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January 6—Linear Algebras
(Ref.—Dickson, ”Linear Algebras”, 1914, pp.1–6)

Two couples of real numbers (a, b) and (c , d) are called equal if a = c , b = d .

Addition, subtraction and multiplication of two couples are defined by

I (a, b) + (c , d) = (a + c , b + d)

I (a, b)− (c , d) = (a− c , b − d)

I (a, b)(c , d) = (ac − bd , ad + bc)

Addition is seen to be commutative and associative:

I x + x ′ = x ′ + x , (x + x ′) + x ′′ = x + (x ′ + x ′′)

where x , x ′, x ′′ are any couples, x = (a, b), x ′ = (a′, b′), x ′′ = (a′′, b′′).

Multiplication is commutative, associative, and distributive:

I xx ′ = x ′x , (xx ′)x ′′ = x(x ′x ′′) (xx is denoted by x2)

I x(x ′ + x ′′) = xx ′ + xx ′′ , (x ′ + x ′′)x = x ′x + x ′′x
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Division is defined as the operation inverse to multiplication. Division except by
(0,0) is possible and unique:

(c , d)

(a, b)
=

(
ac + bd

a2 + b2
,
ad − bc

a2 + b2

)

In particular we have

I (a, 0)± (c , 0) = (a± c , 0) , (a, 0)(c , 0) = (ac , 0) , (c,0)
(a,0) =

(
c
a , 0
)

Hence the couples (a, 0) combine under the above defined addition, multiplication,
etc. exactly as the real numbers a combine under ordinary addition,
multiplication, etc.

Thus, there is no danger in identifying the couple (a, 0) with the real number a,
just as we identify the natural numbers among the signed integers, the integers
among the rational numbers, and the latter among the real numbers

If, for brevity, you write i = (0, 1), then i2 = (0, 1)(0, 1) = (−1, 0) = −1 and you
get the complex numbers: (a, b) = (a, 0) + (0, b) = a + (b, 0)(0, 1) = a + bi
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A set of complex numbers is called a number field if the sum, difference,
product, and quotient (the divisor not being zero) of any two equal or distinct
numbers of the set must be numbers belonging to the set.

Examples: complex numbers, real numbers, rational numbers.
(The set of integers is not a number field)

The concept of matrix affords an excellent example of a linear algebra. We can
consider square matrices of n rows and n columns. For convenience, we take
n = 2. Let

m =

[
a b
c d

]
and µ =

[
α β
γ δ

]
be two matrices, where the elements a, b, c , d , α, β, γ, δ belong to a fixed number
field F , which will usually be the real numbers.

We say that m and µ are equal if their corresponding elements are equal, a = α,
etc. Addition and multiplication are defined by

m + µ =

[
a + α b + β
c + γ d + δ

]
, mµ =

[
aα + bγ aβ + bδ
cα + dγ cβ + dδ

]
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Addition is commutative and associative

x + x ′ = x ′ + x , (x + x ′) + x ′′ = x + (x ′ + x ′′)

where x , x ′, x ′′ are any matrices of the same size.

Multiplication is associative and distributive

I (xx ′)x ′′ = x(x ′x ′′)

I x(x ′ + x ′′) = xx ′ + xx ′′ , (x ′ + x ′′)x = x ′x + x ′′x

However, multiplication of matrices is not commutative, and division m/µ is not
always possible, even if

µ 6=
[

0 0
0 0

]

Consider the four special matrices

e11 =

[
1 0
0 0

]
, e12 =

[
0 1
0 0

]
, e21 =

[
0 0
1 0

]
, e22 =

[
0 0
0 1

]
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Their sixteen possible products by twos can be summarized as

eijetk =

[
0 0
0 0

]
if t 6= j and eijejk = eik (1)

Table 1 X × Y

Y
X × Y e11 e12 e21 e22
e11 e11 e12 0 0

X e12 0 0 e11 e12
e21 e21 e22 0 0
e22 0 0 e21 e22

Table 2 Y × X

Y
Y × X e11 e12 e21 e22
e11 e11 0 e21 0

X e12 e12 0 e22 0
e21 0 e11 0 e21
e22 0 e12 0 e22
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If m =

[
a b
c d

]
is a matrix and e is a number, we define the product em to be

em = e

[
a b
c d

]
=

[
ea eb
ec ed

]

We now have

I m =

[
a b
c d

]
= ae11 + be12 + ce21 + de22

I µ =

[
α β
γ δ

]
= αe11 + βe12 + γe21 + δe22

I m + µ = (a + α)e11 + (b + β)e12 + (c + γ)e21 + (d + δ)e22
I mµ = (aα + bγ)e11 + (aβ + bδ)e12 + (cα + dγ)e21 + (cβ + dδ)e22

The set of hyper-complex numbers ae11 + be12 + ce21 + de22, in which a, b, c , d
range independently over a field F , and for which addition and multiplication are
defined as above is an example of a linear associative algebra over F with the
four units e11, e12, e21, e22 subject to the multiplication table (1)
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Consider the set of n-tuples (x1, . . . , xn), whose coordinates x1. . . . , xn range
independently over a given number field F .

Two n-tupes are called equal if their corresponding coordinates are equal.
Addition and subtraction of n-tuples are defined by

(x1, . . . , xn)± (y1, . . . , yn) = (x1 ± y1, . . . , xn ± yn) (2)

The product of any number ρ of the field F and any n-tuple x = (x1, . . . , xn) is
defined to be

ρx = xρ = (ρx1, . . . , ρxn) (3)

The n units are defined to be

e1 = (1, 0, . . . , 0) , e2 = (0, 1, . . . , 0), . . . , en = (0, . . . , 0, 1)

Hence any n-tuple can be expressed in the form

x = x1e1 + x2e2 + · · ·+ xnen
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A linear algebra is obtained by assuming that any two n-tuples

x = x1e1 + x2e2 + · · ·+ xnen and y = y1e1 + y2e2 + · · ·+ ynen

can be combined by an operation called multiplication, which is subject to the
distributive laws

x(y + z) = xy + xz , (y + z)x = yx + zx

Thus
xy = x1y1e1e1 + x1y2e1e2 + · · ·+ xiyjeiej + · · ·+ xnynenen

The product xy is determined once we know the particular products among the
units, that is, for fixed i and j , the coordinates γij1, γij2, . . . , γijn of eiej ;

eiej = γij1e1 + γij2e2 + · · ·+ γijnen

Properties (2) and (3) of n-tuples give

x ± y = (x1 ± y1)e1 + · · ·+ (xn ± yn)en and ρx = xρ = (ρx1)e1 + · · ·+ (ρxn)en
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Every linear algebra of dimension n is nothing more than a set of n3 numbers γijk ,
where i , j , k range independently over the integers 1, 2, . . . , n.

n = 2, n3 = 8

I e21 = e1e1 = γ111e1 + γ112e2
I e1e2 = γ121e1 + γ122e2
I e2e1 = γ211e1 + γ212e2
I e22 = e2e2 = γ221e1 + γ222e2

If x = x1e1 + x2e2 and y = y1e1 + y2e2

then the product xy has coordinates z1, z2 given by

z1 = x1y1γ111 + x1y2γ121 + x2y1γ211 + x2y2γ221

z2 = x1y1γ112 + x1y2γ122 + x2y1γ212 + x2y2γ222

That is,
xy = z1e1 + z2e2

Bernard Russo (UCI) EVOLUTION ALGEBRA 11 / 106



January 13—Genetic motivation
(Ref.—Reed, ”Algebraic Structure of Genetic Inheritance”, 1997, pp. 107-108)

Before we discuss the mathematics of genetics, we need to acquaint ourselves with
the necessary language from biology.

A vague, but nevertheless informative, definition of a gene is simply a unit of
hereditary information. The genetic code of an organism is carried on
chromosomes.

Each gene on a chromosome has different forms that it can take. These forms are
called alleles. E.g., the gene which determines blood type in humans has three
different alleles, A, B, and O.

Since humans are diploid organisms (meaning we carry a double set of
chromosomes—one from each parent), blood types are determined by two alleles.

Haploid cells (or organisms) carry a single set of chromosomes.
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When diploid organisms reproduce, a process called meiosis produces gametes
(sex cells) which carry a single set of chromosomes.

When these gamete cells fuse (e.g., when sperm fertilizes egg), the result is a
zygote, which is again a diploid cell, meaning it carries its hereditary information
in a double set of chromosomes.

When gametes fuse (or reproduce) to form zygotes a natural “multiplication”
operation occurs.

As a natural first example, we consider simple Mendelian inheritance for a single
gene with two alleles A and a.

In this case, two gametes fusing (or reproducing) to form a zygote gives the
multiplication table shown in the following Table, which in freshman biology class
might be called a Punnett square.
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Table 3. Alleles passing from gametes to zygotes

A a

A AA Aa
a aA aa

The zygotes AA and aa are called homozygous, since they carry two copies of the
same allele.

In this case, simple Mendelian inheritance means that there is no chance involved
as to what genetic information will be inherited in the next generation; i.e., AA
will pass on the allele A and aa will pass on a.

However, the zygotes Aa and aA (which are equivalent) each carry two different
alleles. These zygotes are called heterozygous.
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The rules of simple Mendelian inheritance indicate that the next generation will
inherit either A or a with equal frequency. So, when two gametes reproduce, a
multiplication is induced which indicates how the hereditary information will be
passed down to the next generation.

This multiplication is given by the following rules:

1. A× A = A

2. A× a = 1
2A + 1

2a

3. a× A = 1
2a + 1

2A

4. a× a = a

Rules (1) and (4) are expressions of the fact that if both gametes carry the same
allele, then the offspring will inherit it.

Rules (2) and (3) indicate that when gametes carrying A and a reproduce, half of
the time the offspring will inherit A and the other half of the time it will inherit a.

These rules are an algebraic representation of the rules of simple Mendelian
inheritance. This multiplication table is shown in Table 4.
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Table 4. Multiplication table of the gametic algebra for simple
Mendelian inheritance

A a

A A 1
2 (A+a)

a 1
2 (a+A) a

We should point out that we are only concerning ourselves with genotypes (gene
composition) and not phenotypes (gene expression). Hence we have made no
mention of the dominant or recessive properties of our alleles.

Now that we’ve defined a multiplication on the symbols A and a we can
mathematically dedine the two dimensional algebra over R with basis {A, a} and
multiplication table as in Table 4. This algebra is called the gametic algebra for
simple Mendelian inheritance with two alleles.
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But gametic multiplication is just the beginning! In order for actual diploid cells
(or organisms) to reproduce, they must first go through a reduction division
process so that only one set of alleles is passed on.

For humans this occurs when males produce sperm and females produce eggs.
When reproduction occurs, the hereditary information is then passed on via the
gametic multiplication we’ve already defined.

Therefore, when two zygotes reproduce, another multiplication operation is
formed taking into consideration both the reduction division process and gametic
multiplication.

In our example of simple Mendelian inheritance for one gene with the two alleles A
and a, zygotes have three possible genotypes: AA, aa,and Aa.

Let’s consider the case of two zygotes both with genotype Aa reproducing. The
reduction division process splits the zygote and passes on one allele for
reproduction.
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In the case of simple Mendelian inheritance the assumption is that both alleles will
be passed on with equal frequency. Thus, half the time A gets passed on and half
the time a does.

We represent this with the “frequency distribution” 1
2A + 1

2a. Therefore,
symbolically Aa× Aa becomes(

1

2
A +

1

2
a

)
×
(

1

2
A +

1

2
a

)

Formally multiplying these two expressions together results in

1

4
AA +

1

2
Aa +

1

4
aa

using the notion that aA = Aa.

In this way, zygotic reproduction produces the multiplication table shown in Table
5. So we can define the three dimensional algebra over R with basis {AA, Aa, aa}
and multiplication table as in Table 5. It is called the zygotic algebra for simple
Mendelian inheritance with two alleles.
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Table 5. Multiplication table of the zygotic algebra for simple
Mendelian inheritance

AA Aa aa

AA AA 1
2 (AA+Aa) Aa

Aa 1
2 (AA+Aa) 1

4AA+ 1
2Aa+ 1

4aa 1
2 (Aa+aa)

aa Aa 1
2 (Aa+aa) aa

The process of constructing a zygotic algebra from the original gametic algebra is
called commutative duplication of algebras. We will discuss this process from a
mathematical perspective later.

Now that we’ve seen how the gametic and zygotic algebras are formed in the most
basic example, we shall begin to consider the mathematical (and indeed,
algebraic) structure of such algebras.
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The Nonassociativity of Inheritance

Depending on the “population” you are concerned with, a general element
αA + βa of the gametic algebra which satisfies 0 ≤ α, β ≤ 1 and α + β = 1 can
represent a population, a single individual of a population, or a single gamete.

In each case, the coefficients α and β signify the percentage of frequency of the
associated allele. I.e., if the element represents a population, then α is the
percentage of the population which carries the allele A on the gene under
consideration. Likewise, β is the percentage of the population which has the allele
a.

For those elements of the gametic and zygotic algebras which represent
populations, multiplication of two such elements represents random mating
between the two populations.

It seems logical that the order in which populations mate is significant. I.e., if
population P mates with population Q and then the resulting population mates
with R, the resulting population is not the same as the population resulting from
P mating with the population obtained from mating Q and R originally.
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Symbolically, (P × Q)× R is not equal to P × (Q × R).

So, we see that from a purely biological perspective, we should expect that the
algebras which arise in genetics will not satisfy the associative property.

Now, if we study the multiplication tables of both the gametic and zygotic
algebras for simple Mendelian inheritance, we will notice immediately that the
algebras are commutative.

From a biological perspective, if populations P and Q are mating, it makes no
difference whether you say P mates with Q or Q mates with P!

However, as we should expect, these algebras do not satisfy the associative
property.

E.g., in the gametic algebra apply the rules of multiplication and the distributive
property to see that A× (A× a) = 3

4A + 1
4a. However,

(A× A)× a = A× a = 1
2A + 1

2a
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Hence, the associative property does not hold for the gametic algebra.

The same is true for the zygotic algebra.

In general, the algebras which arise in genetics are commutative but
non-associative.
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January 20—Genetic algebras and derivations
“There is nothing like going to the original sources”
(Ref.—Etherington, “Genetic Algebras,” 1939, §1 pp.242–243,§6,7 249–251)

§1 pp.242–243

“The mechanism of chromosome inheritance, in so far as it determines the
probability distributions of genetic types in families and filial generations, and
expresses itself through their frequency distributions, may be represented
conveniently by algebraic symbols.”

A population (i.e. a distribution of genetic types) is represented by a normalized
hypercomplex number in one or another algebra.

If P and Q are populations, the filial generation P × Q (i.e. the statistical
population of offspring resulting from the random mating of individuals of P with
individuals of Q) is obtained by multiplying representations of P and Q.

A population may mean a single individual, or rather the information which we
may have concerning him in the form of a probability distribution.
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Gametic algebras

§6 249–250

Consider the inheritance of traits depending on any number of gene differences at
any number of loci on any number of chromosomes in a diploid or generally
autopolyploid species.

Let G1, . . . ,Gn denote the set of gametic types determined by these gene
differences. There will be n(n + 1)/2 zygotic types GiGj (= GjGi )

The formulae giving the series of gametic types by each individual (zygote), and
their frequencies may be written GiGj = γ1ijG1 + · · ·+ γkijGk + · · ·+ γnijGn, with
the normalizing conditions γ1ij + · · ·+ γkij + · · ·+ γnij = 1 and 0 ≤ γkij ≤ 1

γkij is the probability that an arbitrary gamete produced by an individual of
zygotic type GiGj is of type Gk

A population P which produces gametes Gk in proportions αk may be represented
by writing P = α1G1 + · · ·+ αkGk + · · ·+ αnGn, with the normalizing condition
α1 + · · ·+ αk + · · ·+ αn = 1
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A population may also be described by the proportions of the zygotic types which
it contains, so we may write P = α11G1G1 + · · ·+ αijGiGj + · · ·+ αnnGnGn, with
the normalizing condition α11 + · · ·+ αij + · · ·+ αnn = 1 (αij = αji )

If two populations P = α1G1 + · · ·+ αkGk + · · ·+ αnGn, and
Q = β1G1 + · · ·+ βkGk + · · ·+ βnGn intermate at random, representations of the
first filial generation are obtained by multiplying P and Q

The population of offspring is then

PQ = α1β1G1G1 + · · ·+ αiβjGiGj + · · ·+ αnβnGnGn

The linear algebra with basis G1, . . . ,Gk , . . .Gn and multiplication table

GiGj = γ1ijG1 + · · ·+ γkijGk + · · ·+ γnijGn

is called the gametic algebra for the type of inheritance considered
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Zygotic Algebras

§7 250–251

When individuals of type GiGj and GlGm mate, the probability distribution of
zygotic types in their offspring can be obtained by multiplying the gametic
representations given by GiGj = γ1ijG1 + · · ·+ γkijGk + · · ·+ γnijGn and
GlGm = γ1lmG1 + · · ·+ γklmGk + · · ·+ γnlmGn

We obtain GiGj ×GlGm = γ1ijγ1lmG1G1 + · · ·+ γσijγτ lmGσGτ + · · ·+ γnijγnlmGnGn

Or, writing Zij = GiGj to emphasize the union of paired gametes into single
individuals,

ZijZlm = γ1ijγ1lmZ11 + · · ·+ γσijγτ lmZστ + · · ·+ γnijγnlmZnn (4)

The linear algebra with basis Z11, . . . ,Zij , . . .Znn and multiplication table (4) is
called the zygotic algebra for the type of inheritance considered
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(Ref.—Etherington, “Non-associative algebra and the symbolism of genetics,”
1941, §1 p.24, §2 pp.25–26, §5 pp.29–30, §8 pp.34–35)

§1 p.24

“The statistical material of genetics usually consists of frequency distributions—of
genes, zygotes and mating couples—from which new distributions referring to
their progeny arise.”

“Combination of distributions by random mating is usually symbolized by the
mathematical sign for multiplication; but this sign is not taken literally for the
simple reason that the general laws connecting the distributions of progenitors and
progeny are inconsistent with the laws governing multiplication in algebra.”

“However, there is no insuperable reason why the genetical sign of multiplication
should not be taken literally; for it is possible with any particular type of
inheritance to construct an ‘algebra’—distinct from ordinary algebra but of a type
well known to mathematicians—such that the laws governing multiplication shall
represent exactly the underlying genetical situation.”

“These ‘genetic algebras’ are of a kind known as ‘linear algebras.’ ”
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Genetical Multiplication

§2 pp.25–26

P denotes a frequency distribution or a probability distribution of a population, a
single individual, or a single gamete.

I P = DD = homozygous dominant individual, or population consisting of such

I P = αDD + βDR + γRR = population with assigned frequencies α, β, γ of
genotypes, or individual with assigned probabilities α, β, γ of belonging to
one of the genotypes

I P = δD + ρR = population which produces D and R gametes in the given
numerical ratio, or gamete which has probability δ of containing D and
probability ρ of containing R

The multiplication of populations (individuals, gametes) means the calculation of
progeny distribution resulting from random mating (mating, fusion).

The distributive (P(Q + R) = PQ + PR) and commutative (PQ = QP) laws are
valid in genetical multiplication. The associative law is not: (P(QR) 6= (PQ)R).
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Mendelian Gametic and Zygotic Algebras—Revisited

§5 pp.29–30

Consider a pair of autosomal allelomorphs D,R and the corresponding genotypes
of zygotes A = DD , B = DR , C = RR

In accordance with Mendelian principles, we have

I gametes produced by each type of zygote (gametic algebra)

D2 = DD = D , DR =
1

2
D +

1

2
R , R2 = RR = R

(heterozygote DR produces D and R gametes in equal numbers)

I zygotes produced by each type of mating couple (zygotic algebra)

A2 = A ,B2 =
1

4
A +

1

2
B +

1

4
C , C 2 = C

BC =
1

2
B +

1

2
C , CA = B , AB =

1

2
A +

1

2
B

(the offspring of a mating DR × DR are 25%DD, 50%DR, 25%RR)
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Self Fertilization

§8 pp.34–35 (See also Reed, §5.2 pp.121–122)

Starting from the zygotic distribution P = αA + βB + γC , where
a = DD,B = DR,C = RR, if mating proceeds in successive generations by
self-fertilization, or by each individual mating with another of the same type, the
first filial generation F1 will consist of the offspring of A× A,B × B,C × C ,
occurring in proportions α : β : γ so that

F1 = αA2 + βB2 + γC 2

= αA + β(
1

4
A +

1

2
B +

1

4
C ) + γC

= (α +
1

4
β)A +

1

2
βB + (

1

4
β + γ)C

The second filial generation F2 = F1 × F! calculates to

F2 = (α +
3

8
β)A +

1

4
βB + (

3

8
β + γ)C
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QUESTION: What is the nth-filial generation under self-fertilization?

Fn = αnA + βnB + γnC

I α1 = α + 1
4β, α2 = α + 3

8β

I β1 = 1
2β. β2 = 1

4β

I γ1 = 1
4β + γ, γ2 = 3

8β + γ

ANSWER: αn = α + 1
2β −

1
2n+1 β, βn = 1

2n β, γn = 1
2β + γ − 1

2n+1 β

Or, Fn = (α +
1

2
β − 1

2n+1
β)A +

1

2n
βB + (

1

2
β + γ − 1

2n+1
β)C

The equilibrium distribution is thus

Fn = (α +
1

2
β)A + (

1

2
β + γ)C

Repeated self fertilization kills off the heterozygotes!
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Derivations on Linear Algebras

(Ref.—Russo, “Playing havoc with the product rule” Transfer Seminar Fall 2012)

Much of the algebra taught in the undergraduate curriculum, such as linear
algebra (vector spaces, matrices), modern algebra (groups, rings, fields),
number theory (primes, congruences) is concerned with systems with one or
more associative binary products.

For example, addition and multiplication of matrices is associative:

A + (B + C ) = (A + B) + C

A(BC ) = (AB)C .
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In the early 20th century, physicists started using the product A.B for matrices,
defined by

A.B = AB + BA,

and called the Jordan product (after the physicist Pascual Jordan 1902-1980),
to model the observables in quantum mechanics.

Also in the early 20th century both mathematicians and physicists used the
product [A,B], defined by

[A,B] = AB − BA

and called the Lie product (after the mathematician Sophus Lie 1842-1899), to
study differential equations.

Neither one of these products is associative, so they each give rise to what is
called a nonassociative algebra, in these cases, called Jordan algebras and Lie
algebras respectively.
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Sophus Lie (1842–1899)

Marius Sophus Lie was a Norwegian mathematician. He largely created the theory
of continuous symmetry, and applied it to the study of geometry and differential
equations.
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Pascual Jordan (1902–1980)

Pascual Jordan was a German theoretical and mathematical physicist who made
significant contributions to quantum mechanics and quantum field theory.
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Abstract theories of these algebras and other nonassociative algebras were
subsequently developed and have many other applications, for example to
cryptography and genetics, to name just two.

Lie algebras are especially important in particle physics.
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The derivative

f ′(x) = lim
h→0

f (x + h)− f (x)

h

DIFFERENTIATION IS A LINEAR PROCESS

(f + g)′ = f ′ + g ′

(cf )′ = cf ′

THE SET OF DIFFERENTIABLE FUNCTIONS FORMS AN ALGEBRA D

(fg)′ = fg ′ + f ′g

(product rule)
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HEROS OF CALCULUS

#1 Sir Isaac Newton (1642-1727)

Isaac Newton was an English physicist, mathematician, astronomer, natural
philosopher, alchemist, and theologian, and is considered by many scholars and
members of the general public to be one of the most influential people in human
history.
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#2 Gottfried Wilhelm Leibniz (1646-1716)

Gottfried Wilhelm Leibniz was a German mathematician and philosopher. He
developed the infinitesimal calculus independently of Isaac Newton, and Leibniz’s
mathematical notation has been widely used ever since it was published.
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LEIBNIZ RULE

(fg)′ = f ′g + fg ′

(order changed)

More generally

(fgh)′ = f ′gh + fg ′h + fgh′

(f1f2 · · · fn)′ = (f ′1 f2 · · · fn) + · · ·+ (f1 · · · f ′i · · · fn) + · · ·+ (f1f2 · · · f ′n)

The chain rule,
(f ◦ g)′(x) = f ′(g(x))g ′(x)

plays no role in this seminar. Neither does the quotient rule

(f /g)′ =
gf ′ − fg ′

g2
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CONTINUITY: xn → x ⇒ f (xn)→ f (x)

THE SET OF CONTINUOUS FUNCTIONS FORMS AN ALGEBRA C
(sums, constant multiples and products of continuous functions are continuous)

D and C ARE EXAMPLES OF ALGEBRAS WHICH ARE BOTH ASSOCIATIVE
AND COMMUTATIVE

PROPOSITION
EVERY DIFFERENTIABLE FUNCTION IS CONTINUOUS
D is a subalgebra of C; D ⊂ C
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DIFFERENTIATION IS A LINEAR PROCESS. LET US DENOTE IT BY D AND
WRITE D(f ) (or Df ) for f ′

D(f + g) = Df + Dg

D(cf ) = cDf

D(fg) = (Df )g + f (Dg)

D(f /g) =
g(Df )− f (Dg)

g2

DEFINITION
A DERIVATION ON AN ALGEBRA A IS A LINEAR PROCESS δ : A
SATISFYING THE LEIBNIZ RULE:

δ(x + y) = δ(x) + δ(y)

δ(cx) = cδ(x)

δ(xy) = δ(x)y + xδ(y)
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THEOREM

There are no (non-zero) derivations on C.

In other words, every derivation of C is identically zero

COROLLARY
D 6= C

(NO DUUUH! f (x) = |x |)
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DERIVATIONS ON THE SET OF MATRICES

THE SET Mn(R) of n by n MATRICES IS AN ALGEBRA UNDER
MATRIX ADDITION A + B
MATRIX MULTIPLICATION A× B
WHICH IS ASSOCIATIVE BUT NOT COMMUTATIVE.

DEFINITION

A DERIVATION ON Mn(R) WITH RESPECT TO MATRIX MULTIPLICATION
IS A LINEAR PROCESS δ WHICH SATISFIES THE LEIBNIZ RULE
δ(A× B) = δ(A)× B + A× δ(B).

EXAMPLE

FIX A MATRIX A in Mn(R) AND DEFINE

δA(X ) = A× X − X × A.

THEN δA IS A DERIVATION WITH RESPECT TO MATRIX MULTIPLICATION
(WHICH CAN BE NON-ZERO)
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THEOREM

EVERY DERIVATION ON Mn(R) WITH RESPECT TO MATRIX
MULTIPLICATION IS OF THE FORM δA FOR SOME A IN Mn(R).

CLOSING REMARKS (for today)
I If A is any ASSOCIATIVE algebra, and a is any element of A, then the linear

process δa defined by δa(x) = ax − xa is a derivation of the algebra A.

I In many (but not all) associative algebras, these are the only derivations.

I What about non-associative algebras? In particular, Lie algebras, Jordan
algebras, genetic algebras?
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January 27—Lie Algebras; Bracket Product

DEFINITION THE BRACKET PRODUCT ON THE SET Mn(R) OF
MATRICES IS DEFINED BY [X ,Y ] = X × Y − Y × X

THE SET Mn(R) of n by n MATRICES IS AN ALGEBRA UNDER MATRIX
ADDITION AND BRACKET MULTIPLICATION, WHICH IS NOT
ASSOCIATIVE AND NOT COMMUTATIVE.

A DERIVATION ON Mn(R) WITH RESPECT TO BRACKET MULTIPLICATION
IS A LINEAR PROCESS δ WHICH SATISFIES THE LEIBNIZ RULE
δ([A,B]) = [δ(A),B] + [A, δ(B)]

EXAMPLE FIX A MATRIX A in Mn(R) AND DEFINE
δA(X ) = [A,X ] = A× X − X × A. THEN δA IS A DERIVATION WITH
RESPECT TO BRACKET MULTIPLICATION

THEOREM EVERY DERIVATION ON Mn(R) WITH RESPECT TO BRACKET
MULTIPLICATION IS OF THE FORM δA FOR SOME A IN Mn(R).
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THE CIRCLE PRODUCT ON THE SET OF MATRICES

DEFINITION THE CIRCLE PRODUCT ON THE SET Mn(R) OF MATRICES
IS DEFINED BY X ◦ Y = (X × Y + Y × X )/2

THE SET Mn(R) of n by n MATRICES IS AN ALGEBRA UNDER MATRIX
ADDITION AND CIRCLE MULTIPLICATION, WHICH IS COMMUTATIVE BUT
NOT ASSOCIATIVE.

A DERIVATION ON Mn(R) WITH RESPECT TO CIRCLE MULTIPLICATION IS
A LINEAR PROCESS δ WHICH SATISFIES THE LEIBNIZ RULE

δ(A ◦ B) = δ(A) ◦ B + A ◦ δ(B)

EXAMPLE FIX A MATRIX A in Mn(R) AND DEFINE δA(X ) = A× X − X × A.
THEN δA IS A DERIVATION WITH RESPECT TO CIRCLE MULTIPLICATION

THEOREM EVERY DERIVATION ON Mn(R) WITH RESPECT TO CIRCLE
MULTIPLICATION IS OF THE FORM δA FOR SOME A IN Mn(R).
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IT IS TIME FOR A SUMMARY OF THE PRECEDING

Table 6

matrix bracket circle
ab = a× b [a, b] = ab − ba a ◦ b = ab + ba
δa(x) δa(x) δa(x)

= = =
ax − xa ax − xa ax − xa
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AXIOMATIC APPROACH

AN ALGEBRA IS DEFINED TO BE A SET (ACTUALLY A VECTOR SPACE)
WITH TWO BINARY OPERATIONS, CALLED ADDITION AND
MULTIPLICATION

ADDITION IS DENOTED BY a + b AND IS REQUIRED TO BE
COMMUTATIVE AND ASSOCIATIVE

a + b = b + a, (a + b) + c = a + (b + c)

MULTIPLICATION IS DENOTED BY ab AND IS REQUIRED TO BE
DISTRIBUTIVE WITH RESPECT TO ADDITION

(a + b)c = ac + bc, a(b + c) = ab + ac

AN ALGEBRA IS SAID TO BE ASSOCIATIVE (RESP. COMMUTATIVE) IF THE
MULTIPLICATION IS ASSOCIATIVE (RESP. COMMUTATIVE)
(RECALL THAT ADDITION IS ALWAYS COMMUTATIVE AND ASSOCIATIVE)
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THE ALGEBRAS C, D AND Mn(R) ARE EXAMPLES OF ASSOCIATIVE
ALGEBRAS.

C AND D ARE COMMUTATIVE, AND Mn(R) IS NOT COMMUTATIVE.

THE AXIOM WHICH CHARACTERIZES ASSOCIATIVE ALGEBRAS IS
a(bc) = (ab)c . THESE ARE CALLED ASSOCIATIVE ALGEBRAS

THE AXIOM WHICH CHARACTERIZES COMMUTATIVE ALGEBRAS IS
ab = ba. THESE ARE CALLED (you guessed it) COMMUTATIVE ALGEBRAS

HOWEVER, THESE TWO CONCEPTS ARE TOO GENERAL TO BE OF ANY
USE BY THEMSELVES
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THE AXIOMS WHICH CHARACTERIZE BRACKET MULTIPLICATION ARE

a2 = 0 and (ab)c + (bc)a + (ca)b = 0

THESE ARE CALLED LIE ALGEBRAS

THE AXIOMS WHICH CHARACTERIZE CIRCLE MULTIPLICATION ARE

ab = ba and a(a2b) = a2(ab)

THESE ARE CALLED JORDAN ALGEBRAS
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Sophus Lie (1842–1899)

Marius Sophus Lie was a Norwegian mathematician. He largely created the theory
of continuous symmetry, and applied it to the study of geometry and differential
equations.
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Pascual Jordan (1902–1980)

Pascual Jordan was a German theoretical and mathematical physicist who made
significant contributions to quantum mechanics and quantum field theory.
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LET’S SUMMARIZE AGAIN

Table 7—ALGEBRAS

commutative algebras
ab = ba

associative algebras
a(bc) = (ab)c

Lie algebras
a2 = 0
(ab)c + (bc)a + (ca)b = 0

Jordan algebras
ab = ba
a(a2b) = a2(ab)
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Closing Remark

Given any algebra A of any kind (associative, Lie, Jordan, genetic, you name it) ,
the set of all derivations on A is a Lie algebra with the bracket given by

[δ1, δ2] = δ1δ2 − δ2δ1

For the record, if A is an algebra with product denoted by xy , δ is a derivation if

I δ(x + y) = δ(x) + δ(y)

I δ(xy) = xδy + (δx)y

For any two linear transformations S and T on A, their product ST is defined by

ST (x) = S(T (x))

In particular, δ1δ2(x) = δ1(δ2(x))

To convince yourself that the remark is true, you have to show that

[δ1, δ2](xy) = x ([δ1, δ2](y)) + ([δ1, δ2](x)) y
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February 3—Evolution Algebras

First, a digression: Proof of an earlier theorem

Matrix units

Let E11 =

[
1 0
0 0

]
, E12 =

[
0 1
0 0

]
, E21 =

[
0 0
1 0

]
, E22 =

[
0 0
0 1

]

LEMMA
I E11 + E22 = I

I E t
ij = Eji

I EijEkl = δklEil

THEOREM

Let δ : M2 → M2 be a derivation: δ is linear and δ(AB) = Aδ(B) + δ(A)B. Then
there exists a matrix K such that δ(X ) = XK − KX for X in M2.
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PROOF OF THEOREM

0 = δ(1) = δ(E11 + E22) = δ(E11) + δ(E22)

= δ(E11E11) + δ(E21E12)

= E11δ(E11) + δ(E11)E11 + E21δ(E12) + δ(E21)E12

= E11δ(E11) + E21δ(E12) + δ(E11)E11 + δ(E21)E12.

Let K = E11δ(E11) + E21δ(E12) = −δ(E11)E11 − δ(E21)E12. Then

I KE11 = −δ(E11)E11 , E11K = E11δ(E11)

I KE12 = −δ(E11)E12 , E12K = E11δ(E12)

I KE21 = −δ(E21)E11 , E21K = E21δ(E11)

I KE22 = −δ(E21)E12 , E22K = E21δ(E12)

I E11K − KE11 = E11δ(E11) + δ(E11)E11 = δ(E11E11) = δ(E11)

I E12K − KE12 = E11δ(E12) + δ(E11)E12 = δ(E11E12) = δ(E12)

I E21K − KE21 = E21δ(E11) + δ(E21)E11 = δ(E21E11) = δ(E21)

I E22K − KE22 = E21δ(E12) + δ(E21)E12 = δ(E21E12) = δ(E22) Q.E.D.
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Asexual propagation (Tian LNIM §2.1.1, p. 9)

• Prokaryotes are nonsexual reproductive organisms.
• Prokaryotic cells, unlike eukaryotic cells, do not have nuclei.
• In prokaryote inheritance, there is no mitosis and meiosis.
• Instead, prokaryotes reproduce by binary fission.

• The genetic information passed from one generation to the next should be
conserved because of the strictness of DNA self-replication.
• However, there are still many possible factors in the environment that can
induce the change of genetic information from generation to generation.
• The inheritance of prokaryotes is then not Mendelian.

• Now, lets mathematically formulate the asexual reproduction process. Suppose
that we have n genetically distinct prokaryotes, denoting them by p1, . . . , pn.
• We also suppose that the same environmental conditions are maintained from
generation to generation. We look at changes in gene frequencies over two
generations. To this end, we can set the following relations:

pi · pi = ci1p1 + · · ·+ cinpn , pi · pj = 0, i 6= j
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Gametic algebras in asexual inheritance
(Tian LNIM §2.1.2, pp. 10–11)

• Consider an infinitely large, randomly mating population of diploid individuals.
• Let a1, . . . , an be the genetically distinct gametes produced by the population.
• By random union of gametes ai and aj , zygotes of type aiaj are formed.
• Assume that a zygote aiaj produces a number γijk of gametes of type ak , which
survive in the next generation,

• Now, the gamete algebra is defined on the linear space spanned by these gametes
a1, . . . , an by the following multiplication table: aiaj = γij1a1 + · · · γijnan
• In asexual inheritance, the interpretation aiaj as a zygote does not make sense
biologically if ai 6= aj , but aiai can still be interpreted as self-replication.
• Mathematically, we set aiaj = 0. Therefore, in asexual inheritance, we can use
the following relations to define an algebra:

ai · ai = γi1a1 + · · ·+ γinan , ai · aj = 0, i 6= j

• Of course, this case is not of Mendelian inheritance.
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Evolution algebras

Definition (Tian LNIM §3.1.1, p.20)

Let A be an algebra. If it admits a basis x1, x2, . . . , xn such that
xi · xi = ai1x1 + · · ·+ ainxn , xi · xj = 0, i 6= j we then call this algebra an
evolution algebra. We call the basis a natural basis.

Some basic Properties (Tian LNIM §3.1.1, pp.20–21)
I Evolution algebras are not associative, in general.

I Evolution algebras are commutative

I Evolution algebras are not power-associative, in general.

I The direct sum of evolution algebras is also an evolution algebra.

More definitions (Tian LNIM §3.1.3, p.23)

Let A be a commutative algebra and a an element of A

I The principal powers of a are:
a1 = a, a2 = a · a, a3 = a2 · a, . . . an = an−1 · a

I The plenary powers of a of A are:
a[1] = a2 = a·a, a[2] = a2 ·a2, a[3] = a[2] ·a[2], . . . a[n] = a[n−1] ·a[n−1]

Bernard Russo (UCI) EVOLUTION ALGEBRA 60 / 106



Example (Tian LNIM §3.1.3, p.24)

Let E be an evolution algebra with basis e1, e2, e3 and multiplication defined by
e1e1 = e1 + e2, e2e2 = −e1 − e2, e3e3 = −e2 + e3.

Let u1 = e1 + e2, u2 = e1 + e3 and let F be the set of all αu1 + βu2. Then
F is a subalgebra of E but it is not an evolution algebra, since one can construct
distinct elements v1 and v2 of F such that v1v2 6= 0.
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History of general genetic algebras (Tian LNIM §5.1, p.92)

General genetic algebras are the product of interactions between biology and
mathematics. The study of these algebras reveals the algebraic structures of
Mendelian genetics, which can simplify and shorten the way to understand genetic
and evolutionary phenomena.

However, after Baur [1909] and Correns [1909] first detected that chloroplast
inheritance departed from Mendels rules, and much later, mitochondrial gene
inheritance were also identified in the same way, non-Mendelian inheritance of
organelle genes became manifest with two features—uniparental inheritance and
vegetative segregation.

Non-Mendelian genetics is now a basic language of molecular geneticists.

When we try to formulate non-Mendelian genetics as algebras, we at least need a
new idea to formulate reproduction in non-Mendelian genetics as multiplication in
algebras. Evolution algebras stems from this new idea.
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Terms in population genetics (Tian LNIM §5.2.1, p.93)

Organisms with a double set of chromosomes are called diploid organisms. For
example, humans are diploid. Organisms with one set of chromosomes are called
haploid organisms. For instant, most fungi and a few algae are haploid organisms.

The different variants of a gene are referred to as alleles. Biologists refer to
individuals with two identical copies of a gene as being homozygous; and
individuals with two different copies of the same gene as being heterozygous.

Reproduction of organisms can take place by asexual or sexual processes.

Asexual reproduction involves the production of a new individual(s) from cells or
tissues of a preexisting organism. This process is common in plants and in many
microorganisms. It can involve simple binary fission in unicellular microbes or the
production of specialized asexual spores.
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Sexual reproduction differs, in that it involves fusion of cells (gametes) derived
from each parent, to form a zygote.

Asexual reproduction allows some genetic changes in offspring by chance. The
genetic processes involved in the production of gametes also allow for some
genetic changes from generation to generation. Sexual reproduction is limited to
species that are diploid or have a period of their life cycle in the diploid state.

The division of somatic cells is called mitosis; and the division of meiotic cells is
called meiosis.

Prokaryote chromosomes consist of a single DNA, which is usually circular, with
only a small amount of associated protein. Eukaryotes have several linear
chromosomes, and the DNA is tightly associated with large amounts of protein.
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Organelle (http://en.wikipedia.org/wiki/Organelle)

• In cell biology, an organelle is a specialized subunit within a cell that has a
specific function.
• The name organelle comes from the idea that these structures are to cells what
an organ is to the body (the suffix -elle being a diminutive).
• There are many types of organelles, particularly in eukaryotic cells. While
prokaryotes do not possess organelles per se, some do contain protein-based
microcompartments, which are thought to act as primitive organelles.

Mendelian vs. non-Mendelian (Tian LNIM §5.2.2, pp.94–95)

Although most of heredity of nuclear genes obeys Mendels laws, the inheritance of
organelle is not Mendelian. There are five aspects in comparison of Mendelian
genetics and non-Mendelian genetics:

Bernard Russo (UCI) EVOLUTION ALGEBRA 65 / 106



1 During asexual reproduction, alleles of nuclear genes do not
segregate: heterozygous cells produce heterozygous daughters. In
contrast, alleles of organelle genes in heteroplasmic cells segregate
during mitotic and meiotic divisions to produce homoplasmic cells.

2 Alleles of a nuclear gene always segregate during meiosis, with half
of the gametes receiving one allele and half the other. Alleles of
organelle genes may or may not segregate during meiosis; the
mechanisms are the same as for vegetative segregation.

3 Inheritance of nuclear genes is biparental. Organelle genes are often
inherited from only one parent, uniparental inheritance.

4 Alleles of different nuclear genes segregate independently.
Organelle genes are nearly always on a single chromosome and
recombination is often severely limited by uniparental inheritance or
failure of organelles to fuse and exchange genomes.

5 Fertilization is random with respect to the genotype of the
gametes. This is the only part of Mendels model that applies to
organelle as well as nuclear genes.

(For the basics of organelle biology, see Tian LNIM pp. 94–95)
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Algebraic formulation of non-Mendelian genetics
(Tian LNIM §5.2.3, pp.95–96)

Let us consider a population of organelles in a cell or a cell clone, and suppose
that there are n different genotypes in this organelle population. Denote these
genotypes by g1, g2, . . . , gn.

According to the point (3) in Subsection 5.2.2, the crossing of genotypes is
impossible since it is uniparental inheritance. Mathematically, we set gi · gj = 0 for
i 6= j

According to the point (2) in Subsection 5.2.2, alleles of organelle genes may or
may not segregate during meiosis following vegetative segregation, so the
frequency of each gene in the next generation could be variant.

According to the point (4) in Subsection 5.2.2, intramolecular and intermolecular
recombination within a lineage provides evidence that one organelle genotype
could produce other different genotypes.
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Therefore, we can mathematically define, g2
i = αi1g1 + · · ·+ αingn where αij is a

positive number that can be interpreted as the rate of genotype gj produced by
genotype gi .

Now, we have the algebra defined by generators g1, g2, . . . gn which are subject to
these relations.

Obviously, this is a very general definition. But it is general enough to include all
non-Mendelian inheritance phenomena.
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February 10—Algebras with Genetic Significance
(Ref. REED, pp.111–114)

Mathematically, the algebras that arise in genetics (via gametic, zygotic, or
copular algebras) are very interesting structures. They are generally commutative
but nonassociative, yet they are not necessarily Lie, Jordan, or alternative algebras.

In addition, many of the algebraic properties of these structures have genetic
significance. Indeed, it is the interplay between the purely mathematical structure
and the corresponding genetic properties that makes this subject so fascinating.

We turn our attention now to the more formal mathematical study of the
underlying algebraic structure of genetics. The most general algebra which could
have genetic significance is an “algebra with genetic realization.”

An algebra with genetic realization is an algebra A over the real numbers R
which has a basis a1, . . . an and a multiplication table aiaj =

∑n
k=1 γijkak such that

0 ≤ γijk ≤ 1 and
∑n

k=1 γijk = 1. Such a basis is called the natural basis for A.
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It is easy to see that our earlier examples of gametic and zygotic algebras for
simple Mendelian inheritance, as well as the general gametic and zygotic algebras,
are all algebras with genetic realization.

In a general algebra A with genetic realization, an element x in A represents a
population, or a gene pool for a population, if its expression as a linear
combination of the basis elements

x = ξ1a1 + · · ·+ ξnan

satisfies 0 ≤ ξi ≤ 1 and
∑n

i=1 ξ = 1.

Then ξi is the percentage of the population x which carries the allele ai .

The class of all algebras with genetic realization is too large to say much about.
However, since all gametic algebras (and their commutative duplicates) satisfy the
definition, it provides a solid framework for what constitutes an algebra with
genetic significance.
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As we have seen, algebras with genetic realization are not necessarily associative
algebras. They do belong to a rather special class of nonassociative algebras.

A general nonassociative algebra need not possess a matrix representation. Yet,
algebras with genetic realization do. In fact, they possess the simplest possible
matrix representation—a scalar representation.

Definition
An algebra A is called a baric algebra if it admits a non-trivial algebra
homomorphism ω into the algebra consisting of the real numbers.

In other words, a baric algebra is an algebra with a one-dimensional representation.
The homomorphism ω is called the weight function (or baric function).

Proposition An n-dimensional algebra with genetic realization is a baric algebra.

Weight functions are not unique in general: see Example 3.1 p.113

Bernard Russo (UCI) EVOLUTION ALGEBRA 71 / 106



Even though the above example shows that not all baric algebras have a unique
weight function, many of them do.

In order to exhibit at least a sufficient condition for a baric algebra to have a
unique weight function, we must first discuss the issue of powers in a
nonassociative algebra.

In a commutative, nonassociative algebra, there are several ways to define and
interpret the powers of an element. There are two main types of powers which
have genetic significance.

Let x be an element of a commutative nonassociative algebra A.The principal
powers of x are defined to be x , x2, x3, . . . , where x i = x i−1x .

If A is an algebra with genetic realization and an element P represents a
population, then each element P i of the sequence of principal powers represents a
population which resulted from the previous population P i−1 mating back with
the original population P.
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On the other hand, the plenary powers x , x [2], x [3], . . . are defined as
x [i ] = x [i−1]x [i−1].

When P is an element representing a population, the sequence of plenary powers
contains the successive generations resulting from random mating within the
population, beginning with P.

P [2] is the result of the population P mating within itself, and P [3] is the result of
the population P [2] mating within itself.

Both the principal and plenary powers are of biological as well as mathematical
interest.

The following proposition provides a sufficient condition for a baric algebra to
have a unique weight function.

Proposition Let A be a baric algebra with weight function ω. If N = kerω is nil
(i.e., all elements of N are nilpotent), then ω is uniquely determined.
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A non-zero element e in an algebra which satisfies the relationship e = e2 is called
an idempotent. In addition to their mathematical importance, idempotents also
have genetic significance.

If a population P satisfies the equation P2 = P, this means that genetic
equilibrium has been achieved after one generation of random mating within the
population P. I.e., the population P2 has the same genetic pool as the initial
population P.

Mathematically, the existence of an idempotent in an algebra provides a direct
sum decomposition of the algebra. Hence, idempotents play a crucial role in
describing the general structure of an algebra.

Let A be a baric algebra. The existence of an idempotent in A is not guaranteed.
However, if A does contain an idempotent e, then ω(e) = ω(e2) = ω(e)2 so either
ω(e) = 0 or ω(e) = 1.

Proposition Let A be a baric algebra with weight function ω. Suppose A contains
an idempotent e such that ω(e) = 1.Then A = Re ⊕ kerω (R=real numbers)
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February 17—Bernstein Algebras
(Ref. REED, pp.118–120)

From a mathematical point of view, the principal powers are much more tractable
than their cousins, the plenary powers.

However, from a geneticist’s point of view, the sequence of plenary powers is of
greater interest since the plenary powers more accurately model the way most
populations reproduce.

In the early 1920’s, S. Bernstein studied a quadratic evolutionary operator Ψ,
which mapped the simplex ∆n of genetic frequency distributions (x1, . . . , xn) with
xi > 0 and

∑n
i=1 xi = 1 into itself and represented the passage of generations.

Bernstein set out to classify all such operators which satisfied the condition
Ψ2 = Ψ. This condition is known as Bernstein’s stationarity principle.

The condition Ψ2 = Ψ indicates that the population is in equilibrium after one
generation. Ψ is thus an idempotent evolutionary operator.
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Let A be a finite dimensional, commutative baric algebra and let ω denote the
weight function. Then A is called a Bernstein algebra if the plenary powers of
any element x satisfy x [3] = ω(x)2x [2]

Those elements x of a Bernstein algebra with baric weight 1 satisfy the equation
x [3] = x [2], which means that they reach genetic equilibrium after one generation
of random mating within the population.

Therefore, complete knowledge of the structure of these abstract nonassociative
algebras would provide a great deal of genetically significant information.

Mathematically, one of the most useful facts about the structure of a Bernstein
algebra is the direct sum decomposition it possesses.

Proposition

Let A be a Bernstein algebra with weight function ω. .Let e denote an idempotent
of A. Let Z = kerω, let U be the set of elements x in Z with ex = x/2 and let V
be the set of elements x in Z with ex = 0. Then A = Re ⊕ U ⊕ V .
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Another remarkable (and extremely useful) fact about a Bernstein algebra is the
classification of all of its idempotents.

Proposition

Let A be a Bernstein algebra and let e denote one idempotent in A. Then all
idempotents of A have the form e + u + u2, where u in Z satisfies eu = u/2.

A very natural generalization of a Bernstein algebra arises when we alter the
condition on the plenary powers to reflect not equilibrium after one generation of
mating, but instead after k generations of mating.

Definition
Let A be a finite dimensional commutative baric algebra, and let ω denote the
weight function. Then A is called a k-th order Bernstein algebra if the plenary

powers of any element x satisfy x [k+2] = ω(x)2
k

x [k+1]
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February 24—Derivations on Genetic Algebras
(Ref. for pp.78-87: Holgate, P. The Interpretation of Derivations in Genetic
Algebras Linear Algebra and its Applications 85; 75-79 1987)

Abstract
Meanings are assigned to a linear transformation of an element in a genetic
algebra representing a probability distribution over the possible genetic types, and
to products of elements where only one of the factors is such a probability
element. These lead on to a characterization of a derivation on a genetic algebra
in terms of the equality of two genetically meaningful expressions.

Remark
In the literature, the term genetic algebra is often used of algebras that have
certain mathematical properties, even in cases that do not represent a biological
situation.

Interpretation 1—Preparation

Consider a population in which there are n genetic types A1, . . . ,An. We will
consider only autosomal characteristics, namely those that are determined by
genes not linked to sex.
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An individual X, for whom the probability that he or she is of genetic type Ai is xi ,
will be represented by the vector x = (x1, . . . , xn).

Let V be the vector space generated by the x’s, The elements of V for which
xi > 0,

∑
i xi = 1 will be called probability vectors.

Let γijk be the probability that the offspring of a mating between an Ai and an Aj

will be an Ak . Thus
∑

k γijk = 1 for every pair i, j.

We make V into a genetic algebra by defining the product of elements x, y by

xy = z where zk =
∑

i,j xiyjγijk .

The probability vectors form a multiplicatively closed set.

Interpretation 1

If x, y are probability vectors representing the distribution on the genetic types of
individuals X, Y, then the product xy represents the probability distribution of the
genetic type of the offspring of X and Y.
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Let R = (rij) be a matrix whose ( i, j )th element is the value of some genetically
determined trait, also denoted by R, for a male of genetic type Ai when he is
coupled with a female of type Aj , and vice versa.

Interpretation 2

If x is the probability vector of X, and R a matrix as above, the jth component of
Rx gives the mean value of the trait for X when it is mated to an Aj .

These components will be called the conditional means of R for X.
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Preparation for Interpretation 3

Now let let x be a probability vector representing a male, and q a vector whose jth
component is the unconditional value of some trait Q for the genetic type Aj .

We look for an explanation of the algebra product xq ( = t ) in terms of genetic
phenomena.

Its kth component is

tk =
∑
i

xi
∑
j

qjγijk =
∑
j

qj
∑
j

xiγijk =
∑
j

qjπjk

where πjk =
∑

i xiγijk is the probability that the offspring of a mating between X
and an Aj , will be an Ak .

If an individual X is mated with a partner chosen by assigning equal probability to
each of the genetic types, we say it has taken part in a uniform breeding trial.
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We will need a simple case of the concept of posterior probability.

Let (pij) be the matrix of probabilities that the event j will occur given the
condition i. Suppose that each i has equal prior probability.

Then, with a straightforward frequency interpretation, the probability that the
condition was i when the event j has been observed is obtained by normalizing the
entries in column j of the matrix to sum to 1.

Thus the posterior probability of i given the occurrence of j is pij/
∑

s psj . The
ratio of posterior probability to prior probability is the likelihood of the condition
on the evidence of the event.
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We now define the quantities

uk = n−1
∑

πjk , νjk =
πjk∑
j πjk

=
πjk
nuk

, mk =
∑
j

νjkqj .

Thus uk is the probability that the offspring of X is an Ak in a uniform breeding
trial, and νjk is the posterior probability that the mate of X was an Aj , given that
the offspring of a uniform trial is observed to be an Ak .

Further, mk is the corresponding posterior mean or Bayes estimate of the trait Q
for X’s mate, after the observation that the offspring of mating with X in such a
trial is an Ak .

Then tk = nmkuk .
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Interpretation 3

The kth component of the vector arising as the product of an individual vector x
and a general vector q is the product of (i) the ratio of the probability that X will
produce an offspring Ak in a uniform breeding trial to the probability that his
mate is an Ak , and (ii) the Bayes estimate of trait Q for his mate in such a trial,
after the observation that the offspring is an Ak .

We call xq the vector of weighted Bayes estimates of Q.

Note that the average of the n terms obtained by multiplying (i) and (ii) is simply
the mean of the trait for X’s mate.
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Preparation for Interpretation 4: D(xy)=xD(y)+yD(x)

Let X be male and Y female.

(i) D(xy) is the vector of conditional means of the trait D for their offspring given
its mate’s type.

(ii) Suppose that x represents the proportional distribution of genetic types in the
male part of a population. Then Dx is the vector of conditional means for the
male population, or what is equivalent, for an individual randomly selected from it
with each individual having equal probability.

If x is not known, we cannot compute Dx, but Interpretations 2 and 3 together
show that on the basis of a uniform breeding trial with a female Y whose
probability vector y is known it can be estimated by the Bayes estimate yD(x).

If male and female are interchanged, we use xD(y). The sum of these estimates
gives the right hand side of the equation.
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Interpretation 4

Now (i) is a vector of means for an offspring, computed from the probability
vectors of its parents, while (ii) is the sum of vectors of means for the parents,
estimated from observations on the offspring.

For general traits characterized by a matrix R, the two sides will not be equal.

Equality for a particular trait with array of values D reflects, subject to the precise
meanings of the quantities appearing on the two sides of the equation discussed
above, a kind of symmetry in respect of the time direction.

Algebraically this corresponds to a set of relationships between the components of
a matrix D and the constants γijk that define the mechanism of heredity.
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If two traits are such that the arrays of their values give rise to derivations, so do
their weighted sum αD + βG and commutator product [D,G]=DG-GD.

Note that
∑

i

∑
j n
−1xidijgjk is the product moment of the D value of X and the

G value of his mate, if she were to mate with an Ak in a uniform breeding trial.

Interpretation 5

The ( i, k )th element of the commutator product [D,G] is n times the difference
between the product moment of the D value of Ai with the conditional G value of
his mate, and that of the G value of Ak with the conditional D value of his mate,
in a uniform breeding trial.

Conclusion
The matrix of conditional trait values is a derivation in those cases where there is
a certain relation between the outcome of a generation of random mating and the
estimates obtained from a uniform trial. The closure of the derivation algebra
with respect to commutator multiplication implies that it contains “higher order”
traits which relate to the interaction, in a statistical sense, between the traits of
an individual and those of his mate.
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(Ref. for pp.88-90: Bingham, N. H. Obituary: Philip Holgate (1934-1993). Bull.
London Math. Soc. 32 (2000), no. 4, 484-492)

Although Mendel’s work on genetics dates back to 1865, it came to widespread
attention only in 1900.

One of the earliest mathematical results on Mendelian genetics was the
Hardy-Weinberg law of 1908, showing that under broad conditions, the stationary
distribution of genotypes is achieved in one generation of random mating.

This work was taken further by the great Russian probabilist S. N. Bernstein
(1880-1968) in 1922, leading to the Bernstein stationarity principle.

Our genetic inheritance comes to us symmetrically from our two parents (apart
from sex-linked characteristics and aspects such as mitochondrial DNA), so the
operation of multiplication in a genetic algebra is symmetric.

It is not, however, associative: complete information about who has mated with
whom in a family tree is crucially relevant, and thus all brackets need to be
retained.
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Non-associative algebras in general lack enough structure to be mathematically
tractable, and one needs additional structural properties to be able to make
progress.

The two best-known types of non-associative algebras are Lie algebras (dating
from work of Sophus Lie in the 1870s and Jordan algebras, which date from work
of P. Jordan on quantum mechanics in 1933.

After Bernstein, and J. B. S. Haldane in 1930, the next serious attempt to study
mathematical genetics via non-associative algebras was made by I. M. H.
Etherington in 1939, and later work up to 1951. Subsequent workers included R.
D. Shafer in 1949, and H. Gonshor in 1960.

There resulted a number of classes of non-associative algebras with genetic
significance, including (in increasing order of generality) ‘special train algebras’
(Etherington), genetic algebras (Shafer, Gonshor), ‘train algebras’, baric algebras,
and algebras with genetic realisation.
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To one side of this chain of inclusions, and motivated by Bernstein’s stationarity
principle, are Bernstein algebras.

The study of these classes of algebras, and their genetic significance, has
developed into an important area. One of P. Holgate’s key contributions was to
give a characterisation of Schafer’s genetic algebras alternative to the original one.

Schafer’s approach was algebraically motivated, and its genetic significance was
not transparent; Holgate gave an approach which made the genetic meaning clear.

The operations of genetics, involving the mating of two parents, are naturally
quadratic. However, Haldane showed in 1930 that the methods of linear algebra
can sometimes still be used.

“After R. D. Shafer’s seminal paper of 1949, all the best new ideas on the subject
have been introduced either by Professor Holgate himself, or by his disciples.”
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(Ref. for pp. 91-96: Costa, R. On the derivations of gametic algebras for
polyploidy with multiple alleles. Bol. Soc. Brasil. Mat. 13 (1982), no. 2, 69-81)

A genetic algebra is a commutative algebra for which there exists a basis
C0,C1, . . . ,Cn, with a multiplication table satisfying the following conditions: If
CiCj =

∑n+1
k=0 λijkCk then:

I 1. λ000 = 0 2. λ0jk = 0 if k < j

I 3. For i > 0, j > 0, λijk = 0 if k ≤ max{i , j}
Any basis of A, satisfying conditions 1,2,3 is called a canonical basis of A.

Let us indicate by G(n + 1, 2m) the gametic algebra of a 2m-ploid population
with n + 1 alleles, which we shall denote here by A0,A1, . . . ,An.

This algebra has a natural basis consisting of all monomials of degree m in the
”variables” A0,A1, . . . ,An. Each one of these monomials represents one of the
gametic types of the population. The dimension of G(n+ 1,2m) is (n + m)!/m!n!.

The multiplication of two of these monomials is an algebraic representation of the
distribution of gametic types obtained by the mating of the gametic types
corresponding to the given monomials.
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Of special importance in genetics are the algebras G(n + 1, 2) and G(2, 2m).
They correspond to multiallelism and polyploidy respectively.

The algebras G(n + 1, 2) describe the gametic population of a diploid and
multiallelic population. The natural basis of G(n + 1, 2) is the set of monomials
of degree 1, namely A0,A1, . . . ,An.

The multiplication table is AiAj = 1/2Ai + 1/2Aj , which reads genetically as ”the
gametes produced by a zygote resulting from the mating of gametes Ai and Aj

will be Ai and Aj with equal probability”.

One canonical basis is defined by C0 = A0,Ci = A0 − Ai (i > 1) and now the
multiplication table is C 2

0 = C0,C0Ci = 1/2Ci ,CiCj = 0 if i ≥ 1, j ≥ 1.

The weight function w of G(n + 1, 2) is given by w(C0) = 1,w(Ci ) = 0(i > 1) or
by w(Ai ) = 1(i = 0, 1, . . . , n)

Bernard Russo (UCI) EVOLUTION ALGEBRA 92 / 106



It is well known that G(n + 1, 2) satisfies the polynomial equation x2 = w(x)x for
every x in G(n + 1, 2). This identity may be linearized to give the two variables
identity 2xy = w(x)y + w(y)x.

Theorem
Let A be a baric algebra having a unique weight function w. For every derivation
d of A we have w(d(x))=0 for every element x of A.

Corollary

Let A be a baric algebra of dimension n + 1 with unique weight homomorphism.
Then the dimension of the derivation algebra of A is not greater than n(n + 1). In
particular for every genetic algebra of dimension n + 1, its derivation algebra has
dimension not greater than n(n + 1).

Proposition

The derivations of G(n + 1,2) are exactly those linear mappings d such that
w(d(x))=0 for all x.
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Proposition

Let A0,A1, . . . ,An be the natural basis of G(n + 1, 2) and let Dij (i 6= j) be
defined by Dij(Ak) = Ai − Aj if k = i and zero otherwise. Then the elements Dij

(i 6= j) form a basis of the derivation algebra of G(n + 1, 2).

Theorem
Let A be a commutative baric algebra of dimension n + 1, with weight function
w. Suppose that every linear mapping d on A such that w(d(x))=0 for every x, is
a derivation of A. Then A is (isomorphic to) G(n + l, 2).
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The algebras G(2,2m) describe the gametic population corresponding to a
2m-ploid and diallelic population.

The natural basis of G(2, 2m) is the set of monomials of degree m in the two
variables A0 and A1. They are Am

0 ,A
m−1
0 A1, . . . ,A0A

m−1
1 ,Am

1 so the dimension of
G(2, 2m) is m + 1.

The product of two of such monomials is given by

(Ai
0A

m−i
1 )(Aj

0A
m−j
1 ) =

(
2m
m

)−1∑m
k=0

(
i+j
k

)(
2m−i−j
m−k

)
Ak
0A

m−k
1 which is an algebraic

way of expressing the distribution of probability for the gametes produced by the
zygote obtained by mating the gametes Ai

0A
m−i
1 and Aj

0A
m−j
1 .

A canonical basis for G(2, 2m) is the set of monomials
Ai
0(A0 − A1)m−i , (0 ≤ i ≤ m), with multiplication given by

[Ai
0(A0 − A1)m−i ][Aj

0(A0 − A1)m−j ] =
(
2m
m

)−1(i+j
m

)
Ai+j−m
0 (A0 − A1)2m−i−j if

i + j ≥ m and zero otherwise. If we call
Am
0 = c0,A

m−1
0 (A0 − A1) = c1, . . . , (A0 − A1)m = cm then we have

cicj =
(
2m
i+j

)−1( m
i+j

)
ci+j if i + j ≤ m and zero otherwise.

Bernard Russo (UCI) EVOLUTION ALGEBRA 95 / 106



We construct a derivation δ of G(2, 2m) by defining δ to be the linear mapping
δ(ci ) = ici , (i = 0, 1, . . . ,m). It is easy to verify that δ is indeed a derivation.

A second derivation η is defined in the following way: η(ci ) = ti+1

ti−ti+1
ci+1 for

0 ≤ i ≤ m − 1 and η(cm) = 0, where ti =
(
2m
i

)−1(m
i

)
are the “train roots” of

G(2,2m). We have 1 = t0 > t1 = 1/2 > t2 > · · · > tm. It is not so easy to see
that η is a derivation.

Theorem

Every derivation d of G(2, 2m) is a linear combination of δ and η.

Corollary

For any m > 1, the derivation algebra of G(2, 2m) is isomorphic to the non
abelian Lie algebra of dimension 2.

Theorem

The derivation algebra of G(n+1,2m) has dimension n(n+1).
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March 3—Derivations on Evolution and Bernstein algebras
(Ref. for pp.97-98: Camacho, L. M.; Gomez, J. R.; Omirov, B. A.; Turdibaev, R.
M. The derivations of some evolution algebras. Linear Multilinear Algebra 61
(2013), no. 3, 309-322)

The concept of evolution algebras lies between algebras and dynamical systems. In
fact, evolution algebras are closely related with graph theory, group theory,
stochastic processes, mathematical physics, genetics etc.

Let E be a finite dimensional evolution algebra with natural basis e1, . . . , en. Then
by definition, ei · ei =

∑n
j=1 aijej with all other products zero. The matrix

A = (aij) is called the matrix of the algebra E in the natural basis e1, . . . , en.

Let d be a derivation on the evolution algebra E with natural basis e1, . . . , en and
d(ei ) =

∑
j dijej Then the space of derivations for the evolution algebra E is

described as follows. It is the set of those linear operators d such that

akjdij + akidij = 0, for i 6= j ; and 2ajidii =
∑
k

akidjk .

Bernard Russo (UCI) EVOLUTION ALGEBRA 97 / 106



Theorem
Let d be a derivation on the evolution algebra E of dimension n with non-singular
evolution matrix A, i.e. rank of A is n. Then this derivation d is zero.

Theorem
Let d be a derivation on the evolution algebra E of dimension n with evolution
matrix A having rank n − 1. Then this derivation d is zero or it has a matrix of
the explicit form D1, . . . ,D5.

The matrices D1, . . . ,D5 are described explicitly in the paper.
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(Ref. for pp.99-101: Alcalde, M. T.; Burgueno, C.; Labra, A.; Micali, A. Sur les
algebres de Bernstein. (French) [On Bernstein algebras] Proc. London Math. Soc.
(3) 58 (1989), no. 1, 51-68)

A baric algebra (A, ω) is a Bernstein algebra if (x2)2 = ω(x)2x2

There is a non-zero idempotent e of A with A = Re ⊕ kerω

Theorem
The ideal kerω decomposes into the direct sum kerω = U ⊕ V , where

I For x in U, ex = x/2

I For x in V , ex = 0

I For x , y , z in U, (xy)z + (yz)x + (zx)y = 0

I For x , y in U and z in V , x(yz) + y(xz) = 0

I For x , y , z in kerω and t in A, (xy)(zt) + (xz)(yt) + (xt)(yz) = 0

I U2 ⊂ V , UV ⊂ U, V 2 ⊂ U, UV 2 = 0
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Theorem
Every derivation d on A is described as follows. There are linear transformations
fd of U and gd of V such that

I d(e) belongs to U

I For x in U, d(x) = fd(x) + 2xd(e)

I For x in V, d(x) = −2xd(e) + gd(x)

I For x,y in U, gd(xy) = xfd(y) + fd(x)y

I For x in U and y in V, fd(xy) = xgd(y) + fd(x)y + 2(xd(e))y

I For x,y in V, fd(xy) = xgd(y) + gd(x)y − 2(xd(e))y − 2x(yd(e))

I For derivations d and d ′, f[d,d′] = [fd , fd′ ] and g[d,d′] = [gd , gd′ ]

Corollary

If (A, ω) is a Bernstein algebra, then ω(d(x)) = 0 for every x in A.
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Definition

A Bernstein algebra is said to be of type (r+1,d) if r is the dimension of U and s
the dimension of V. Thus r+s+1 is the dimension of A.

Theorem
Let A be a Bernstein algebra of dimension n+1.

I If A is of type (n+1,0), then Der(A) = Rn ×s.d. Mn(R)

I If A is of type (1,n), then Der(A) = Mn(R)

I Type (1,2): Der(A) = M2(R)

I Type (2,1), UV + V 2 = 0,U2 = 0: Der(A) is of dimension 3, solvable, not
nilpotent and not semisimple

I Type (2,1), UV + V 2 = 0 dimension of U2 is 1: Der(A) is of dimension 2,
solvable, not nilpotent and not semisimple

I Type (2,1), U2 = 0 dimension of UV + V 2 is 1: Der(A) is of dimension 1,
nilpotent and not semisimple; or of dimension 2, solvable and not nilpotent
and not semisimple; or Der(A) = R

I Type (3,0): Der(A) = R2 ×s.d. M2(R), not nilpotent and not semisimple
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March 10—Three Proofs

Theorem, p.93

Let A be a baric algebra having a unique weight function w. For every derivation
D of A we have w(D(x))=0 for every element x of A.

Proof
For each real number t, define a linear transformation σt by

σt = I + tD + t2D2/2! + t3D3/3! + · · ·+ tnDn/n! + · · · .

One can show that σt is a homomorphism, that is, besides
σt(x + y) = σt(x) + σt(y) we also have σt(xy) = σt(x)σt(y). Define another
weight function w ′ by the rule w ′(x) = w(σt(x)). Since we are assuming that our
algebra has only one weight function, we must have w(x) = w ′(x) for every x, so
that w(σt(x)) = w(x) for every x. If we now differentiate with respect to t, we
obtain dσt/dt = D + tD2 + t2D3/2 + t3D4/3! + · · · so that
0 = d(w(x))/dt = w(dσt/dt) = w(D(x)) + tw(D2(x)) + · · · . By setting t = 0
you arrive at the desired conclusion, namely w(D(x)) = 0.

Q.E.D.
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Proposition, p.93

The derivations of G(n + 1,2) are exactly those linear mappings D such that
w(D(x))=0 for all x.

Proof

First of all, by the Theorem on p.93, we know that each derivation D of G(n+1,2)
satisfies w(D(x)) = 0 for every x.

Conversely let us suppose that D is a linear transformation which satisfies
w(D(x)) = 0 for every x and proceed to show that D is a derivation.

It is known that the equation x2 = w(x)x holds for every x in G(n+1,2). By
replacing x by x+y and canceling some quantities, we obtain
2xy = w(x)y + w(y)x .
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We can now show that D is a derivation as follows.

2D(xy) = D(2xy)

= D(w(x)y + w(y)x)

= w(x)D(y) + w(y)D(x).

By our assumption we know that xw(D(y)) + yw(D(x)) = 0 and if we add this
latter equation to the previous one and rearrange terms, we obtain

2D(xy) = D(2xy) = D(w(x)y + w(y)x)

= w(x)D(y) + w(y)D(x) + xw(D(y)) + yw(D(x))

= w(x)D(y) + xw(D(y)) + w(y)D(x) + yw(D(x))

= 2xD(y) + 2yD(x),

which shows that D is a derivation.

Q.E.D.
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Proposition, p.94

Let A0,A1, . . . ,An be the natural basis of G(n + 1, 2) and let Dij (i 6= j) be
defined by Dij(Ak) = Ai − Aj if k = i and zero otherwise. Then the elements Dij

(i 6= j) form a basis of the derivation algebra of G(n + 1, 2).

Proof
I am only going to verify that each Dij is a derivation. We need to prove that for
every i,j,p,q, we have

Dij(ApAq) = ApDijAq) + AqDij(Ap) (5)

The left side of (5) is

Dij(ApAq) = Dij(
1

2
Ap +

1

2
Aq) =

1

2
Dij(Ap) +

1

2
Dij(Aq) (6)

There are three cases to consider.
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Case 1: p = i , q 6= i

Left side =
1

2
(Ai − Aj) +

1

2
· 0 =

1

2
(Ai − Aj)

Right side =
1

2
Aq +

1

2
Ai −

1

2
Aq −

1

2
Aj =

1

2
(Ai − Aj)

Case 2: p = i , q = i

Left side =
1

2
(Ai − Aj) +

1

2
(Ai − Aj) = Ai − Aj

Right side = Ai (Ai − Aj) + Ai (Ai − Aj)

= Ai −
1

2
Ai −

1

2
Aj + Ai −

1

2
Ai −

1

2
Aj

= Ai − Aj

Case 3: p 6= i , q 6= i

Left side = 0+0; Right side =0+0

Q.E.D.
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