

Elementary Analysis Math 140B—Winter 2007
Solutions to Second Midterm; March 7, 2007

Problem 1 (25 points) Let $f(x) = x^4 \sin \frac{1}{x}$ for $x \neq 0$ and $f(0) = 0$.

(a) Show that $f''(x)$ exists for all values of x .

Solution: For $x \neq 0$,

$$f'(x) = -x^2 \cos \frac{1}{x} + 4x^3 \sin \frac{1}{x}$$

and for $x = 0$,

$$f'(0) = \lim_{h \rightarrow 0} \frac{f(h)}{h} = \lim_{h \rightarrow 0} h^3 \sin \frac{1}{h} = 0,$$

so $f'(x)$ exists for all x .

For $x \neq 0$,

$$f''(x) = \sin \frac{1}{x} - 6x \cos \frac{1}{x} + 12x^2 \sin \frac{1}{x}$$

and

$$f''(0) = \lim_{h \rightarrow 0, h \neq 0} \frac{f'(h) - f'(0)}{h} = \lim_{h \rightarrow 0} \left(-h \cos \frac{1}{h} + 4h^2 \sin \frac{1}{h} \right) = 0,$$

so $f''(x)$ exists for all x .

(b) Is f'' continuous at $x = 0$? Justify your answer.

Solution: NO; $\lim_{h \rightarrow 0} f''(h)$ doesn't exist.

Problem 2 (25 points) Define the function f by $f(2^{-n}) = 2^{-(n+1)}$ for $n = 1, 2, \dots$ and $f(x) = 0$ for other values of x .

(a) Show that f is continuous at $x = 0$.

Solution: By definition of f , $|f(x)| \leq x/2$ for every x . Hence $\lim_{x \rightarrow 0} |f(x)| \leq \lim_{x \rightarrow 0} |x|/2 = 0$, so $\lim_{x \rightarrow 0} f(x) = 0$. Since $f(0) = 0$, f is continuous at 0.

(b) Is f differentiable at $x = 0$? Justify your answer.

Solution: NO; if $f'(0) = \lim_{h \rightarrow 0} \frac{f(h)}{h}$ existed, then for $h_n = 2^{-n}$, we would have $f'(0) = \lim_{n \rightarrow \infty} \frac{f(h_n)}{h_n} = \lim_{n \rightarrow \infty} \left(\frac{1}{2} \right) = \frac{1}{2}$ and for $h_n = 3^{-n}$ we would have $f'(0) = \lim_{n \rightarrow \infty} \frac{f(h_n)}{h_n} = \lim_{n \rightarrow \infty} (0) = 0$.

Problem 3 (25 points) Let f and g be differentiable on (a, b) and continuous on $[a, b]$ and suppose that $g'(x) > 0$ for all $x \in (a, b)$.

(a) Show that $g(c) < g(b)$ for every $c \in (a, b)$.

Hint: Consider two points x_1, x_2 such that $c < x_1 < x_2 < b$.

Solution: (Using the hint) First, $g(x_1) < g(x_2)$. Now, since g is continuous at b ,

$$g(x_1) \leq \lim_{x_2 \rightarrow b} g(x_2) = g(b).$$

Thus for every $c, x_2 \in (a, b)$ with $c < x_2$,

$$g(c) < g(x_2) \leq g(b).$$

Another solution (not using the hint) By the Mean Value Theorem,

$$\frac{g(b) - g(c)}{b - c} = g'(d) \text{ for some } d \in (c, b).$$

Since $g'(d) > 0$ and $b - c > 0$ we have $g(b) - g(c) > 0$.

(b) Show that there is $c \in (a, b)$ such that

$$\frac{f'(c)}{g'(c)} = \frac{f(c) - f(a)}{g(b) - g(c)}.$$

Hint: Consider the function $[f(x) - f(a)][g(b) - g(x)]$.

Solution: Let $h(x) = [f(x) - f(a)][g(b) - g(x)]$. Then $h(a) = 0$ and $h(b) = 0$ so by Rolle's theorem, there exists $c \in (a, b)$ with $h'(c) = 0$. But

$$h'(c) = -[f(c) - f(a)]g'(c) + f'(c)[g(b) - g(c)].$$

Problem 4 (25 points) Suppose that f is continuous on $[a, b]$ and differentiable on (a, b) .

(a) Suppose that for each $x \in (a, b)$, there is an open interval containing x on which f is increasing. Prove that f is increasing on (a, b) .

Solution: Let $x \in (a, b)$. By the assumption, there is $\delta > 0$ such that f is increasing on $(x - \delta, x + \delta)$. Thus if $0 < h < \delta$, we have $f(x + h) - f(x) \geq 0$ so that

$$f'(x) = \lim_{h \rightarrow 0} \frac{f(x + h) - f(x)}{h}$$

is non-negative. Since we have shown that $f'(x) \geq 0$ for every $x \in (a, b)$, f is increasing on (a, b) .

Another solution (using compactness, but a bit tedious to describe¹) Fix $a < c < d < b$. You want to show that $f(c) \leq f(d)$. For each $x \in [c, d]$, there is an open interval containing x on which f is increasing. The collection of all such open intervals forms an open cover of the compact set $[c, d]$, so it follows that $[c, d]$ is contained in the union of finitely many of these intervals, say $[c, d] \subset I_1 \cup \dots \cup I_m$. Let I_1 denote one of these intervals which contains c , and let $x_1 =$ the right endpoint of I_1 so that $f(c) \leq f(x_1)$. (More precisely, $f(c) \leq \lim_{x \rightarrow x_1^-} f(x)$, but let's be reasonable!) If $d \in I_1$, then since f is increasing on I_1 , $f(c) \leq f(d)$ and we are done. Otherwise, since $x_1 \notin I_1$, let us denote by I_2 an interval which contains x_1 , and let x_2 be the right endpoint of I_2 . If $d \in I_2$, then since f is increasing on I_2 , $f(c) \leq f(x_1) \leq f(d)$ and we are done. Otherwise, since $x_2 \notin I_2$, let us denote by I_3 an interval which contains x_2 , and let x_3 be the right endpoint of I_3 . Continuing in this way we come (after a finite number of steps) to an interval containing d . Thus we have a sequence $c < x_1 < \dots < x_k < d$ with $f(c) \leq f(x_1) \leq \dots \leq f(x_k) \leq f(d)$.

(b) Suppose that $f'(x) \geq 0$ for $a < x < b$ and that $f'(x) > 0$ for at least one point in (a, b) . Prove that $f(a) < f(b)$.

Solution: We first note that f is increasing on (a, b) since $f'(x) \geq 0$ for all $x \in (a, b)$. We next establish that $f(a) \leq f(d)$ for any $d \in (a, b)$. Indeed, $f(a + \epsilon) \leq f(d)$ for ϵ small enough, and so

$$f(a) = \lim_{\epsilon \rightarrow 0^+} f(a + \epsilon) \leq f(d).$$

Similary $f(d) \leq f(b)$ for all $d \in (a, b)$.

Now let c be the point in (a, b) with $f'(c) > 0$. It follows that for h sufficiently small and positive, $f(c - h) < f(c + h)$ (that is, f is strictly increasing at c). Thus

$$f(a) \leq f(c - h) < f(c + h) \leq f(b).$$

¹Don't read this if you have a weak heart!