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Sets of Mutually Orthogonal 
Sudoku Latin Squares 
Ryan M. Pedersen and Timothy L Vis 
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Timothy Vis (Timothy.Vis@ucdenver.edu) has a B.A. in 
mathematics from Dordt College and an M.S. in applied 
mathematics from the University of Colorado Denver, 
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interests lie in finite projective geometry, and until recently, 
he could often be seen hunched over pages covered in 
zeros and ones. When he isn't doing math, he tends to the 

technological aspects of his wife's artwork as her 

photographer and webmaster. 

In recent years, the number puzzle Sudoku has gained great popularity. A solution to 
the puzzle is obtained by filling in a 9 x 9 grid, tiled by nine 3x3 blocks, so that 
each of nine symbols appears exactly once in each row, column, and 3x3 block. As a 
Latin square of order n is an n x n grid filled with n symbols (which we can think of 
as {1, 2,..., rc}) so that each symbol appears exactly once in each row and column, a 

solution to a Sudoku puzzle presents an example of a Latin square. Since Latin squares 
have been extensively studied and have far-reaching applications, it makes sense that 
Sudoku has aroused interest among mathematicians with a view towards extending 
results about Latin squares to Sudoku solutions. Some related results were obtained 

independently from this article and appear in [1] and [4]. 
Some of the most basic results concerning Latin squares concern orthogonality of 

Latin squares. Two Latin squares of the same order are called orthogonal if when one 

of the Latin squares is superimposed onto the other, the n2 ordered pairs obtained are 

all distinct. 
In [3, p. 268], Golomb asked "Is it possible for two Sudoku solutions to form a pair 

of orthogonal Latin squares?" The answer is 'yes' (as confirmed by [1] and [4]), but a 

simple yes only piques our curiosity. We ask: How many mutually orthogonal Sudoku 
solutions can we hope to get? How many mutually orthogonal Sudoku solutions can 
we actually get? What about other orders? 
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The generalization 
The question "What about other orders?" is easiest, so we address it first. There is noth 

ing particularly special about the number nine where Sudoku puzzles are concerned? 
there is no reason we could not ask for a solution that fills a 4 x 4 grid tiled by four 
2x2 blocks with four symbols so that each appears exactly once in each row, column, 
and 2x2 block. In fact, the only significant thing that sets a Sudoku puzzle apart from 
another Latin square is that it is of square order (say k2), and is tiled by k x k blocks 
such that each of the k2 symbols appears exactly once in each of the k x k blocks. 
From this point on, then, we call any Latin square of order k2 satisfying this condi 
tion a Sudoku Latin square. For ease of reference, we say that a particular k x k block 

tiling a Latin square of order k2 has Property S if and only if it contains each of the k2 

symbols exactly once. 

Having generalized the Sudoku concept, we now turn to the question of how many 

mutually orthogonal Sudoku Latin squares of order k2 we can hope to get. Since inde 

pendently relabeling the symbols in each of the Sudoku Latin squares clearly cannot 
alter the Sudoku property of any of the squares or the orthogonality relation of any 
pair of squares, we can assume that all squares in a set of mutually orthogonal Sudoku 
Latin squares (MOSLS) have the first k2 positive integers in order as the entries in the 
first row. That is, we may assume that all squares are in standard form [5, p. 96]. 

An upper bound 
Let us try to form an upper bound on the number of MOSLS of order k2. Assume all 

squares are in standard form and consider the possible (2, 1) entries in each (see the * 

in Figure 1.) 

Figure 1. Standard form, top rows. 

Notice that this entry is in the upper left block, and the first k positive integers 
appear in this block in the first row. Notice further that if two Sudoku Latin squares in 
standard form contain j as this entry, the ordered pairs of (1, j) and (2, 1) entries are 
both (j, j), so that the squares are not orthogonal. Thus, each square contains a distinct 

(2, 1) entry and only k2 ? k distinct entries are possible. This gives us an upper bound 
of k2 ? k on the number of MOSLS of order k2. 

Prime power construction 

The simplest example of a set of orthogonal Sudoku Latin squares would be a set of 
order 22 or four. We have seen that we can have at most 2 (= 22 - 2) orthogonal 4x4 
Sudoku Latin squares. If we play around with some Sudoku Latin squares of order four 
we might come across the pair of orthogonal squares in Figure 2. We notice that each 
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of these squares is a row permutation of the Cayley table of the elementary Abelian 

group of order four, which is also the addition table for the finite field of order four. 
This small example leads us to the suspicion that as with many other combinatorial 
structures, the existence of a finite field will allow us to construct a set of Sudoku 
Latin squares of maximum size. 

Figure 2. 

So let k be a prime power; let K be the finite field of order k2\ and let F be the 
subfield of K of order k. Since the additive group of F is then a subgroup of the 
additive group of K, K partitions into k additive cosets of F. We label these cosets 
as P, , where 0 < / < k ? 1 and choose a representative c{ for each coset. Finally, for 
each pair (/, j), we let the Latin square Btj be the addition table of F on the symbols 
of Pm, where cm + F = (c, +Cj) + F. Then we can write the addition table for K in 
such a way that it is tiled with the Latin squares Btj as shown in Figure 3. 

+ 

Po 

Pi 

Pi 

Po 

#0,0 

#i,o 

#2,0 

Pi 

#0,1 

B 1,1 

#2,1 

Pk-\ #fc-i,o Bk-\,\ Bk-\,2 

Pi 

#0,2 

#1,2 

#2,2 

Pk-l 

#0,fc-l 

#U-1 

#2,*-l 

#fc-U-l 

Figure 3. 

Naturally, removing the border from this addition table yields a k2 x k2 Latin 

square, which we call A. This Latin square is tiled by k x k blocks, each containing 

symbols from exactly one additive coset of F. Thus, any row of A intersects any k x k 

block in precisely one coset P,. This remains true if we permute the rows of A to ob 

tain another Latin square L with blocks Ex- j and Eu. In fact, if two rows of the block 

Eij contain the elements of the same coset Pn, those same two rows must intersect 

Eij in the elements of the same coset Pm. Thus, we have just proved the following: 

Proposition 1. Suppose L is a Latin square of order k2 obtained by permuting the 

rows of A, where A is defined as above. If two blocks Eiyj and Eifk are in the same row 

of blocks ofL, then Eij has property S if and only if Ei,k has property S. 

So when does a permutation of the rows of A yield blocks with property 5? Well, 
since each row of a block contains precisely the elements from one coset Pt we simply 
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require that each row of the block contain the elements from a different coset, and this 
is easily verified by considering only the elements in the first column of the block. We 
summarize this by saying: 

Proposition 2. A block of the Latin square L defined as above has property S if 
and only if the first column contains exactly one element from each of the additive 
cosets Pi of F. 

Since we now have an easy way of checking whether a block has property 5, we 

have only to determine the appropriate row permutations on A to give orthogonal Su 
doku Latin squares. To accomplish this, we use the following notation: rg denotes the 
row of A whose entry in the first column is g and (g, h) denote the cell in the Latin 

square A whose row begins with g and whose column begins with h. This brings us to 
our first major theorem. 

Theorem 1. For each x e K \ F, the Latin square Lx formed by applying the 

permutation rg -? rg.x to the rows of A has the Sudoku property. Furthermore for 
x\,x2 K\F with x\ x2, LX{ and LX2 are orthogonal. 

Proof We begin by verifying that each square Lx is, in fact, Sudoku. The preceding 
propositions allow us to do this by verifying only that the intersection of each column 
of Lx with each block contains exactly one element from each coset. So let B be a 

block intersecting this first column, and let g and h be distinct elements in this in 
tersection. Now from the construction of Lx, both g x~l and h x~l lie in the same 
additive coset. This implies that the difference g x~x ? h x~x lies in F. But then 

g 
? h F if and only if x~{ e F. Clearly, however, x~l ? F, and thus g and h are 

in different cosets, so that the intersection of the first column with any block contains 

exactly one element from each coset and Lx is Sudoku. 
Now suppose that x\ ̂  x2 and that cells (g\, hx) and (g2, h2) contain the same 

symbol in LX{ and in LX2. As the entry in the cell {gt, hj) in square LXI is given by 
gi xi + hj, we obtain the equations g\ x\ + h\ = g2 x\ -f h2 and g\ x2 + h\ = g2 
x2 + h2, which, by a simple subtraction of one from the other yields g\ (x\ 

? 
x2) = 

g2 (x\ 
? 

x2). With x\ ̂  x2, this implies that gx = g2, and thus h\ = h2. As such, LXx 
and LX2 are orthogonal. 

Since K\M has order k2 ? k, this construction produces a set of MOSLS of max 
imum size, and we have proved the following corollary. 

Corollary. Ifk is a prime power, there exists a set ofk2 
? k MOSLS. 

Direct product construction 

So we can, in fact, obtain a set of MOSLS with the maximum number of elements 
under certain conditions. But what if k is not a prime power? Certainly intuition would 
tell us not to expect to find a set of maximum size. On the other hand, intuition might 
also suggest that we can obtain a set of some size. In fact, being familiar with Mac 
Neish's conjecture and his associated construction (see, for example, [5, pp. 97-102]), 
we might suspect exactly how large a set we can expect to find. Unlike MacNeish, 
however, we make no conjecture that these sets are the largest possible. 

MacNeish's construction proceeds in two steps: constructing sets of MOLS of max 
imum size where the order is a prime power, and joining these together to create sets 
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of mutually orthogonal Latin squares (MOLS) where the order is not a prime power. 
Since we have already constructed sets of MOSLS of maximum size where the order 
is a prime power, this suggests that we should attempt to join these together to create 
sets of MOSLS where the order is not a prime power. In fact, we are able to do this by 
tweaking the direct product technique used to construct MOLS. 

In order to ease the necessary notation and maintain intuition, we introduce quasi 
groups for this purpose. A quasigroup is simply some set S together with an opera 
tion such that removing the border from the Cayley table gives us a Latin square on 
the elements of S. Every Latin square gives rise to a quasigroup (simply by adding 
a border), and every quasigroup gives rise to a Latin square (by removing the bor 

der). Two quasigroups are orthogonal whenever their associated Latin squares are 

orthogonal. 
We first quote the following well known result regarding direct products (see, for 

example [2, p. 427]: 

Lemma 1. Let (G, -i) and (G,-2), (H, -3) and (H, -4) be pairs of orthogonal 
quasigroups, and define operations -13 and -2,4 on the set G x H by (a,b) -i>3 
(c, d) = (a -i c, b -3 d) and (a, b) -2,4 (c, d) = (a >2 c, b -4 d). Then (G x H, -u) 
and (G x H, -2,4) are orthogonal quasigroups. 

Now if we form the Cayley tables for these quasigroups and remove the border, 
we obtain a pair of orthogonal Latin squares, a fact that follows directly from the 
definitions of orthogonality for both quasigroups and Latin squares. As such, if we 

wish to create MOSLS using a direct product, we need only concern ourselves with 
the Sudoku property. 

So assume we have orthogonal Sudoku Latin squares A and A' using the sym 
bols from the set G = {1, 2,..., m2}, and B and B' using the symbols from the set 
H = {1, 2,..., n2}. We define quasigroups (G, M), (G, (H, -B), and (H, by 
a-xb = Xa,b where X = A, A', B, or B'. 

If we define quasigroups (G x H,'a,b) and (G x H, -af,bf) by (a, b) -x,y (c, d) = 

(a -x c,b -Y d), then lemma 1 tells us that in order to obtain a pair of orthogonal Sudoku 
Latin squares, we need only find an ordering of the elements of G x H so that the 

resulting Latin squares are, in fact, Sudoku. 
We are able to do this with relative ease. In fact, the blocks of the square C derived 

from the quasigroups (G x H, -A B) art obtained as ordered pairs of a block of A and 
a block of B. 

More precisely, the arrangement of blocks sets up a partition {Pt} of G into m sets of 
m elements each, where each set Pt consists of the integers from (/ 

? 
l)m + 1 through 

im. So two elements of G are in the same partition element P,- if and only if the rows 

(or columns) of A corresponding to x and y intersect the same m x m blocks of A. In 

particular, any block of the Sudoku Latin square is determined uniquely by a pair of 

partition elements and conversely (see Figure 4). Similarly, the arrangement of blocks 

in B sets up a partition {<2, } of H into n sets of n elements each, where each set Q{ 
consists of the integers from (/ 

? 
l)m + 1 through im. 

These partitions on G and H generate a partition {P, } x {?}, } on the elements of 

G x H having mn sets of mn elements each. 

Finally, to obtain the most likely candidate for a Sudoku Latin square of order 

(mn)2, we order the elements of G x H so that the elements of each partition ele 
ment Pi x Qj are consecutive. We use this ordering in constructing the Cayley table 

for the quasigroup (G x H, -a,b)- When we remove the border, the mn x mn blocks 

that tile the resulting Latin square C are again determined by a pair of partition ele 
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Pk x Qi 

Pi x Qj 

Figure 4. Figure 5. 

merits, and vice versa (see Figure 5). Since this ordering is independent of A and B, 
all that remains is to show that C is Sudoku. 

But this can be accomplished by simply showing that an arbitrary block, determined 

by an arbitrary pair of partition elements (P( x Qj determining the rows and Pk x Q{ 
determining the columns) has property S. Now any entry in this block takes the form 

(a, b) 'a,b (c, d), with a e Pi, b e Qj, c e Pk, and d e Q{. So let ax and a2 be in 

Pi, b\ and b2 be in Qj, cx and c2 be in Pk, and d\ and d2 be in Qt and suppose that 

{a\,b\) 'a,b (c\,dx) = (a2, b2) 'a,b (c2, d2). Then ax -A c\ = a2 -A c2, and since A is 

Sudoku, ax = a2 and cx = c2. Similarly, b\ -B d\ = b2 -B d2, and since B is Sudoku, 
b\ = b2 and d\ ? d2. Thus, all elements in this block are distinct and this block has 

property S. We have then just proved the following proposition. 

Proposition 3. Any Latin square constructed by this modification of MacNeish's 
method is Sudoku. 

By extension, and using more than just a pair of MOSLS of each order, we obtain 
the following: 

Corollary. If there exist r MOSLS of order m2 and s MOSLS of order n2, then there 
are at least min{r, s} MOSLS of order (mn)2. 

Proof To see this let t = min{r, s}. Take t MOSLS of order m2 and t MOSLS of 
order n2 and employ the direct product construction just given. A total of t Sudoku 
Latin squares are created and are pairwise orthogonal. That is, there exists a set of / 
MOSLS of order (mn)2. 

As this construction has given us the tools to construct sets of MOSLS of larger 
order from sets of MOSLS of smaller order, we are finally able to put everything 
together and see how many MOSLS of a given order we can obtain. 

Theorem 2. Let n = p"1 p22 be the prime factorization for n and let q = 

minf/?"1, p^2,..., plk}. Then there exist at least q2 
? 

q MOSLS of order n2. 

Proof This follows inductively from the preceding corollary and the prime power 
construction. 

As a final result, we note that there is no admissible Sudoku order for which there 
does not exist a pair of MOSLS. 

Corollary. There exist MOSLS of order n2 for every natural number n > 1. 
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Proof. In the proof of the preceding theorem, the lowest possible value of q is 2. 
But 22 ? 2 = 2, so that at least two MOSLS exist for every order greater than one. 

The only value we haven't addressed is n = 1. Up to relabeling, there is clearly only 
one Latin square of order one. On the other hand, this Latin square is self-orthogonal 
and has the Sudoku property. So, can we take two copies of this Latin square and 
claim to have a pair of MOSLS of order one, or do we need distinct squares? You be 
the judge. 

Conclusion 

While our results provide a nice adaptation of the standard techniques for constructing 
MOLS to the construction of MOSLS and establish a lower bound on the maximum 
number of MOSLS of a given order, it seems highly unlikely that these results are 

sharp (with the exception the case of a prime power). Determining the exact number 
of MOSLS of a given order remains to be accomplished. Another question worth ad 

dressing is when an arbitrary Sudoku Latin square has an orthogonal mate. This ques 
tion also suggests the possibility of yet another version of the Sudoku puzzle, wherein 
the participant (presumably one for whom even the most difficult Sudoku puzzles pose 
little challenge) simultaneously fills in a pair of squares in such a way that they remain 

orthogonal. This could offer a very challenging, and yet interesting variation of the 

much-enjoyed puzzle. 
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Puzzling Mechanisms, Part 1: Misleading Mazes 
M. Oskar van Deventer 

Figure L Frying Pan, produced by Pentangle. 

The inspiration for "Misleading Mazes" is the Frying Pan puzzle (see Figure 1). 
This puzzle looks like an ordinary dexterity maze with a single ball. However, it 
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