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Prologue

• Is there a general rule or formula for how

many primes there are less than a given

quantity, that will spare us the trouble of

counting them? (The Prime Number The-

orem PNT, proved in 1896, does this ap-

proximately; the Riemann Hypothesis RH,

still unproven, does this exactly.)

• The Riemann Hypothesis is now the great

white whale of mathematical research. The

entire twentieth century was bracketed by

mathematicians’ preoccupation with it.



Unlike the

Four-Color Theorem,

or

Fermat’s Last Theorem,

the

Riemann Hypothesis

is not easy to state in terms a nonmathemati-

cian can easily grasp.

The four-color problem was stated in 1852

and solved in 1976;

Fermat’s Last ‘Theorem’ was stated in 1637

and solved in 1994;

the Riemann Hypothesis was stated in 1859

and remains unsolved to this day.



Divergence of the harmonic series

1 + 1/2 + 1/3 + 1/4 + · · · =∞

Proof: (Nicole d’Oresme 1323–1382).

1/3 + 1/4 > 1/2

1/5 + 1/6 + 1/7 + 1/8 > 1/2

1/9 + 1/10 + · · ·+ 1/16 > 1/2

· · ·

(“You can’t beat going to the original sources.”)



The traditional division of mathematics into

subdisciplines:

Arithmetic (whole numbers)

Geometry (figures)

Algebra (abstract symbols)

Analysis (limits).

The first and last combine to form analytic

number theory. There are others (and how!)



Analysis dates from the invention of calculus

by Newton and Leibnitz in the 1670s.

Arithmetic, by contrast with analysis, is widely

taken to be the easiest, most accessible branch

of math. Be careful though—it is rather easy

to state problems that are ferociously difficult

to prove (e.g., Goldbach conjecture, Fermat’s

Last ‘Theorem’).



MATHEMATICS SUBJECT CLASSIFICATION

(AMERICAN MATHEMATICAL SOCIETY)

00-XX General

01-XX History and biography

03-XX Mathematical logic and foundations

05-XX Combinatorics

06-XX Lattices, ordered algebraic structures

08-XX General algebraic systems

11-XX NUMBER THEORY

12-XX Field theory and polynomials

13-XX Commutative algebra

14-XX Algebraic geometry

15-XX Linear algebra; matrix theory

16-XX Associative rings and algebras

17-XX Nonassociative rings and algebras

18-XX Category theory; homological algebra

19-XX K-theory

20-XX Group theory and generalizations

22-XX Topological groups, Lie groups

26-XX Real functions

28-XX Measure and integration

30-XX COMPLEX FUNCTION THEORY



31-XX Potential theory

32-XX Several complex variables

33-XX Special functions

34-XX Ordinary differential equations

35-XX Partial differential equations

37-XX Dynamical systems, ergodic theory

39-XX Difference and functional equations

40-XX Sequences, series, summability

41-XX Approximations and expansions

42-XX Harmonic analysis on Euclidean spaces

43-XX Abstract harmonic analysis

44-XX Integral transforms

45-XX Integral equations

46-XX Functional analysis

47-XX Operator theory

49-XX Calculus of variations, optimal control

51-XX Geometry

52-XX Convex and discrete geometry

53-XX Differential geometry

54-XX General topology

55-XX Algebraic topology

57-XX Manifolds and cell complexes

58-XX Global analysis, analysis on manifolds



60-XX Probability theory

62-XX Statistics

65-XX Numerical analysis

68-XX Computer science

70-XX Mechanics of particles and systems

74-XX Mechanics of deformable solids

76-XX Fluid mechanics

78-XX Optics, electromagnetic theory

80-XX Classical thermodynamics, heat

81-XX Quantum theory

82-XX Statistical mechanics, matter

83-XX Relativity and gravitational theory

85-XX Astronomy and astrophysics

86-XX Geophysics

90-XX Operations research

91-XX Game theory, economics

92-XX Biology and other natural sciences

93-XX Systems theory; control

94-XX Information and communication

97-XX Mathematics education



The Prime Number Theorem

• Is there a biggest prime? NO (300BCE).

(see THEOREMS 4 and 7 in Appendix 1)

• Whole numbers are to primes what molecules

are to atoms (Fundamental Theorem of

Arithmetic) Atoms run out before you get

to 100; the primes go on forever.

(see THEOREMS 1 and 2 in Appendix 1).

• Do the primes eventually thin out. Can we

find a rule, a law, to describe the thinning-

out? There are

25 primes between 1 and 100

17 between 401 and 500

14 between 901 and 1000

4 between 999,901 and 1,000,000.

(see THEOREMS 5 and 8 in Appendix 1)

• The Prime Counting Function. The num-

ber of primes up to a given quantity x is

denoted by π(x) (x need not be a whole

number).



• The Prime Number Theorem states roughly

that: π(N) behaves very much like N/ logN .

(This is the ‘natural logarithm’, to base

e = 2.718 · · ·, not to base 10.)

(see THEOREM 6 in Appendix 1)

• PNT was conjectured by Gauss at the end

of the 18th century, and proved by two

mathematicians (independently and simul-

taneously) at the end of the 19th century,

using tools developed by Riemann in the

middle of the 19th century.

• If the Riemann Hypothesis is true, it would

lead to an exact formulation of PNT, in-

stead of one that is always off by several

percent.



On the Shoulders of Giants

• The greatest mathematician who ever lived

was the first person to whom the truth con-

tained in the PNT occurred—Carl Friedrich

Gauss (1777-1855).

(age 10) 1 + 2 + · · ·+ 100 =?

(age 15) Beginning in 1792, at the age of

15, Gauss had amused himself by tallying

all the primes in blocks of 1,000 numbers

at a time, continuing up into the high hun-

dreds of thousands.



• The other first rank mathematical genius

born in the 18th century—Leonhard Euler

(1707-1783)—solved the “Basel problem”

and discovered the “Golden Key.”



• There is also the ‘Russian connection’: Pe-

ter the great established an Academy in

St. Petersburg in 1682 and imported Eu-

ler from Switzerland to run it—Russia had

just come out of a dark period of its devel-

opment



Riemann’s Zeta Function

The Basel problem opens the door to the zeta*
function, which is the mathematical object the
Riemann Hypothesis is concerned with.
The Basel problem (posed in 1689) is: What
is the exact value of

1 +
1

4
+

1

9
+

1

16
· · ·?

*Not to be confused with the Catherine Zeta-
Jones function



The answer (Euler 1735): π2/6.

He also showed that

1 +
1

16
+

1

81
+

1

256
· · · = π4/90

1 +
1

26
+

1

36
+

1

46
· · · = π6/945

and so forth.

In summary, Euler found the exact value of

1+ 1
2N+ 1

3N+ 1
4N · · · for every even N = 2,4,6, . . ..

However, to this day, no one knows the exact

value of this series for any odd value of N ,

N = 3,5,7, . . ..

Are they irrational? (see Appendix 2 for

some facts about irrational numbers)



Replace the exponent N = 2 in the Basel prob-

lem by any (for the moment real) number s to

get the zeta function

ζ(s) =
∞∑

n=1

n−s.

The series defining the zeta function converges

as long as s > 1 (s need not necessarily be a

whole number) but it diverges for s = 1. It

appears that the zeta function also diverges for

any s < 1 (since the terms are bigger than the

corresponding terms for s = 1) and it behaves

like 1/(s− 1) for s > 1.

Thus, the domain of the zeta function is the

set of all (real) numbers greater than 1. Right?

WRONG!



WHAT IS EULER’S “GOLDEN KEY”?

ζ(s) = 1 +
1

2s
+

1

3s
+ · · ·

1

2s
ζ(s) =

1

2s
+

1

4s
+

1

6s
· · ·

(1−
1

2s
)ζ(s) = 1 +

1

3s
+

1

5s
+

1

7s
+

1

9s
· · ·

(1−
1

3s
)(1−

1

2s
)ζ(s) =

= 1 +
1

5s
+

1

7s
+

1

11s
+

1

2s
· · ·+

1

25s
+ · · · · · ·

This leads to
∏

p(1 − 1
ps)ζ(s) = 1 and the

golden key:
∑

n n−s =
∏

p(1− p−s)−1

The golden key is the initial link between

analysis (zeta function)) and arithmetic (primes).

Hence it could be viewed as the “engagement”

of analysis with arithmetic.



Bernhard Riemann’s legacy

In Riemann’s doctoral dissertation, the “Rie-

mann integral” occurs, now taught as a fun-

damental concept in calculus courses.

His habilitation lecture (second doctoral de-

gree) was on the foundations of geometry. The

ideas contained in this paper were so advanced

that it was decades before they became fully

accepted, and 60 years before they found their

natural physical application, as the mathemat-

ical framework for Einstein’s General Theory

of Relativity.



Domain Stretching

The Riemann Hypothesis states: All non-trivial

zeros of the zeta function have real part

one-half.

What is a zero of a function? What are the

zeros of the zeta function? When are they

non-trivial. After we answer these questions

we’ll move on to “real part one-half.”

A “zero” of a function is a number a such that

the function has the value zero at a. In other

words, if you graph the function, its zeros are

the numbers on the x-axis at which the graph

of the function crosses the x-axis. A good

example is the function sinx, which has zeros

at x = 0, π,−π,2π,−2π, . . .



An infinite series might define only part of a

function; in mathematical terms, an infinite

series may define a function over only part of

that function’s domain. The rest of the func-

tion might be lurking away somewhere, waiting

to be discovered by some trick.

EXAMPLE 1: S(x) = 1 + x + x2 + x3 + · · ·,
which converges for −1 < x < 1 and equals

1/(1−x) for those values of x. Since 1/(1−x)

makes sense for all numbers except x = 1, this

shows that the domain of S(x) is larger than

−1 < x < 1.

EXAMPLE 2: The Gamma function and the

factorial symbol. If you define H(x) =
∫∞
0 e−ttx−1 dt,

then one has H(2) = 1, H(3) = 2, H(4) =

6, H(5) = 24, . . ., in fact for every positive in-

teger m, H(m) = (m− 1)! = 1 · 2 · 3 · · · · · (m−
2)(m− 1).



Back to the zeta function

In addition to arguments greater than 1, the

zeta function has values for all arguments less

than 1. This extension of the zeta function is

done in two steps: first to all arguments be-

tween 0 and 1 (by changing signs in the series),

and then to all negative arguments (by using

a deep formula in Riemann’s famous 1859 pa-

per).

The extended zeta function has the value zero

at every negative even number. These are the

trivial “zeros” of the zeta function.



STEP 1: Define the “eta” function”:

η(s) = 1− 1
2s + 1

3s − 1
4s · · ·

This converges whenever s > 0.

It is easy to see that for s > 1,

ζ(s) =
η(s)

1− 1
2s−1

Therefore, ζ(s) extends to the positive real

axis.



STEP 2: From Riemann’s 1859 paper, for

every s > 0 (except for s = 1)

ζ(1− s) = 21−sπ−1 sin(1−s
2 π)(s− 1)!ζ(s)

For example ζ(−15) can be calculated from

ζ(16)

This extends ζ(s) to all values of s < 0 and

moreover shows that if m = 1,2, . . .

ζ(−2m) = 0

Thus ζ(s) is defined for all real number except

for s = 0,1 and the negative even integers

−2,−4,−6,−8, . . .

are what are called the “trivial zeros” of the

zeta function.



• If the Riemann Hypothesis were true, it

would reveal a deep secret about prime

numbers which has no foreseeable practical

consequences that could change the world.

In particular, PNT would follow as a con-

sequence. However, RH is much stronger

than PNT, and the latter was proved using

weaker tools.

• There were several significant landmarks

between Riemann’s paper in 1859 and the

proof of PNT (in 1896). The main sig-

nificance of Riemann’s paper for the proof

of the PNT is that it provided the deep

insights into analytic number theory that

showed the way to a proof.



• If the PNT was the great white whale of

number theory in the 19th century, RH was

to take its place in the 20th, and moreover

was to cast its fascination not only on num-

ber theorists, but on mathematicians of all

kinds, and even on physicists and philoso-

phers.

• There is also the neat coincidence of the

PNT being first thought of at the end of

one century (Gauss, 1792), then being proved

at the end of the next (Hadamard and de

la Vallée Poussin, 1896).

• The attention of mathematicians turned to

RH, which occupied them for the following

century—which came to its end without

any proof being arrived at.



• By the later 19th century the world of math-

ematics had passed out of the era when

really great strides could be made by a sin-

gle mind working alone. Mathematics had

become a collegial enterprise in which the

work of even the most brilliant scholars was

built upon, and nourished by, that of living

colleagues.

• One recognition of this fact was the es-

tablishment of periodic International Con-

gresses of Mathematicians, with PNT among

the highlights of the first meeting in 1897

in Zürich. There was a second Congress in

Paris in 1900.



• The Paris Congress will forever be linked
with the name of David Hilbert, a Ger-
man mathematician working at Göttingen,
the university of Gauss, Dirichlet, and Rie-
mann, for his address on the mathematical
challenges of the new century, RH being
the most prominent among them.

• Each problem came from some key field
of mathematics at the time. If they were
to be solved, their solution would advance
that field in new and promising directions.



Nine Zulu Queens Ruled China

• We know what the trivial zeros of the zeta

function are. What are the non-trivial ze-

ros? For this we need to know about com-

plex numbers.

• Mathematicians think of numbers as a set

of nested Russian dolls. The inhabitants of

each Russian doll are honorary inhabitants

of the next one out.

• In N you can’t subtract; in Z you can’t

divide; in Q you can’t take limits; in R you

can’t take the square root of a negative

number. With the complex numbers C,

nothing is impossible. You can even raise

a number to a complex power.



• Therefore, in the zeta function, the vari-

able s may now be a complex number, and

the Riemann hypothesis now makes sense:

it asserts that the non-trivial zeros of the

zeta function all lie on the vertical line whose

horizontal coordinate is equal to 1/2.

• We shall need a complex plane extension

process to determine the precise domain

of this complex valued zeta function.



Hilbert’s Eighth Problem

• Since 1896 it was known, with mathemat-

ical certainty, that, yes indeed, π(N) could

be approximated arbitrary closely by N/ logN .

Everyone’s attention now focused on the

nature of the approximation—What is the

error term?

• Riemann did not prove the PNT, but he

strongly suggested it was true, and even

suggested an expression for the error term.

That expression involved all the non-trivial

zeros of the zeta function.

• One of the questions left in this talk is:

what exactly is the relation between the

zeros of the zeta function and the prime

number theorem. This is answered in Der-

byshire’s book.



SUMMARY OF WHAT WE

LEARNED

There is a mathematical expression that

predicts roughly how many prime numbers

there are smaller that any number you care

to name. You know also that this predic-

tion, by Gauss, is not entirely accurate, and

that the amount by which it is wrong is the

subject of another mathematical expres-

sion, devised by the German mathemati-

cian Bernhard Riemann. With Gauss’s es-

timate, proved independently by two other

mathematicians in 1896, and Riemann’s

correction, conjectured but not yet proved

by anyone, we know much more about how

the prime numbers are distributed. At the

heart of Riemann’s correction factor, and

essential to understanding how it is related

to prime numbers, is Riemann’s zeta func-

tion, and in particular, a series of numbers

which are known as the Riemann zeros.



APPENDIX 1—PRIME NUMBERS

THEOREM 1—FUNDAMENTAL
THEOREM OF ARITHMETIC
(PART I—EXISTENCE)
Every positive integer (other than 1) is ei-
ther a prime or a product of primes.
PROOF:
Let Let n ≥ 2 be an any integer. If n
is a prime, there is nothing to prove. If
n is not a prime it has a divisor different
from itself and from 1. If m is the small-
est such divisor, then m must be a prime.
Let’s call it p1 and write n = p1n1 for some
integer n1 with n1 < n. Repeat this ar-
gument starting with n1. Either n1 is a
prime, in which case we are done, or it
has a prime factor p2 and there is an in-
teger n2 < n1 with n1 = p2n2. We now
have n = p1p2n2. Continuing this process
we obtain a sequence of primes p1, . . . , pk,
and a sequence of integers nk < nk−1 <
· · · < n1 < n, with n = p1p2 · · · pknk. Since
1 < nk < nk−1 < · · · < n1 < n, at some
point, nk must be a prime. This completes
the proof.



THEOREM 2—FUNDAMENTAL

THEOREM OF ARITHMETIC

(PART II-UNIQUENESS)

Every positive integer is a product of primes

in only one way.

PROOF:

If there were numbers with two distinct

prime factorizations, let n be the smallest

such number. If P is any prime number,

then P cannot appear in both factoriza-

tions of n—if it did, then n/P , which is

smaller than n would have two distinct fac-

torizations. So we have n = p1p2 · · · pk =

q1, q2 · · · qm where no prime pj is the same

as any of the primes qi. We may assume

that p1 is the smallest pj and q1 is the

smallest qi. Since n is composite, p2
1 ≤ n

and q21 ≤ n. Since p1 6= q1, we must have

p1q1 < n. Set N = n − p1q1. Now note

that N has a unique factorization since it

is smaller than n, and N is divisible by p1

and q1. Since N has a unique factorization,

it is also divisible by p1q1. But we also can



write n = N + p1q1 so that n is also divis-

ible by p1q1. This is the same as saying

that q1 divides n/p1. But n/p1 = p2 · · · pk

is less than n and so it has a unique prime

factorization and it follows that q1 must be

one of p2, . . . , pk. This is a contradiction,

completing the proof.

THEOREM 3

If a prime divides a product of two num-

bers, then it must divide one of the num-

bers (PROOF NOT GIVEN)

THEOREM 4

There is no largest prime number.

PROOF:

Let p be any prime and consider the num-

ber Q which is one more than the product

of all primes up to p: Q = 2 ·3 ·5 · · · · ·p+1.

Then Q is not divisible by any of the primes

up to p, so it is either a prime itself, or it is

divisible by a prime, larger than p, In either

case, there is a prime larger than the given

p. The theorem is proved.



THEOREM 5

There are blocks of arbitrary length of com-

posite numbers.

PROOF:

As in the proof of THEOREM 4, let p

be any prime and note that ALL numbers

2,3,4, . . . , p − 1, p are divisible by at least

one prime up to p. Now define Q to be

the product of all primes up to p: Q =

2 ·3 ·5 · · · · · p (we don’t add one this time).

Then the following p − 1 numbers are all

composite, proving the theorem: Q+2, Q+

3, Q + 4, . . . , Q + p.

THEOREM 6 (PNT)

limx→∞
π(x)

x/ logx
= 1 (NO PROOF GIVEN)

THEOREM 7∑∞
n=1

1
pn

diverges (NO PROOF GIVEN)

THEOREM 8

There is a prime number between n and 2n

for every n = 1,2, . . . (NO PROOF GIVEN)



APPENDIX 2—IRRATIONAL NUMBERS

THEOREM 9√
2 is irrational

PROOF:

Suppose that
√

2 = a/b where a/b is a frac-

tion in lowest terms. Since 2b2 = a2, it fol-

lows that a2 is even, and hence a is even,

say a = 2c. Then 2b2 = (2c)2 = 4c2 so

that b2 = 2c2 is even, and so is b. This

contradicts the fact that a/b was in lowest

terms, and proves the theorem.

THEOREM 10√
N is irrational unless N is a perfect square

(NO PROOF GIVEN)

THEOREM 11

N1/m is irrational unless N = am for some

integer a (NO PROOF GIVEN)

THEOREM 12

If xm+c1xm−1+· · ·+cm = 0 and c1, c2, . . . , cm

are integers then x is irrational, unless it is

an integer. (NO PROOF GIVEN)



THEOREM 13

log10 2 is irrational

PROOF:

Let us suppose that log10 2 = a/b. This is

the same as 10a/b = 2, equivalently, 10a =

2b, or 2a5a = 2b. By the uniqueness in the

fundamental theorem of arithmetic (Theo-

rem 2), we must have, in particular, a = 0,

which is a contradiction since log10 2 6= 0,

This proves the theorem.

THEOREM 14

logn m is irrational if one of m and n has a

prime factor which the other lacks.

(NO PROOF GIVEN)

THEOREM 15

e is irrational

PROOF:

Suppose that e were rational, say e = a/b.

Let k be any integer ≥ b. Define the num-

ber t to be

t = k!
(
e− 1−

1

1!
−

1

2!
− · · · −

1

k!

)



Thus

t = k!
(

a

b
− 1−

1

1!
−

1

2!
− · · · −

1

k!

)
and so it is clear that t is a positive integer.

But if you use the series for the number e,

you find that t < 1, which is a contradic-

tion. We have

t = k!

(
1

(k + 1)!
+

1

(k + 2)!
+ · · ·

)

=
1

k + 1
+

1

(k + 1)(k + 2)
+ · · ·

<
1

k + 1
+

1

(k + 1)2
+ · · ·

=
1

k + 1

(
1 +

1

k + 1
+

1

(k + 1)2
+ · · ·

)

=
1

k + 1

 1

1− 1
k+1

 =
1

k
< 1,

as was stated. Thus e is irrational.


