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1. Lie algebras—Meyberg, Chapter 5

An algebra L with multiplication (x, y) 7→ [x, y] is a Lie algebra if

[xx] = 0

and
[[xy]z] + [[yz]x] + [[zx]y] = 0.

Left multiplication in a Lie algebra is denoted by ad(x): ad(x)(y) = [x, y].
An associative algebra A becomes a Lie algebra A− under the product,
[xy] = xy − yx.

The first axiom implies that [xy] = −[yx] and the second (called the
Jacobi identity) implies that x 7→ adx is a homomorphism of L into the Lie
algebra (EndL)−, that is, ad [xy] = [adx, ad y].

Assuming that L is finite dimensional, the Killing form is defined by
λ(x, y) = tr (ad(x)ad(y)).

Theorem 1 (CARTAN criterion—Theorem 1, page 41). A finite dimen-
sional Lie algebra L over a field of characteristic 0 is semisimple if and only
if the Killing form is nondegenerate.

Proof. The proof is not given in Meyberg’s notes. I might add a proof later
(and the definition of semisimple) from Jacobson’s Lie algebra book. How-
ever, we don’t really need this theorem for our purposes since the Killing
form will be nondegenerate in the case we are interested in (finite dimen-
sional JB∗-triples). �

A linear map D is a derivation if D · ad(x) = ad(Dx) + ad(x) ·D. Each
ad(x) is a derivation, called an inner derivation. Let Θ(L) be the set of all
derivations on L.

Theorem 2 (Zassenhaus—Theorem 3, page 42). If the finite dimensional
Lie algebra L over a field of characteristic 0 is semisimple (that is, its Killing
form is nondegenerate), then every derivation is inner.

Proof. Let D be a derivation of L. Since x 7→ tr (D · ad (x)) is a linear form,
there exists d ∈ L such that tr (D · ad (x)) = λ(d, x) = tr (ad (d) · ad (x)).
Let E be the derivation E = D − ad (d) so that

(1) tr (E · ad (x)) = 0.
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Note next that

E · [ad (x), ad (y)] = E · ad (x) · ad (y)− E · ad (y) · ad (x)
= (ad (x) · E + [E, ad (x)]) · ad (y)− E · ad (y) · ad (x)

so that

[E, ad (x)] · ad (y) = E · [ad (x), ad (y)]− ad (x) · E · ad (y) + E · ad (y) · ad (x)
= E · [ad (x), ad (y)] + [E · ad (y), ad (x)]

and
tr ([E, ad (x)] · ad (y)) = tr (E · [ad (x), ad (y)]).

However, since E is a derivation

[E, ad (x)] · ad (y) = E · ad (x) · ad (y)− ad (x) · E · ad (y)
= (ad (Ex) + ad (x) · E) · ad (y)− ad (x) · E · ad (y)
= ad (Ex) · ad (y).

Thus

λ(Ex, y) = tr (ad (Ex) · ad (y))
= tr ([E, ad (x)] · ad (y))
= tr (E · [ad (x), ad (y)]) = 0 by (1)).

Since x and y are arbitrary, E = 0 and so D − ad (d) = 0. �

2. Derivations of Lie triple systems—Meyberg, Chapter 6

A Lie triple system is a vector space F together with a triple product
[·, ·, ·] which satisfies

(1) [xxz] = 0 (implies [xyz] = −[yxz])
(2) [xyz] + [yzx] + [zxy] = 0 (Jacobi identity)
(3) [uv[xyz]] = [[uvx]yz] + [x[uvy]z] + [xy[uvz]]

Examples:
• A Lie algebra (L, [xy]) under [xyz] := [[xy]z]
• A subspace of a Lie algebra, closed under [[xy]z]
• An associative triple system (F , < xyz >) under

[xyz] :=< xyz > − < yxz > − < zxy > + < zyx >
• A Jordan algebra under [xyz] := [L(x), L(y)]z

Define L′(x, y), R′(z, y), P ′(x, z) ∈ End (F) by

[xyz] = L′(x, y)z = R′(z, y)x = P ′(x, z)y,

where we are using L′ (etc.) instead of L to avoid confusion with the operator
L(x, y) of a Jordan triple system (L′(x, y)z = [xyz] in Lie triple systems,
L(x, y)z = {xyz} in Jordan triple systems).

The axioms for a Lie triple system become
(1) L′(x, x) = 0 (implies L′(x, y) = −L′(y, x))
(2) L′(x, y) = R′(x, y)−R′(y, x)



DERIVATIONS OF A FINITE DIMENSIONAL JB∗-TRIPLE (AFTER MEYBERG) 3

(3) [L′(x, y), L′(u, v)] = L′([xyu], v) + L′(u, [xyv])

A derivation is a linear map D : F → F satisfying [D,L′(x, y)] =
L′(Dx, y)+L′(x,Dy), equivalently, D[xyz] = [Dx, y, z]+[x, Dy, z]+[x, y, Dz].
From this it follows that if D,D′ are derivations, then so is [D,D′], so that
the set Θ(F) of all derivations on F is a Lie algebra of operators. Let
H(F) = the span of all L′(x, y).

The following lemma is immediate from the definition of derivation.

Lemma 2.1 (Lemma 2, page 44). L′(x, y) is a derivation of F and H(F)
is an ideal in Θ(F)

Theorem 3 (Theorem 1, page 45). Let F be a Lie triple system, let G be a
subalgebra of Θ(F), and suppose that H ⊂ G.

(i): L(G,F) := G ⊕ F is a Lie algebra under the product

(2) [H1 ⊕ x1,H2 ⊕ x2] = ([H1,H2] + L′(x1, x2))⊕ (H1x2 −H2x1)

(ii): θ′(H ⊕x) = (−H)⊕x is an involution of L, that is, θ′2 = Id and
θ′[X, Y ] = [θ′Y, θ′X].

(iii): L(H,F) is an ideal in L(G,F)
(iv): [xyz] = [[x, y], z] for x, y, z ∈ F .
(v): F = {X ∈ L(G,F) : θ′X = X}

Proof. If X = H ⊕ x, then [X, X] = ([H,H] + L′(x, x)) ⊕ (Hx −Hx) = 0.
We have to show that J(Y, Y, Z) := [[X, Y ], Z] + [[Y, Z], X] + [[Z,X], Y ] = 0
for alll X, Y, Z ∈ L. It is sufficient to show this for X, Y, Z ∈ G ∪ F .

Since G is a subalgebra of Θ(F), J(G,G,G) = 0.
If Hi ∈ G, x ∈ F we get [[H1,H2], x] = [H1,H2]x = H1(H2x)−H2(H1(x) =

[H1, [H2, x]]−[H2, [H1, x].1 This shows J(G,G,F) = 0. Since J(H1, x,H2) =
J(H2,H1, x) and J(x,H1,H2) = J(H1,H2, x), we have J(G,F ,G) = 0 and
J(F ,G,G) = 0.

By (2), [[H,x], y] + [[x, y],H] + [[y, H], x] = L(Hx, y) + [L(x, y),H] +
L(x,Hy) = 0 since H is a derivation. As above, J(x, H, y) = J(H, y, x) and
J(x, y, H) = J(H,x, y) so that J(F ,G,F) = J(F ,F ,G) = 0. Finally, by the
Jacobi identity, J(F ,F ,F) = 0.

This proves (i) and the other statements are trivially verified. �

3. Derivations on Jordan triple systems—Meyberg, Chapter 11

Let (A, P ) be a Jordan triple system, that is, P : A → End (A) is
a quadratic map, inducing the bilinear map L : A × A → End (A) via
L(x, y)z = {xyz} = P (x, z)y (note that P (x) = P (x, x)/2), and satisfying

JT1: L(x, y)P (x) = P (x)L(y, x) “homotopy formula”
JT2: L(P (x)y, y) = L(x, P (y)x)

1Longer version: [[H1, H2], x] = [[H1 ⊕ 0, H2 ⊕ 0], 0 ⊕ x] = [[H1, H2] ⊕ 0, 0 ⊕ x] =
0 ⊕ [H1, H2]x = 0 ⊕ (H1(H2x) − H2(H1x)) = 0 ⊕ H1(H2x) − 0 ⊕ H2(H1x) = [H1 ⊕
0, 0 ⊕ H2x] − [H2 ⊕ 0, 0 ⊕ H1x] = [H1 ⊕ 0, [H2 ⊕ 0, 0 ⊕ x]] − [H2 ⊕ 0, [H1 ⊕ 0, 0 ⊕ x]] =
[H1, [H2, x]]− [H2, [H1, x]]
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JT3: P (P (x)y) = P (x)P (y)P (x) “fundamental formula”
A derivation is a linear map D : A → A satisfying [D,P (x)] = P (Dx, x).

Let Θ(A) be the set of all derivations on A. Θ(A) is a Lie subalgebra of
(End (A))−. By linearization, derivations satisfy

D{xyz} − {x,Dy, z} = {Dx, y, z}+ {x, y, Dz}
or

(3) [D,L(x, y)] = L(Dx, y) + L(x,Dy).

If the underlying field of A is of characteristic 0, then all equations in A
are equivalent to what we are used to calling the “main identity,” namely,

(4) L(z, y)P (x) + P (x)L(y, z) = P ({zyz}, x).

For another proof of (4), see Meyberg pp. 107–108. From (4) we have the
following lemma.

Lemma 3.1 (Lemma 1, page 108). D(x, y) := L(x, y)−L(y, x) is a deriva-
tion.

A derivation of A is inner if it is a finite sum of the D(x, y).

Theorem 4 (Theorem 1, page 108). If (A, P ) is a Jordan triple system,
then (A, [xyz]) is a Lie triple system, where [xyz] = {x, y, z} − {y, x, z} =
D(x, y)z.

Proof. It is obvious that [xxz] = 0 and the Jacobi identity follows from
{uvw} = {wvu}. It remains to prove the operator form of the third axiom,
namely [L′(x, y), L′(u, v)] = L′([xyu], v) + L′(u, [xyv]). To do this we will
use Lemma 3.1 and (3). Actually L′ = D and so we have

[D(x, y), D(u, v)] = [D(x, y), L(u, v)− L(v, u)]
= L(D(x, y)u, v) + L(u, D(x, y)v)

−L(D(x, y)v, u)− L(v,D(x, y)u)
= D(D(x, y)u, v) + D(u, D(x, y)v),

as required. �

Let us recall that if (A, P ) is a Jordan triple system, and u ∈ A, then
(A, Pu,(2,u) ), where Pu(x) = P (x)P (u) and x(2,u) = P (x)u, is a quadratic
Jordan algebra called the u-homotope of A. (Theorem 1, page 94; proof on
page 95). More generally, the following easily verified proposition leads to
an important consequence (Corollary 3.3) of Theorem 4.

Proposition 3.2 (Theorem 2, page 96). If (A, P ) is a Jordan triple sys-
tem, and V ∈ End (()A) satisfies PV (x) = V P (x)V , then (A, PV ), where
PV (x) = P (x)V , is a Jordan triple system called the V -homotope of A.

Corollary 3.3 (Corollary 3, page 109). F := A⊕ Ã is a Lie triple system
under

[(x1, x2), (y1, y2), (z1, z2)] = ({x1y2z1} − {y1x2z1}, {x2y1z2} − {y2x1z2}).
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Proof. Applying Theorem 4 to any V -homotope AV shows that A, together
with [xyz] = {x, V y, z} − {y, V x, z} is a Lie triple system. In particular,
if j is an involution (=automorphism of order 2) of A, that is j{xyz} =
{j(x), j(y), j(z)} then P (j(x)) = jP (x)j so that A, together with [xyz] =
{x, j(y), z} − {y, j(x), z} is a Lie triple system.

The space F is a Jordan triple system under {(x1, x2), (y1, y2), (z1, z2)} =
({x1y1z1}, {x2y2z2}) and the exchange map j(x1, x2) = (x2, x1) is an invo-
lution, proving the corollary. �

Note that for x = x1 ⊕ x̃2, y = y1 ⊕ ỹ2 in the Lie triple system A⊕ Ã,

L′(x, y) = (L(x1, y2)−L(y1, x2), L(x2, y1)−L(y2, x1)) = `(x1, y2)+`(x2, y1).

Let E = End(A) ⊕ End (A) and consider the Lie algebra E− with the
product [(A,B), (A′, B′)] = ([A,A′], [B,B′]) and its subset

γ(A) := {(U, V ) ∈ E : UP (x)−P (x)V = P (Ux, x), V P (x)−P (x)U = P (V x, x)}

Note that (I,−I), (D,D) and `(x, y) := (L(x, y),−L(y, x)) all belong
to γ(A), where I is the identity operator on A and D ∈ Θ(A). (Proof:
(I,−I) ∈ γ(A) ⇔ 2P (x) = P (x, x); (D,D) ∈ γ(A) ⇔ DP (x) − P (x)D =
P (Dx, x), which is the definition of derivation; `(x, y) ∈ γ(A) ⇔ L(x, y)P (x)+
P (x)L(y, x) = P (L(x, y)x, x) and L(y, x)P (x)+P (x)L(x, y) = P (L(y, x)x, x),
both of which are immediate consequences of the main identity (4).)

We let H(A) be the submodule in γ(A) spanned by all the `(x, y). Note
that H(A), defined here, is the same as H(A⊕Ã), defined for the Lie triple
system A ⊕ Ã; indeed H(A) = span {`(x, , y) : x, y ∈ A} and H(A ⊕ Ã) =
span {`(x1, y2) + `(x2, y1) : x1, x2, y1, y2 ∈ A}.

Lemma 3.4 (Lemma 2, page 110). γ(A) is a subalgebra of E− (called the
structure algebra of A) and H(A) is an ideal in γ(A) (called the inner struc-
ture algebra of A).

Proof. If (U, V ) ∈ γ(A), then UP (x + y)−P (x + y)V = P (Ux + Uy, x + y),
which simplifies to UP (x, y)− P (x, y)V = P (Uy, x) + P (Ux, y), and there-
fore, for (U, V ), (U ′, V ′) ∈ γ(A), UP (U ′x, x)− P (U ′x, x)V = P (Ux, U ′x) +
P (UU ′x, x), and

UU ′P (x) = U(P (x)V ′ + P (U ′x, x)) = (UP (x))V ′ + UP (U ′x, x)
= (P (x)V + P (Ux, x))V ′ + P (UU ′x, x)

+P (U ′x,Ux) + P (U ′x, x)V.

Interchanging (U, V ) and (U ′, V ′), subtracting, and simplyfing yields

[U,U ′]P (x) = P (x)[V, V ′] + P ([U,U ′]x, x).

Similarly, one has

[V, V ′]P (x) = P (x)[U,U ′] + P ([V, V ′]x, x).

so ([U,U ′], [V, V ′]) ∈ γ(A) proving that γ(A) is a subalgebra of E−.
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For (U, V ) ∈ γ(A) we know from the first part of the proof that

(5) UP (x, y)z − P (x, y)V z = P (Ux, y)z + P (x,Uy)z,

which is the same as

(6) [U,L(x, z)] = L(Ux, z) + L(x, V z),

and similarly

(7) [V,L(x, z)] = L(V x, z) + L(x,Uz).

With `(u, v) = (L(u, v),−L(v, u)) ∈ H(A), we have

[(U, V ), `(u, v)] = ([U,L(u, v),−[V,L(v, u])
= (L(Uu, v) + L(u, V v),−L(V v, u)− L(v, Uu)
= `(Uu, v) + `(u, V v),

so H(A) is an ideal. �

Lemma 3.5 (Lemma 3, page 111). γ(A) is a subalgebra of the derivation
algebra of the Lie triple system A ⊕ Ã, that is, if (U, V ) ∈ γ(A), then
(U, V )(x1⊕ x̃2) := Ux1⊕ ˜V x2 is a derivation of the Lie triple system A⊕Ã
defined in Corollary 3.3.

Proof. By the previous lemma, γ(A) is closed under brackets. We just need
to show that γ(A) ⊂ Θ(A⊕ Ã), which is to say that for (U, V ) ∈ γ(A) and
x = (x1, x2), y = (y1, y2) ∈ A⊕ Ã, we have

(8) [(U, V ), L(x, y)] = L((U, V )x, y) + L(x, (U, V )y).

Applying the right hand side of (8) to z = (z1, z2) yields

(9) ({Ux1, y2, z1} − {y1, V x2, z1}, {V x2, y1, z2} − {y2, Ux1, z2})

(10) +({x1, V y2, z1} − {Uy1, x2, z1}, {x2, Uy1, z2} − {V y2, x1, z2}).
Applying the left hand side of (8) to z = (z1, z2) yields

(11) (U{x1y2z1} − U{y1x2z1}, V {x2y1z2} − V {y2, x1, z2})

(12) −({x1, y2, Uz1} − {y1, x2, Uz1}, {x2, y1, V z2} − {y2, x1, V z2}).
Let us rewrite these equations in terms of the quadratic operator P . We

have respectively

(13) (P (Ux1, z1)y2 − P (y1, z1)V x2, P (V x2, z2)y1 − P (y2, z2)Ux1)

(14) +(P (x1, z1)V y2 − P (Uy1, z1)x2, P (x2, z2)Uy1 − P (V y2, z2)x1).

(15) (UP (x1, z1)y2 − UP (y1, z1)x2, V P (x2, z2)y1 − V P (y2, z2)x1)

(16) −(P (x1, Uz1)y2 − P (y1, Uz1)x2, P (x2, V z2)y1 − P (y2V z2)x1).

and we need to show that (13)+ (14)= (15)+ (16).
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By two applications of (5), the sum of the first components of (13) and (14)
equals the sum of the first components of (15) and (16). By two applications
of the companion equation to (5), namely,

V P (x, y)− P (x, y)U = P (V x, y) + P (x, V y),

the sum of the second components of (13) and (14) equals the sum of the
second components of (15) and (16). �

Theorem 5 (Theorem 2, page 112). If A is a Jordan triple system and
G is a Lie subalgebra of γ(A) containing H(A) = H(A ⊕ Ã), then L :=
L(G,A⊕ Ã) := G ⊕A⊕ Ã is a Lie algebra (called the Koecher-Tits algebra
of (G,A)) under the product

(i): the given product in G
(ii): [x1 ⊕ x̃2, y1 ⊕ ỹ2] = S(x, y) := `(x1, y2)− `(y1, x2)
(iii): [(U, V ), x1 ⊕ x̃2] = Ux1 ⊕ ˜V x2.

Proof. Since A⊕ Ã is a Lie triple system (by Corollary 3.3), since H(A) =
H(A⊕ Ã), and since γ(A) ⊂ Θ(A⊕ Ã) (by Lemma 3.5), this follows imme-
diately from Theorem 3. �

Note that we are now using S(x, y) to denote L′(x1 ⊕ x̃2, y1 ⊕ ỹ2). For
brevity’s sake, we shall also denote L(G,A⊕ Ã) by L(G,A).

The space γ(A) has a canonical involutary authorphism θ : γ(A) → γ(A),
θ(U, V ) = (V,U), which is the restriction of the corresponding automor-
phism of E . The derivation algebra Θ(A) of A may be identified via D ↔
(D,D) with the fixed point set of θ:

Θ(A) ↔ {X ∈ γ(A) : θX = X}.

Remark 3.6. Some properties of the product in Theorem 5.

(i): [A,A] = 0, [A, Ã] = 0
([0 + (a + 0), 0 + (a′ + 0)] = `(a, 0)− `(a′, 0) = 0, etc.)

(ii): [(U, V ), a] = Ua, [(U, V ), b̃] = Ṽ b
([(U, V ) + (0 + 0), 0 + (a + 0)] = Ua⊕ V (0) = Ua, etc.)

(iii): [a, b̃] = `(a, b)
([a⊕ 0, 0⊕ b̃)] = `(a, b̃)− `(0, 0))

(iv): [[a, b̃], c] = {a, b, c}
([[a, b̃], c] = [`(a, b), c] = [(L(a, b),−L(b, a)) + (0 + 0), 0 + (c + 0)] =
L(a, b)c = {abc})

(v): θ extends to L: θ(G⊕ a⊕ b̃) := θG⊕ b⊕ ã
(assuming that θ(G) ⊂ G)

(vi): j(G⊕ a⊕ b̃) := G⊕ (−a)⊕ (−b̃) has (−1)-eigenspace A⊕ Ã
(vii): (adE)3 = adE, if E = (I,−I) ∈ G

(adE(G + a + b̃) = 0 + a + (−b̃); (adE)2(G + a + b̃) = 0 + a + b̃;
(adE)3(G + a + b̃) = 0 + a + (−b̃))
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(viii): L(H,A) is an ideal in L(G,A)
(succinctly L(H(A⊕ Ã),A⊕ Ã) is an ideal in L(G,A⊕ Ã))

Theorem 6. Let A be an anisotropic ({xxx} = 0 ⇒ x = 0) Jordan triple
system and assume that E = (I,−I) ∈ H(A). Then

Θ(L(H(A),A)) = Θ(L(γ(A),A)).

Moreover, this set is equal to the set of all derivations of L(H(A),A) into
L(γ(A),A). Each such derivation extends to an inner derivation of L(γ(A),A).
Every derivation of L(γ(A),A) is inner and the Lie algebra of all derivations
of L(γ(A),A) is isomorphic to L(γ(A),A).

Proof. In this proof, G denotes either H(A) or γ(A). Let D : L(G,A) →
L(γ(A),A) be a derivation;

D([X, Y ]) = [D(X), Y ] + [X, D(Y )] for X, Y ∈ L(G,A).

This makes sense because L(G,A) ⊂ L(γ(A),A).
Since E ∈ G ⊂ L(G,A), D(E) ∈ L(γ(A),A), so we can write D(E) =

S ⊕ p⊕ q̃, with S = (S1, S2) ∈ γ(A), p, q ∈ A.
Since L(G,A) is an ideal in L(γ(A),A), each Y ∈ L(γ(A),A) gives rise

to a derivation adY of L(G,A) into L(G,A). Thus D′ := D + ad (p⊕ (−q̃))
is a derivation of L(G,A) into L(γ(A),A), and by Theorem 5(iii),

D′(E) = D(E) + [(p⊕ (−q̃), E] = S + p + q̃ − p− q̃ = S.

For a ∈ A, write D′a = (D′a)γ(A) + (D′a)1 + (D′a)2 ∈ γ(A) ⊕ A ⊕ Ã.
Using Remark 3.6, we have

D′a = D′([E, a]) = [D′(E), a] + [E,D′a]
= [D′(E), a] + [E, (D′a)γ(A) + (D′a)1 + (D′a)2]

= [(S1, S2), a] + (D′a)1 − (D′a)2 = S1a + (D′a)1 − (D′a)2.

Thus (D′a)1 + (D′a)2 = S1a + (D′a)1 − (D′a)2 and comparing components
in A and Ã, D′a = (D′a)1 ∈ A. In particular, S1a = 0.

By a similar argument starting with b ∈ Ã, we have D′b̃ ∈ Ã and S2b = 0,
so that S = (S1, S2) = 0.

Define U, V ∈ End (A) by U = D′|A and Ṽ b = D′b̃. Then we have

(17) D′(a⊕ b̃) = Ua⊕ Ṽ b = [(U, V ), a⊕ b̃] = ad (U, V )(a⊕ b̃).

If T = (T1, T2) ∈ G, then

(18) D′[T, a⊕ b̃] = [D′(T ), a⊕ b̃] + [T,Ua⊕ Ṽ b].

If we write D′(T ) = (G1, G2)⊕ x⊕ ỹ then the previous equation becomes

UT1a⊕ ˜V T2b = (`(x, b)− `(a, y))⊕ (G1a + T1Ua)⊕ ˜(G2b + T2V b).

Comparing components leads to

(19) (G1, G2) = [(U, V ), (T1, T2)]
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and `(x, b) − `(a, y) = 0 for every a, b ∈ A. Thus L(x, x) = L(y, y) = 0
and since A is anisotropic, x = y = 0 so that D′(G) ⊂ G in the case that
G = γ(A).

In the case that G = H(A), we also have D′(G) ⊂ G since

D′`(x, y) = D′[x, ỹ] = [D′x, ỹ] + [x,D′ỹ](20)

= [Ux, ỹ] + [x, Ṽ y] = `(Ux, y) + `(x, V y).

We now know that D′ leaves G and A ⊕ Ã invariant and that by (17),
D′ = ad (U, V ) on A⊕ Ã and by (19) and (20), D′ = ad (U, V ) on G.

Finally we show that (U, V ) ∈ γ(A). We have

[(U, V ), `(x, y)] = (UL(x, y)− L(x, y)U,L(y, x)V − V L(y, x))

and from (20)

D′(`(x, y)) = (L(Ux, y) + L(x, V y),−L(V y, x)− L(y, Ux)).

The equality of the right sides of these two equations is the same as the
validity of the two equations (6) and (7), which is equivalent to (U, V ) ∈
γ(A).

We have shown that, with G = H(A) or G = γ(A), any derivation D from
L(G,A) into L(γ(A),A) extends to an inner derivation of L(γ(A),A) into
itself, namely D = ad ((U, V ) ⊕ (−p) ⊕ q̃). Conversely, since L(G,A) is an
ideal in L(γ(A),A), these maps are derivations of L(G,A) to itself. This
proves all the statements in the theorem save the isomorphism.

For any Lie algebra, by the Jacobi identity, the map X 7→ adX is a
homomorphism into the Lie algebra of derivations. For the Lie algebras
L(G,A) this map was just shown to be onto. Now suppose X ∈ L(G,A)
and adX = 0. Then with X = (G1, G2)⊕ x⊕ ỹ,

0 = [X, E] = [(G1, G2), (I,−I)] + [x⊕ ỹ, (I,−I)] = −x⊕ ỹ,

so that X = (G1, G2), and therefore 0 = [X, a ⊕ b̃] = G1a ⊕ G̃2b and
X = 0. �

Let σ(a, b) = tr(L(a, b)). Then (by the main identity) σ({x, y, z} , u) =
σ(z, {y, x, u}), a property called “associative” for bilinear forms. Interchang-
ing x and z we get σ(L(x, y)z, u) = σ(z, L(y, x)u).

Assume (from now on) that σ is nondegenerate and positive definite
(which is the case for finite dimensional JB∗-triples), and let A∗ be the
adjoint of A ∈ End(A). Then, by associativity of σ, (L(x, y))∗ = L(y, x)
with respect to the inner product σ.

Lemma 3.7. If σ is nondegenerate, then E = (I,−I) ∈ H(A).

Proof. Define xy∗ ∈ End(A) to be the rank one operator xy∗(z) = σ(z, y)x.
Since the rank one maps xy∗ generate End (A), we have in particular I =∑

i uiv
∗
i . Then by the associativity of σ,

σ(x, y) = trL(x, y)I =
∑

tr {xyui}v∗i =
∑

σ({xyui}, vi) = σ(
∑

{uivix}, y).
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Since σ is nondegenerate, x =
∑

L(uivi)x, so that I =
∑

L(ui, vi) and
(I,−I) =

∑
(L(ui, vi),−L(ui, vi) ∈ H(A). �

Theorem 7 (Theorem 7, page 120). The Killing form λ of the Koecher-Tits
algebra L(H(A),A) is nondegenerate if and only if σ is nondegenerate. If
the characteristic of the underlying field is 0, then L(H(A),A) is semisimple
if and only if A is semisimple if and only if σ is nondegenerate.

Proof. We shall not give a proof of this theorem at this time. �

Corollary 3.8. If σ is nondegenerate, then H(A) = γ(A).

Proof. Because of Lemma 3.7, we can use Theorems 6 and 7 to show that
γ(A) ⊂ H(A). If (U, V ) ∈ γ(A), then ad (U, V ) is a derivation of L(γ(A),A)
and hence an inner derivation of L(H(A),A), so we can write ad (U, V ) =
ad ((H1,H2)⊕ a⊕ b̃) for some (H1,H2) ∈ H(A). Applying this equality to
x1 ⊕ x̃2, we have

Ux1 ⊕ ˜V x2 = (`(a, x2)− `(x1, b)⊕H1x1 ⊕ ˜H2x2

proving that (U, V ) = (H1,H2) ∈ H(A). �

Corollary 3.9. If σ is nondegenerate, then every derivation of A is inner.

Proof. If D ∈ Θ(A), then (D,D) ∈ γ(A) = H(A) so that (D,D) =∑
i `(ui, vi). Hence D =

∑
i L(ui, vi) = −

∑
i L(vi, ui) and D = 1

2(D + D) =∑
i(L(ui, vi)− L(vi, ui)). �

Theorem 8. Every derivation of a finite dimensional JB∗-triple is inner.

Proof. We just need to verify that σ is nondegenerate. �
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