7, the mean number of puzzles tested is only 900 and the mean CPU times
are 0.03 seconds. Our program is written in C++ and executed on a desktop PC,
with an Intel Core 2 Duo 2.66 GHz processor running under GNU/Linux.

3.2 Medium difficulty example

The second puzzle (Figure 2) is taken from [1] and has a medium level of difficulty.
Our algorithm can still solve quite easily this puzzle but the probability of success
decreases significantly when ˛ decreases as illustrated in Table 2 where ˛ is taken
between 0:1 and 0:99.

As the algorithm does not always solves the puzzle, it is necessary to restart
the algorithm one or a few times until convergence. It is interesting to find a
balance between the probability of success and the mean number of iterations until



Distribution algorithm for solving sudoku puzzles 153

2 4 7
6

3 6 8 4 1 5
4 3 1 5
5 3 2
7 9 6
2 9 7 1 8

4 9 3
3 1 4 7 5

Figure 2. Medium puzzle.

˛ success iterations

0.99 99 277
0.9 81 37
0.7 61 14
0.5 43 8
0.3 26 7
0.1 12 7

Table 2. Success rates.

convergence or a restart. We have tested different puzzles with different levels of
difficulty for which the value ˛ D 0:7 has appeared as a good balance. This value
will be used in all of the following tests.

4 Solving sudoku puzzles with partial restart

4.1 Behavior of the algorithm with harder puzzles

We now take a harder example from [1]. This puzzle, shown in Figure 3, is a lot
more difficult to solve with our algorithm. In fact, we only succeed in solving it 3
times out of a hundred.



154 S. Maire and C. Prissette

1 7 8 9
3 8

9 5 6
9 7
3 1 2

4 5 8
5 6 2 4 9

6 7 3 4 9 5 1
4 3

Figure 3. Hard puzzle.

A B A B A A B
A A A A A
B A A A B A A A
A A A A

A A A A A A
A A A A A A A
A A A A A A A A A
A A A A A A A A A
A A A A A A A A A

Figure 4. Hard puzzle: level of correctness of each cell.

Even though the probability of solving the puzzle in one shot is quite small, it
is very interesting to have a precise look at the puzzles obtained even if they are
not completely solved. Indeed, to distinguish two puzzles only by the fact that
they are true or wrong may hide that the wrong puzzles are partially correct. The
grid shown in Figure 4 has been built using one hundred tries of the algorithm and
indicates the level of correctness of each of the cells of the puzzles. For each cell
of the puzzle, we give the grade A if it is always correct and the grade B if it is not
always correct but at least ninety times out of a hundred. An empty cell indicates
that the right value has been found less than ninety times out of a hundred.



Distribution algorithm for solving sudoku puzzles 155

We can see that many rows, blocks or columns are always or very often correct
using our algorithm. For instance the three bottom blocks (and consequently the
three bottom rows!) as well as column two and four are always correct. Some other
regions like column five or line three have also a large probability to be correct.
In the next subsection, we shall use these nice properties to develop partial restart
techniques.

4.2 Restarted estimation of distribution algorithm

The difficulty of a puzzle mainly depends on the number of the initial fixed cells.
Adding only few more fixed cells can transform a very hard puzzle into an easy
one. Our algorithm could for instance take advantage of few basic deterministic
guesses from human sudoku experts but we intend for the moment to keep it fully
stochastic. Nevertheless we can try to make these guesses from our algorithm
using the conclusions of the previous subsection. We have seen that many indi-
vidual cells and also complete rows, columns or blocks are correct. The partial
restart estimation of distribution algorithm (RESEDA) consists in adding to the
initial fixed cells columns, rows or blocks obtained after a first resolution of the
algorithm while discarding obviously any of them which is not a permutation. We
have tried to fix cells at random among the ones obtained after the first resolution
of the algorithm but this was not really efficient. Indeed, this increases a lot the
probability that one of the new fixed cells is wrong compared to fixing all the cells
of a row, block or column. Similarly, we have chosen to add only one zone at a
time because the probability that two zones are simultaneously correct is small.

There are 27 ways to complete the initial puzzle if we add one zone at a time.
We could run any of these 27 configurations but we have observed in practice
that if the algorithm fails to converge for one of the type of zones it is unlikely to
converge for the others. In this case, it is better to make a full restart which avoids
24 more resolutions from initial configurations that are likely to be wrong.

Table 3 describes this behavior for the previous hard puzzle. It gives the number
of successes among 1000 attempts of resolution and the average total execution
time in seconds. Four methods are compared: without restart, when we restart
with one fixed zone at a time out of 3, 9 or 27 zones which are, respectively, the
3 � 3 blocks on the first diagonal, all the 3 � 3 blocks and all the columns, rows
and 3 � 3 blocks. The estimation of mean time of success (ETS) of the algorithm
is also given.

As one can see in this example, the best trade-off between execution time and
success rate is a partial restart with one block at a time, out of the 3 blocks on
the first diagonal. Moreover, this example shows that the algorithm is faster with a



156 S. Maire and C. Prissette

method number of
successes

time ETS

no partial restart 89 0.198 2.225
restart with 1 zone out of 3 474 0.614 1.295
restart with 1 zone out of 9 619 1.113 1.798
restart with 1 zone out of 27 906 1.694 1.869

Table 3. Comparison of restart techniques on the hard puzzle.

partially completed puzzle. This is a common and quite obvious behavior: adding
clues makes the puzzle easier and so the resolution attempt needs less time.

Our partial restart technique will be based only on resolutions on puzzles com-
pleted by one of the 3 blocks obtained after a first resolution of the basic algorithm.
If the algorithm does not converge after trying each of these 3 blocks, then we do
a full restart of the algorithm.

5 More numerical tests

5.1 Test on different levels of difficulty

We shall now give in Table 4 more numerical examples on puzzles with five lev-
els of difficulty: very easy, easy, medium, hard and fiendish taken from the open
source code sudoku 1.0.1-3 by Michael Kennett. For each level of difficulty, 1000
puzzles are randomly generated. The measured times are the execution time ex-
pressed in seconds until the algorithm stops in case of convergence or in case of
failure.

For each set of 1000 puzzles, we count the number of successfully solved puz-
zles and the average execution time fixing successively one zone among the 27
zones after the restart. Then we do the same algorithm with only the nine 3 � 3
blocks and finally among the three 3 � 3 blocks of the first diagonal.

The success rate is high when we fix exhaustively the 27 zones, but one can
see that using less zones insures a good success rate and decreases significantly
the execution time. This can be explained quite easily: at the end of the first step,
the algorithm gives many successfully solved zones, even if we don’t know which
zones are successfully solved. This is the key idea of the partial restart.

However, sometimes at the end of the first step, the algorithm finds a local
minimum which is very different from the solution. In this case, restarting is a loss
of time if no fixed zone is correct. Thus, limiting the number of tested fixed blocks



Distribution algorithm for solving sudoku puzzles 157

27 zones 9 zones 3 zones
success time success time success time

very easy 1000 0.046 1000 0.049 1000 0.047
easy 1000 0.113 994 0.129 982 0.104

medium 959 1.015 884 0.718 659 0.502
hard 811 2.394 563 1.451 365 0.726

fiendish 605 3.458 336 1.831 221 0.824

Table 4. Simulations on puzzles with different difficulties.

for a restart is a good choice because it keeps a good success rate if the first step
has found an interesting partial solution, and limits the loss of time if this first step
gives a poor partial solution.

So, we recommend to make a partial restart 3 times, fixing one of the 3 blocks
on the first diagonal for each restart. If no solution is found, then we recommend
to make a full restart. The mean time of resolution using this strategy is the mean
time of the algorithm divided by the probability of success. This mean time goes
from 0:047 seconds for the very easy puzzles to 0:824

0:221
� 3:71 seconds for the

fiendish ones.

5.2 Very hard puzzle: AI Escargot

Until now, the puzzles were either quite easy puzzles built to be solved by human
players, or randomly generated puzzles with a level of difficulty measure with
some criteria, such as the length of a deduction chain needed to solve them with a
deterministic algorithm.

In order to illustrate the behavior of the RESEDA algorithm, we now use it to
solve a puzzle of another kind: a puzzle built to be the most complex to solve.
The puzzle we study is known as AI Escargot and has been created by Arto Inkala
who introduces it as the most difficult puzzle in the world. This puzzle which has
a unique solution is given in Figure 5.

Once more, our algorithm is executed 1000 times and we measure in Table 5 the
success rate and the average execution time, in the 3 configurations: partial restart
with one zone out of 3, 9 or 27 zones.

As one can see, this is a hard puzzle to solve for the algorithm RESEDA. The
success rate is not zero if we make a partial restart with 9 or 27 zones, but it is
still low. There are many reasons to explain this behavior. First, the puzzle has



158 S. Maire and C. Prissette

1 7 9
3 2 8

9 6 5
5 3 9

1 8 2
6 4
3 1

4 7
7 3

Figure 5. AI Escargot puzzle.

number of
tested zones

number of
successes

CPU time

3 0 1.251
9 1 2.857
27 9 7.045

Table 5. Simulations with 1000 resolutions of AI Escargot.

few clues: only 23 numbers are given. This can be a hindrance to the distribution
evaluation at the beginning of the algorithm and make it converge towards a local
minimum which is very different from the solution. Moreover, even if a few zones
are less hard to solve, we have no evidence that they are the 3 � 3 blocks of the
first diagonal. So for this kind of puzzle, we recommend to use exhaustively the
27 zones for the partial restarts.

The execution time (with success or not) is roughly twice the time needed to
solve a fiendish puzzle but the probability of success is only 9

1000
. This leads to a

mean time of success of about 778 seconds which is quite long. In order to reduce
this CPU times, we propose to couple RESEDA with brutal force techniques. The
idea is to run the algorithm considering as fixed each of the admissible permuta-
tions of a given 3� 3 block. If we do this for the upper left corner block, there are
only 24 permutations meeting the basic constraints. One of these 24 permutations
is the right permutation, and it adds 6 clues to the puzzle. When it is correctly



Distribution algorithm for solving sudoku puzzles 159

guessed, the success rate grows to 580
1000

with a CPU time of 1.517 seconds, which
leads to a mean time of success of 1000�24�1:517

580
� 63 seconds. Using this new

idea, the CPU times are divided by ten.

6 Conclusion

We have introduced and tested a new stochastic algorithm RESEDA for solving
sudoku puzzles. The basic versions enable us to solve easy or medium puzzles
in one or a few shots. To solve the most difficult ones, partial restart techniques
were necessary to obtain good convergence properties. The CPU times vary from
few hundreds of a second to about one minute for the AI Escargot puzzle. The
algorithm seems to be faster than the other stochastic algorithms developed in
[10, 14]. Finding ways for decreasing the difficulty of the puzzle is a key idea for
further improvements of RESEDA. We have already done a basic attempt based on
a combination with brutal force but it should be certainly more efficient to combine
RESEDA with other resolution algorithms especially for 4 � 4 or 5 � 5 puzzles.
One could for instance find some easy clues using a deterministic method and then
use our algorithm with these supplementary clues.

Bibliography

[1] P. Babu, K. Pelckmans, P. Stoica and J. Li, Linear systems, sparse solutions, and
sudoku, IEEE Signal Process. Lett. 17 (2010), 40–42.

[2] A. Bartlett and A. Langville, An integer programming model for the sudoku problem,
J. Online Math. Appl. 8 (2008), article ID 1798.

[3] T. Booth, Exponential convergence on a continuous Monte Carlo transport problem,
Nucl. Sci. Eng. 127 (1997), 338–345.

[4] A. Das and B. K. Chakrabati (Eds.), Quantum Annealing and Related Optimization
Methods, Lecture Notes in Physics 679, Springer-Verlag, Heidelberg, 2005.

[5] E. Gobet and S. Maire, A spectral Monte Carlo method for the Poisson equation,
Monte Carlo Methods Appl. 10 (2004), 275–285.

[6] J. Halton, Sequential Monte Carlo, Proc. Camb. Phil. Soc. 58 (1962), 57–78.

[7] A. Inkala, AI Escargot – The Most Difficult Sudoku Puzzle, Bertrams Print on De-
mand, 2007.

[8] P. Larranaga and J. A. Lozano (Eds.), Estimation of Distribution Algorithms, A New
Tool for Evolutionary Computation, Kluwer Academic Publishers, 2002.

[9] K. H. Lee, S. W. Baek and K. W. Kim, Inverse radiation analysis using repulsive
particle swarm optimization, Int. J. Heat Mass Transfer 51 (2008), 2772–2783.



160 S. Maire and C. Prissette

[10] R. Lewis, Metaheuristic can solve sudoku puzzles, J. Heuristics 13 (2007), 387–401.

[11] J. A. Lozano, P. Larranaga, I. Inaki and E. Bengoetxea (Eds.), Towards a New Evolu-
tionary Computation, Advances on Estimation of Distribution Algorithms, Springer,
2006.

[12] S. Maire, Reducing variance using iterated control variates, J. Stat. Comput. Simul.
73 (2003), 1–29.

[13] T. K. Moon, J. H. Gunther and J. Kupin, Sinkhorn solves Sudoku, IEEE Trans. In-
form. Theory 55 (2009), 1741–1746.

[14] M. Perez and T. Marwala, Stochastic optimization approaches for solving sudoku,
preprint (2008), http://arxiv.org/abs/0805.0697.

[15] R. G. Reynolds, An introduction to cultural algorithms, in: Proceedings of the
3rd Annual Conference on Evolutionary Programming, World Scientific Publishing
(1994), 131–139.

[16] G. Santos-Garcia and M. Palomino, Solving sudoku puzzles with rewriting rules,
Electron. Notes Theor. Comput. Sci. 17 (2007), 79–83.

Received July 20, 2011; accepted February 16, 2012.

Author information

Sylvain Maire, Laboratoire des Sciences de l’Information et des Systemes (LSIS),
UMR6168, ISITV, Universite de Toulon et du Var, Avenue G. Pompidou,
BP 56, 83262 La Valette du Var cedex, France.
E-mail: maire@univ-tln.fr

Cyril Prissette, Laboratoire des Sciences de l’Information et des Systemes (LSIS),
UMR6168, ISITV, Universite de Toulon et du Var, Avenue G. Pompidou,
BP 56, 83262 La Valette du Var cedex, France.
E-mail: prissette@univ-tln.fr

http://arxiv.org/abs/0805.0697
mailto:maire@univ-tln.fr
mailto:prissette@univ-tln.fr


Copyright of Monte Carlo Methods & Applications is the property of De Gruyter and its content may not be

copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written

permission. However, users may print, download, or email articles for individual use.


