

Elementary Analysis Math 140B—Winter 2007
Solutions to First Midterm; February 7, 2007

Problem 1 (25 points) Let $f_n(x) = x^2/(nx + 1)$ if $0 < x < \infty$, $n = 1, 2, \dots$

(a) Does f_n converge uniformly on $(0, 1)$? Justify your answer.

Solution: YES;

$$f_n(x) = \frac{x^2}{nx + 1} = \frac{x^2/n}{x + 1/n} \leq \frac{x^2/n}{x} = x/n.$$

So if $0 < x < 1$, we have $\sup_{x \in (0,1)} |f_n(x)| \leq 1/n \rightarrow 0$.

(b) Does f_n converge uniformly on $(1, \infty)$? Justify your answer.

Solution: NO; Suppose the contrary. Then for any $\epsilon > 0$, there exists $N \geq 1$ such that

$$\frac{x^2}{nx + 1} < \epsilon \text{ for all } n > N \text{ and all } x > 1.$$

Now fix an $n > N$ and let $x \rightarrow \infty$ to get

$$\frac{x^2}{nx + 1} = \frac{1}{n/x + 1/x^2} \rightarrow \infty,$$

a contradiction.

Problem 2 (25 points) Let $f_n(x) = |\sin \pi x|^n$ if $0 < x < \infty$, $n = 1, 2, \dots$

(a) Does f_n converge uniformly on $(0, 1)$? Justify your answer.

Solution: NO; The pointwise limit is $f(x) = 0$ for $x > 0, x \neq 1/2, 3/2, 5/2, \dots$ and $f(1/2) = f(3/2) = \dots = 1$ which is not continuous on $(0, 1)$.

(b) Does f_n converge uniformly on $(3/4, 5/4)$? Justify your answer.

Solution: YES;

$$\sup_{x \in (3/4, 5/4)} |\sin \pi x|^n \leq [\sin(3\pi/4)]^n \rightarrow 0.$$

Problem 3 (25 points) Consider the power series $\sum_{n=1}^{\infty} \frac{n}{n+1} x^n$.

(a) What is the interval of convergence of this series?

Solution: The radius of convergence is 1, since $[n/(n+1)]^{1/n} \rightarrow 1$ (root test), or

$$\frac{\frac{n+1}{n+2}}{\frac{n}{n+1}} \rightarrow 1 \text{ (ratio test).}$$

The series diverges at $x = 1$ and at $x = -1$, since $n/(n+1) \not\rightarrow 0$ and $(-1)^n n/(n+1) \not\rightarrow 0$. Thus the interval of convergence is $(-1, 1)$.

(b) Show that the series does not converge uniformly on its interval of convergence.

Hint: Use the fact that a series $\sum_n g_n(x)$ converges uniformly on a set S , then

$$\lim_{n \rightarrow \infty} [\sup_{x \in S} |g_n(x)|] = 0.$$

Solution:

$$\lim_{n \rightarrow \infty} \left[\sup_{-1 < x < 1} \left| \frac{n}{n+1} x^n \right| \right] = \lim_{n \rightarrow \infty} \frac{n}{n+1} = 1 \neq 0.$$

Alternate solution: supposing to the contrary that

$$\frac{n}{n+1} x^n < \epsilon \text{ for all } n > N \text{ and all } |x| < 1,$$

fix $n > N$ and let $x \rightarrow 1$ to get the contradiction $n/(n+1) \leq \epsilon$.

Problem 4 (25 points) Assume that f_n converges uniformly to f on S and that each f_n is bounded on S , that is

$$M_n = \sup_{x \in S} |f_n(x)| < \infty \quad \text{for } n = 1, 2, \dots$$

(a) Show that f is bounded.

Solution: For any $\epsilon > 0$, choose N so that $|f_n(x) - f(x)| < \epsilon$ for $n > N$ and $x \in S$. Then for a fixed $n > N$ and all $x \in S$,

$$|f(x)| \leq |f(x) - f_n(x)| + |f_n(x)| < \epsilon + M_n.$$

Thus $\sup_{x \in S} |f(x)| \leq \epsilon + M_n$ so f is bounded.

(b) Show that there is a constant $M > 0$ such that $M_n \leq M$ for all $n \geq 1$.

Solution: By part (a), there is an $M' > 0$ such that $|f(x)| \leq M'$ for all $x \in S$. For any $\epsilon > 0$, choose N so that $|f_n(x) - f(x)| < \epsilon$ for $n > N$ and $x \in S$. Then for all $n > N$ and all $x \in S$,

$$|f_n(x)| \leq |f_n(x) - f(x)| + |f(x)| \leq \epsilon + M'$$

so that $M_n \leq \epsilon + M'$ for all $n > N$. Let $M = \max\{M_1, M_2, \dots, M_N, \epsilon + M'\}$. Then $M_n \leq M$ for all $n \geq 1$.

(c) Assume that f_n and g_n are sequences of bounded functions on a set S and that both sequences converge uniformly on S . Show that $f_n g_n$ converges uniformly on S .

Solution: By part (a), there is a constant K_1 such that $|g(x)| \leq K_1$ for all $x \in S$. By part (b), there is a constant K_2 such that $|f_n(x)| \leq K_2$ for all $n \geq 1$ and all $x \in S$. Choose N_1 such that $|g_n(x) - g(x)| < \epsilon/2(K_1 + K_2)$ for all $n > N_1$ and all $x \in S$ and choose N_2 such that $|f_n(x) - f(x)| < \epsilon/2(K_1 + K_2)$ for all $n > N_2$ and all $x \in S$. Then for all $n > \max\{N_1, N_2\}$ and all $x \in S$,

$$\begin{aligned} |f_n(x)g_n(x) - f(x)g(x)| &\leq |f_n(x)g_n(x) - f_n(x)g(x)| + |f_n(x)g(x) - f(x)g(x)| \\ &= |f_n(x)||g_n(x) - g(x)| + |g(x)||f_n(x) - f(x)| \\ &< K_2 \frac{\epsilon}{2(K_1 + K_2)} + K_1 \frac{\epsilon}{2(K_1 + K_2)} < \epsilon. \end{aligned}$$