Elementary Analysis Math 140B—Winter 2007
Solutions to Second Midterm; March 7, 2007

Problem 1 (25 points) Let f(z) = z*sin 2 for z # 0 and f(0) = 0.

(a) Show that f"(x) ewists for all values of x.
Solution: For z # 0,
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so f'(x) exists for all x.
For x #0,
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so f"(x) exists for all x.

(b) Is f" continuous at x = 07 Justify your answer.
Solution: NO; limp,_,o f”(h) doesn’t exist.
Problem 2 (25 points) Define the function f by f(27") = 2=+ forn =1,2,... and f(z) =0
for other values of x.
(a) Show that f is continuous at x = 0.
Solution: By definition of f, |f(x)| < /2 for every x. Hence lim,_q |f(x)| < lim,_ |z|/2 =
0, so lim,_.q f(x) = 0. Since f(0) =0, f is continuous at 0.

(b) Is f differentiable at x = 07 Justify your answer.

Solution: NO; if f/(0) = limp_¢ @ existed, then for h, = 27", we would have f'(0) =

lim,, 00 % = limn_wo(%) = % and for hy, = 37" we would have f'(0) = lim,,_ f(h}:”’) =

limy, .00 (0) = 0.

Problem 3 (25 points) Let f and g be differentiable on (a,b) and continuous on [a,b] and suppose
that ¢'(xz) > 0 for all x € (a,b).

(a) Show that g(c) < g(b) for every c € (a,b).
Hint: Consider two points x1, s such tht ¢ < 1 < x5 < b.

Solution: (Using the hint) First, g(x1) < g(x2). Now, since g is continuous at b,
g(z1) < zliglbg(@) = g(b).
Thus for every c,xzo € (a,b) with ¢ < x,
g(c) < g(w2) < g(b)-

Another solution (not using the hint) By the Mean Value Theorem,

w = ¢'(d) for some d € (c,b).

Since g'(d) > 0 and b — ¢ > 0 we have g(b) — g(c¢) > 0.



(b) Show that there is ¢ € (a,b) such that

f'(e) _ fle) = fla)
p :

Hint: Consider the function [f(x) — f(a)][g(b

Solution: Let h(x) = [f(x) — f(a)][g(b) — g(z)]. Then h(a) = 0 and h(b) = 0 so by Rolle’s
theorem, there exists ¢ € (a,b) with h'(c) = 0. But

() = =[f(c) = fa)lg'(c) + f'(e)lg(b) — g(c)].

Problem 4 (25 points) Suppose that f is continuous on [a,b] and differentiable on (a,b).

(a) Suppose that for each x € (a,b), there is an open interval containing x on which f is increasing.
Prove that f is increasing on (a,b).

Solution: Let z € (a,b). By the assumption, there is § > 0 such that f is increasing on
(x — 0,z +9). Thus if 0 < h < 0, we have f(x + h) — f(z) >0 so that

h—0 h

is non-negative. Since we have shown that f'(x) > 0 for every x € (a,b), f is increasing on

(a,b).

Another solution (using compactness, but a bit tedious to describe!) Fiza < ¢ < d <
b. You want to show that f(c) < f(d). For each x € [c,d], there is an open interval containing
x on which f is increasing. The collection of all such open intervals forms an open cover of
the compact set [c,d], so it follows that [c,d] is contained in the union of finitely many of these
intervals, say [c,d] C [; U---UI,. Let Iy denote one of these intervals which contains ¢, and
let ©1 = the right endpoint of I so that f(c) < f(z1). (More precisely, f(c) < limg_,,,— f(x),
but let’s be reasonable!) If d € I, then since f is increasing on Iv, f(c) < f(d) and we are
done. Otherwise, since x1 & I, let us denote by Is an interval which contains x1, and let x4
be the right endpoint of Is. If d € Iy, then since f is increasing on Iz, f(c) < f(z1) < f(d)
and we are done. Otherwise, since xo & Ia, let us denote by I3 an interval which contains o,
and let x5 be the right endpoint of Is. Continuing in this way we come (after a finite number
of steps) to an interval containing d. Thus we have a sequence ¢ < x1 < -+ < x < d with

f(e) < fx) <o < flan) < f(d).

(b) Suppose that f'(x) > 0 for a <z < b and that f'(z) > 0 for at least one point in (a,b). Prove
that f(a) < f(b).
Solution: We first note that f is increasing on (a,b) since f'(xz) > 0 for all x € (a,b). We
next establish that f(a) < f(d) for any d € (a,b). Indeed, f(a+€) < f(d) for e small enough,
and so

fla) = lim fa+0) < f(d)
Similary f(d) < f(b) for all d € (a,b).
Now let ¢ be the point in (a,b) with f'(c) > 0. It follows that for h sufficiently small and
positive, f(c—h) < f(c+ h) (that is, f is strictly increasing at ¢). Thus

fla) < fle—=h) < fle+h) < f(b).

1Don’t read this if you have a weak heart!



