An Algorithm for the Machine Calculation of Complex Fourier Series

James W. Cooley; John W. Tukey

Mathematics of Computation, Vol. 19, No. 90. (Apr., 1965), pp. 297-301.

Stable URL:
http://links jstor.org/sici?sici=0025-5718%28196504%2919%3 A90%3C297%3AAAFTMC%3E2.0.CO%3B2-7

Mathematics of Computation is currently published by American Mathematical Society.

Your use of the JSTOR archive indicates your acceptance of JSTOR’s Terms and Conditions of Use, available at
http://www.jstor.org/about/terms.html. JSTOR’s Terms and Conditions of Use provides, in part, that unless you
have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and
you may use content in the JSTOR archive only for your personal, non-commercial use.

Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at
http://www jstor.org/journals/ams.html.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or
printed page of such transmission.

JSTOR is an independent not-for-profit organization dedicated to creating and preserving a digital archive of
scholarly journals. For more information regarding JSTOR, please contact support@jstor.org.

http://www.jstor.org/
Sat Apr 22 18:05:08 2006

An Algorithm for the Machine Calculation of
Complex Fourier Series

By James W. Cooley and John W. Tukey

An efficient method for the calculation of the interactions of a 2™ factorial ex-
periment was introduced by Yates and is widely known by his name. The generaliza-
tion to 3™ was given by Box et al. [1]. Good [2] generalized these methods and gave
elegant algorithms for which one class of applications is the calculation of Fourier
series. In their full generality, Good’s methods are applicable to certain problems in
which one must multiply an N-vector by an N X N matrix which can be factored
into m sparse matrices, where m is proportional to log N. This results in-a procedure
requiring a number of operations proportional to N log N rather than N°. These
methods are applied here to the calculation of complex Fourier series. They are
useful in situations where the number of data points is, or can be chosen to be, a
highly composite number. The algorithm is here derived and presented in a rather
different form. Attention is given to the choice of N. It is also shown how special
advantage can be obtained in the use of a binary computer with N = 2™ and how
the entire calculation can be performed within the array of N data storage locations
used for the given Fourier coefficients.

Consider the problem of calculating the complex Fourier series

N—1
(1) X(])zkzoA(k)W]ki .7=0)1,7N—1;

where the given Fourier coefficients A (k) are complex and W is the principal
Nth root of unity,

(2) W — eQri‘/N.

A straightforward calculation using (1) would require N’ ? operations where “opera-
tion” means, as it will throughout this note, a complex multiplication followed by a
complex addition.

The algorithm described here iterates on the array of given complex Fourier
amplitudes and yields the result in less than 2N log; N operations without requiring
more data storage than is required for the given array A. To derive the algorithm,
suppose N is a composite, i.e., N = ri-r, . Then let the indices in (1) be expressed
(3) j=j1r1+j0, j0=0111"'77'1_1) j1=0,1,"',7'2——1,

k=k17'2+k0, ko=0,1,"',T2—1, k1=0,1,"',7'1—'1.

Then, one can write

(4) X(jl,jo) = kz kz A(kl , ko)'ij"szko.

Received August 17, 1964. Research in part at Princeton University under the sponsorship
of the Army Research Ofﬁce (Durham). The authors wish to thank Richard Garwin for his
essential role in communication and encouragement. -

297

298 JAMES W. COOLEY AND JOHN W. TUKEY

Since
(5) ij1r2 — Wjok,,-2
the inner sum, over k; , depends only on j, and ko and can be defined as a new array,
(6) Al(jo y ko) = ; A(kl , ko)‘Wjoklrz.
1

The result can then be written
(7) X(J1, Jo) = ; A1(Jo, ko)- W ritiodke
0

There are N elements in the array A;, each requiring r, operations, giving a total
of N7, operations to obtain A, . Similarly, it takes Nr, operations to calculate X
from A, . Therefore, this two-step algorithm, given by (6) and (7), requires a total
of

(8) T = N(r1 4+ 7s)

operations.
It is easy to see how successive applications of the above procedure, starting with
its application to (6), give an m-step algorithm requiring

(9) T=N@i+r+ - +)
operations, where
(10) N =11y ey

If r; = 8jt; with Sj,ti > 1, then 8; + t; < unless 8 = 1; = 2, when S; + ti=1r;..
In general, then, using as many factors as possible provides a minimum to (9), but
factors of 2 can be combined in pairs without loss. If we are able to choose N to be
highly composite, we may make very real gains. If all r; are equal to r, then, from
(10) we have

(11) m = log. N

and the total number of operations is

(12) T(r) = rN log. N.
If N = 7"s"t" - - -, then we find that

(13) %;:m.r.{_n.s_*_p.t.{_...,

logs N = m-logs v + n-loge s + p-logat 4+ -+,
so that

T
N lng N

is a weighted mean of the quantities

r s t .
logar’ logas’ logat’

]

MACHINE CALCULATION OF COMPLEX FOURIER SERIES 299

whose values run as follows

r
r logs r
2 2.00
3 1.88
4 2.00
5 2.15
6 2.31
7 2.49
8 2.67
9 2.82
10 3.01.

The use of r; = 3 is formally most efficient, but the gain is only about 6% over
the use of 2 or 4, which have other advantages. If necessary, the use of ; up to 10
can increase the number of computations by no more than 50% . Accordingly, we
can find “highly composite” values of N within a few percent of any given large
number.

- Whenever possible, the use of N = ™ with r = 2 or 4 offers important advantages
for computers with binary arithmetic, both in addressing and in multiplication
economy.

The algorithm with r = 2 is derived by expressing the indices in the form
(14) J=Jma 2" 4 o 102 + o,
k=Ttn12"7" 4 - + k12 + ko,

where j, and k, are equal to 0 or 1 and are the contents of the respective bit positions
in the binary representation of j and k. All arrays will now be written as functions
of the bits of their indices. With this convention (1) is written

(15) X(met1, **+ 5 Jo) = ; Z kz Alkmey, -+, ko).ijm_l.zm—w...m.),
0o k1 m—1

where the sums are over k, = 0, 1. Since

i) om=1 i om=1
(16) W]km—l 2 — W]Okm—-l 2 ,
the innermost sum of (15), over k,_, , depends only on 7y, kn—s, - -, ko and can
be written

(17) A1Go, kmz, -+, ko) = kZ Ak, -, ko).Wiokm—x-Zm‘—l.
m—1

Proceeding to the next innermost sum, over k,_» , and so on, and using

jolon _p-2m—1 112 " 50 kg2
(18) Wi km—1 — W(Jl 1 +eoetiodem—1 ,

one obtains successive arrays,

Al(j07 tee ’jl—lr km—-l—17 ,ko)

(19) . . (G1—1-20 =14 id50) kg -2m—1
= A, _’km_’._,’k Ll 70) km —1
kmgl l 1(Jo, y Ji-2 1 0)

forl=1,2,---,m.

300 JAMES W. COOLEY AND JOHN W. TUKEY

Writing out the sum this appears as
Al(jOJ e ’jl—l) km—i y ", ’Co)
= Al—l(jo y " s Jiczs 0, km—i1 y Ty ko)

+ (=D 400G0, o Jieay 1 Bmeier, o0, ko)
. W(j‘_a.zl—8+...+j0).2m-l

(20)

sy Ji1=0,1
According to the indexing convention, this is stored in a location whose index is
(21) §o2" 4 s a2 4 ka2 4+

It can be seen in (20) that only the two storage locations with indices having 0 and
1 in the 2™ bit position are involved in the computation. Parallel computation is
permitted since the operation described by (20) can be carried out with all values of
Joy++,jia,and ko, -+, km;_1 simultaneously. In some applications® it is con-
venient to use (20) to express 4; in terms of A, ,, giving what is equivalent to an
algorithm with r = 4.

" The last array calculated gives the desired Fourier sums,

(22) X(jm—17 ajo) = Am(j07 7jm—1) ‘

in such an order that the index of an X must have its binary bits put in reverse
order to yield its index in the array A, .

In some applications, where Fourier sums are to be evaluated twice, the above
procedure could be programmed so that no bit-inversion is necessary. For example,
consider the solution of the difference equation,

(23) aX(j+ 1) +bX(J) + ¢X(G — 1) = F()).

The present method could be first applied to calculate the Fourier amplitudes of
F(3) from the formula

(24) B(k) =]%,; FG)W*,

The Fourier amplitudes of the solution are, then,

B(k)
aWt + b + cW—+"~

(25) A(k) =

The B(k) and A(k) arrays are in bit-inverted order, but with an obvious modifi-
cation of (20), A(k) can be used to yield the solution with correct indexing.

A computer program for the rBM 7094 has been written which calculates three-
dimensional Fourier sums by the above method. The computing time taken for com-
puting three-dimensional 2° X 2° X 2° arrays of data points was as follows:

* A multiple-processing circuit using this algorithm was designed by R. E. Miller and S.
Winograd of the IBM Watson Research Center. In this case r = 4 was found to be most practi-
cal.

MACHINE CALCULATION OF COMPLEX FOURIER SERIES 301

a b c No. Pts.
4 4 3 21
11 0 0 21
4 4 4 212
12 0 0 12
5 4 4 218
5 5 3 213
13 0 0 218

IBM Watson Research Center
Yorktown Heights, New York

Bell Telephone Laboratories,
Murray Hill, New Jersey

Princeton University
Princeton, New Jersey

Time (minutes)
.02
.02
.04
.07
.10
.12
.13

1. G. E. P. Box, L. R. Connor, W. R. Cousins, O. L. Davies (Ed.), F. R. HIRNSWORTH &
G. P. SiL1tT0, The Design and Analysis of Industrial Experiments, Oliver & Boyd, Edinburgh,

1954.

2. I. J. Goop, ‘“The interaction algorithm and practical Fourier series,” J. Roy. Statist.
Soc. Ser. B., v. 20, 1958, p. 361-372; Addendum, v. 22, 1960, p. 372-375. MR 21 ¥1674; MR 23

% A4231.

