
Elementary Analysis Math 140B—Winter 2007
Solutions to Second Midterm; March 7, 2007

Problem 1 (25 points) Let f(x) = x4 sin 1
x for x 6= 0 and f(0) = 0.

(a) Show that f ′′(x) exists for all values of x.

Solution: For x 6= 0,

f ′(x) = −x2 cos
1
x

+ 4x3 sin
1
x

and for x = 0,

f ′(0) = lim
h→0

f(h)
h

= lim
h→0

h3 sin
1
h

= 0,

so f ′(x) exists for all x.

For x 6= 0,

f ′′(x) = sin
1
x
− 6x cos

1
x

+ 12x2 sin
1
x

and

f ′′(0) = lim
h→0,h 6=0

f ′(h)− f ′(0)
h

= lim
h→0

(
−h cos

1
h

+ 4h2 sin
1
h

)
= 0,

so f ′′(x) exists for all x.

(b) Is f ′′ continuous at x = 0? Justify your answer.

Solution: NO; limh→0 f ′′(h) doesn’t exist.

Problem 2 (25 points) Define the function f by f(2−n) = 2−(n+1) for n = 1, 2, . . . and f(x) = 0
for other values of x.

(a) Show that f is continuous at x = 0.

Solution: By definition of f , |f(x)| ≤ x/2 for every x. Hence limx→0 |f(x)| ≤ limx→0 |x|/2 =
0, so limx→0 f(x) = 0. Since f(0) = 0, f is continuous at 0.

(b) Is f differentiable at x = 0? Justify your answer.

Solution: NO; if f ′(0) = limh→0
f(h)

h existed, then for hn = 2−n, we would have f ′(0) =
limn→∞

f(hn)
hn

= limn→∞( 1
2 ) = 1

2 and for hn = 3−n we would have f ′(0) = limn→∞
f(hn)

hn
=

limn→∞(0) = 0.

Problem 3 (25 points) Let f and g be differentiable on (a, b) and continuous on [a, b] and suppose
that g′(x) > 0 for all x ∈ (a, b).

(a) Show that g(c) < g(b) for every c ∈ (a, b).

Hint: Consider two points x1, x2 such tht c < x1 < x2 < b.

Solution: (Using the hint) First, g(x1) < g(x2). Now, since g is continuous at b,

g(x1) ≤ lim
x2→b

g(x2) = g(b).

Thus for every c, x2 ∈ (a, b) with c < x2,

g(c) < g(x2) ≤ g(b).

Another solution (not using the hint) By the Mean Value Theorem,

g(b)− g(c)
b− c

= g′(d) for some d ∈ (c, b).

Since g′(d) > 0 and b− c > 0 we have g(b)− g(c) > 0.
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(b) Show that there is c ∈ (a, b) such that

f ′(c)
g′(c)

=
f(c)− f(a)
g(b)− g(c)

.

Hint: Consider the function [f(x)− f(a)][g(b)− g(x)].

Solution: Let h(x) = [f(x) − f(a)][g(b) − g(x)]. Then h(a) = 0 and h(b) = 0 so by Rolle’s
theorem, there exists c ∈ (a, b) with h′(c) = 0. But

h′(c) = −[f(c)− f(a)]g′(c) + f ′(c)[g(b)− g(c)].

Problem 4 (25 points) Suppose that f is continuous on [a, b] and differentiable on (a, b).

(a) Suppose that for each x ∈ (a, b), there is an open interval containing x on which f is increasing.
Prove that f is increasing on (a, b).

Solution: Let x ∈ (a, b). By the assumption, there is δ > 0 such that f is increasing on
(x− δ, x + δ). Thus if 0 < h < δ, we have f(x + h)− f(x) ≥ 0 so that

f ′(x) = lim
h→0

f(x + h)− f(x)
h

is non-negative. Since we have shown that f ′(x) ≥ 0 for every x ∈ (a, b), f is increasing on
(a, b).

Another solution (using compactness, but a bit tedious to describe1) Fix a < c < d <
b. You want to show that f(c) ≤ f(d). For each x ∈ [c, d], there is an open interval containing
x on which f is increasing. The collection of all such open intervals forms an open cover of
the compact set [c, d], so it follows that [c, d] is contained in the union of finitely many of these
intervals, say [c, d] ⊂ I1 ∪ · · · ∪ Im. Let I1 denote one of these intervals which contains c, and
let x1 = the right endpoint of I1 so that f(c) ≤ f(x1). (More precisely, f(c) ≤ limx→x1− f(x),
but let’s be reasonable!) If d ∈ I1, then since f is increasing on I1, f(c) ≤ f(d) and we are
done. Otherwise, since x1 6∈ I1, let us denote by I2 an interval which contains x1, and let x2

be the right endpoint of I2. If d ∈ I2, then since f is increasing on I2, f(c) ≤ f(x1) ≤ f(d)
and we are done. Otherwise, since x2 6∈ I2, let us denote by I3 an interval which contains x2,
and let x3 be the right endpoint of I3. Continuing in this way we come (after a finite number
of steps) to an interval containing d. Thus we have a sequence c < x1 < · · · < xk < d with
f(c) ≤ f(x1) ≤ · · · ≤ f(xk) ≤ f(d).

(b) Suppose that f ′(x) ≥ 0 for a < x < b and that f ′(x) > 0 for at least one point in (a, b). Prove
that f(a) < f(b).

Solution: We first note that f is increasing on (a, b) since f ′(x) ≥ 0 for all x ∈ (a, b). We
next establish that f(a) ≤ f(d) for any d ∈ (a, b). Indeed, f(a + ε) ≤ f(d) for ε small enough,
and so

f(a) = lim
ε→0+

f(a + ε) ≤ f(d).

Similary f(d) ≤ f(b) for all d ∈ (a, b).

Now let c be the point in (a, b) with f ′(c) > 0. It follows that for h sufficiently small and
positive, f(c− h) < f(c + h) (that is, f is strictly increasing at c). Thus

f(a) ≤ f(c− h) < f(c + h) ≤ f(b).

1Don’t read this if you have a weak heart!
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