
Elementary Analysis Math 140B—Winter 2007
Solutions to First Midterm; February 7, 2007

Problem 1 (25 points) Let fn(x) = x2/(nx + 1) if 0 < x < ∞, n = 1, 2, . . ..

(a) Does fn converge uniformly on (0, 1)? Justify your answer.

Solution: YES;

fn(x) =
x2

nx + 1
=

x2/n

x + 1/n
≤ x2/n

x
= x/n.

So if 0 < x < 1, we have supx∈(0,1) |fn(x)| ≤ 1/n → 0.

(b) Does fn converge uniformly on (1,∞)? Justify your answer.

Solution: NO; Suppose the contrary. Then for any ε > 0, there exists N ≥ 1 such
that

x2

nx + 1
< ε for all n > N and all x > 1.

Now fix an n > N and let x →∞ to get

x2

nx + 1
=

1
n/x + 1/x2

→∞,

a contradiction.

Problem 2 (25 points) Let fn(x) = | sinπx|n if 0 < x < ∞, n = 1, 2, . . ..

(a) Does fn converge uniformly on (0, 1)? Justify your answer.

Solution: NO; The pointwise limit is f(x) = 0 for x > 0, x 6= 1/2, 3/2, 5/2, . . . and
f(1/2) = f(3/2) = . . . = 1 which is not continuous on (0, 1).

(b) Does fn converge uniformly on (3/4, 5/4)? Justify your answer.

Solution: YES;
sup

x∈(3/4,5/4)
| sinπx|n ≤ [sin(3π/4)]n → 0.

Problem 3 (25 points) Consider the power series
∑∞

n=1
n

n+1xn.

(a) What is the interval of convergence of this series?

Solution: The radius of convergence is 1, since [n/(n + 1)]1/n → 1 (root test), or

n+1
n+2

n
n+1

→ 1 (ratio test).

The series diverges at x = 1 and at x = −1, since n/(n+1) 6→ 0 and (−1)nn/(n+1) 6→
0. Thus the interval of convergence is (−1, 1).
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(b) Show that the series does not converge uniformly on its interval of convergence.

Hint: Use the fact that a series
∑

n gn(x) converges uniformly on a set S, then

lim
n→∞

[sup
x∈S

|gn(x)|] = 0.

Solution:

lim
n→∞

[
sup

−1<x<1

∣∣∣∣ n

n + 1
xn

∣∣∣∣
]

= lim
n→∞

n

n + 1
= 1 6= 0.

Alternate solution: supposing to the contrary that
n

n + 1
xn < ε for all n > N and all |x| < 1,

fix n > N and let x → 1 to get the contradiction n/(n + 1) ≤ ε.

Problem 4 (25 points) Assume that fn converges uniformly to f on S and that each fn

is bounded on S, that is

Mn = sup
x∈S

|fn(x)| < ∞ for n = 1, 2, . . .

(a) Show that f is bounded.

Solution: For any ε > 0, choose N so that |fn(x)− f(x)| < ε for n > N and x ∈ S.
Then for a fixed n > N and all x ∈ S,

|f(x)| ≤ |f(x)− fn(x)|+ |fn(x)| < ε + Mn.

Thus supx∈S |f(x)| ≤ ε + Mn so f is bounded.

(b) Show that there is a constant M > 0 such that Mn ≤ M for all n ≥ 1.

Solution: By part (a), there is an M ′ > 0 such that |f(x)| ≤ M ′ for all x ∈ S. For
any ε > 0, choose N so that |fn(x) − f(x)| < ε for n > N and x ∈ S. Then for all
n > N and all x ∈ S,

|fn(x)| ≤ |fn(x)− f(x)|+ |f(x)| ≤ ε + M ′

so that Mn ≤ ε + M ′ for all n > N . Let M = max{M1,M2, . . . ,MN , ε + M ′}. Then
Mn ≤ M for all n ≥ 1.

(c) Assume that fn and gn are sequences of bounded functions on a set S and that both
sequences converge uniformly on S. Show that fngn converges uniformly on S.

Solution: By part (a), there is a constant K1 such that |g(x)| ≤ K1 for all x ∈ S.
By part (b), there is a constant K2 such that |fn(x)| ≤ K2 for all n ≥ 1 and all x ∈ S.
Choose N1 such that |gn(x)− g(x)| < ε/2(K1 + K2) for all n > N1 and all x ∈ S and
choose N2 such that |fn(x) − f(x)| < ε/2(K1 + K2) for all n > N2 and all x ∈ S.
Then for all n > max{N1, N2} and all x ∈ S,

|fn(x)gn(x)− f(x)g(x)| ≤ |fn(x)gn(x)− fn(x)g(x)|+ |fn(x)g(x)− f(x)g(x)|
= |fn(x)||gn(x)− g(x)|+ |g(x)||fn(x)− f(x)|

< K2
ε

2(K1 + K2)
+ K1

ε

2(K1 + K2)
< ε.
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