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ABSTRACT

It is known that a derivation of a genetic algebra has genetic meaning and reflects the
symmetries of the algebra. Some well-known results on Lie groups are used to give a
structure theorem for the derivation algebra of gametic algebra for linked loci.

1. INTRODUCTION

Consider an infinite randomly mating population, not subject to selec-
tion, of diploid individuals which differ in k linked loci. Assume that the
number of possible alleles in the mth locus is r, +1. If U’ and U” are
complementary subsets of K= {1,2,..., k}, we indicate by U= (U",U") =
(U”,U’) the partition of K determined by U’ and U”. For a given U, we
assume that in the zygotes the loci in U’ are considered as one block, the loci
in U” as another block, and recombination occurs between the blocks with
probability A(U). The gametic inheritance for all & loci has been extensively
studied by algebraic methods [1-5]. In this paper, we adopt the approach
given by Heuch [2].

To this genetic model there corresponds the real commutative algebra G
called the gametic algebra for linked loci. A canonical basis for G may be
formally represented by the set of monomials

X.=X, X, (0<i
where i* is the multiindex (i,..., i, ), and the multiplication table is given by

X% =X,  [0*is the multiindex (0,0,...,0)];

. % . " Y
o= (A0 e I 0000 =8
otherwise.
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s(i*) is the set {tr€ K:i,# 0}, and 2A(i*, j*) =LA(U), where the sum is
taken over the collection of all partitions U with s(i*) contained in one of
the sets U’ or U” and s(j*) in the other.

A derivation d of G is a linear map d: G — G verifying d(xy) =d(x)y +
xd(y). The set Der(G) of all derivations is closed under the Lie bracket
[d,d'\=dd’—d'd, and it is a Lie algebra.

Holgate [7] gave an explanation of the genetic meaning of derivations in
genetic algebras. Briefly, if we have a genetically determined trait with array
of values d and d is a derivation, then the above equation verified by d
reflects a kind of symmetry in the time direction.

The purpose of this paper is to determine the derivations of G. This is
done by using Lie group theory.

2. AUTOMORPHISMS

An automorphism of G is a nonsingular linear map y:G — G that
preserves products: ¢(xy) = ¢ (x)¥(y). The collection of all automorphisms
of G is a group, which we indicate by Aut(G).

In this section, we shall get some results about automorphisms that we
shall use to obtain the derivations of G.

Given a k-tuple a=(a,,...,a,), where a,, (1< m<k)isan (r, +1)X
(,, +1) real matrix (a,,,), and multiindices i*, j*, we denote the product
@y, ki, DY @;e . We define the linear map a of G by setting

a(X.)= X appX..
i* =0
Let A(m) (1<m<k) be the affine group of R~ (ie, the set of all
nonsingular matrices a,, with a,,50=1 and a,,,;=0,1< j< ) We desig-
nate by 4 the set of all a with a in the direct product A(1)X --- X A(k).

PROPOSITION

() The map a€ A1)X --- X A(k)»a € A is an isomorphism of groups.
(i) A is a subgroup of Aut(G).

Proof. Statement (i) is clear. In order to prove (ii) it is enough to show
that & preserves products, since z is nonsingular by (i). From [3, p. 37] it
follows that a( X,.) is an idempotent of G and thus @ preserves the product
Xy» Xg». Let p*, g* be multiindices with g* # 0*. To prove that a preserves
X, X», we shall analyze two cases: s(p*)N s(g*) # ¢ and s(p*)Ns(q*) = ¢.
We have

a(X,.)a(X.)= X et XX,

m*, n*=0*
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Since a, = a;,, =0 for any i € s(p*) and j € s(g*), we assume that in
the above sum m*, n* are such that s( p*) C s(m*) and s(g*) C s(n*). When
s(p*)Ns(g*) # ¢, we have s(m*)N s(n*) # ¢ and thus a(X,.)a(X,.) =0=
a(X,.X,.). Now, suppose that s(p*)Ns(g*) =¢. The component of
a(X,.)a(X,.) in the direction of X,., in the case where s(p*)U s(g*) C s(1*),
is [EA(m*, n*)]a. pe o5 the sum is taken over all m*, n* with m*+ n* = r*,
s(m*) N s(n*) =¢, s(p*) cs(m*), and s(g*) C s(n*). As is readily
seen, LA(m*, n*) = A(p*, ¢*), and so the component is equal to
A(P*, q%)ap poi - When s(p*)Us(g*)  s(¢*), this component is zero.
From this, it is now clear that

a(x,.)a(x,.)=a(X,.x,.).

We notice that if 7, # r, for all i, j € K, i # j, we have Aut(G) = 4 and
then Aut(G) is isomorphic to A(1)X --- X A(k). When r,=r, for some
i+ j, it seems that whether 4 is or is not the automorphism group of G
depends on the linkage distribution {A(U)}. We do not give details here,
because these facts are not necessary to prove the main result of the paper.

3. DERIVATIONS

The affine group of R~ is a Lie group, and its Lie algebra is the vector
space L(m)=R~&gl(r,,R) with the Lie bracket [h, h'] = (c8 — '8,
cc’ — ¢’c), where gl(r,,,R) denotes the set of all r,, X r, real matrices, h=
(8,¢), and k' = (&,¢’) (11, p. 192]. On the other hand, it is well known that if
G,,...,G, are Lie groups with Lie algebras L,,..., L, then the Lie algebra
of the direct product G, X --- X G, is the direct product of Lie algebras
L, X «-+ X L, 9, p. 10-9]. Therefore, the Lie algebra of A(1)X --- X A(k)
is L)X -+ X L(k).

From the proposition, we have that the map

aed(1)x - X A(k) > a e Au(G)

is a homomorphism of (abstract) groups; furthermore, since the coordinate
functions of # are polynomials in the indeterminates a,,, ;,  is C*. We may
thus conclude that 8 is a homomorphism of Lie groups. Therefore, the
differential map

d@:L(1) X --- X L( k) = Der(G)

is a homomorphism of Lie algebras (see [10, Theorem 3.14] and recall that
the Lie algebra of the automorphism group of G is its derivation algebra
Der(G) [10, Theorem 3.54]). Hence, given a k-tuple h= (h,,..., h,), where
(h,, ;)€ L(m), d=d8-h is a derivation of G.

mij
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The coordinate function of 8 in the direction of (X, X;.) [ie., the
function that maps the element a of 4(1)X - -+ X A(k) to the coordinate of
a( X.) in the direction of X.] is

¥
a alll'l a

K Jix*
Since this is a polynomial function, it is easy to obtain its partial derivatives,
and then to conclude that

dlp'h:hmtmim if A,1jl .“ijk=Xmlm/Yli1 '.'X,mi,,, ”'ink (lgtmgrm)

(" denotes absence) and dy -k =0 in any other case. Therefore,

T'm

k
d( )(l') = Z Z hmtmi,,,th,,,‘Xi" (1)

m=1t,=1

where X, X denotes X, X, --- Xm, X
It is easy to see that d0 is mJectlve Now, we claim that 48 is onto. Let d

be a derivation of G. We must prove that d is given by (1). Write

d( ‘X:‘) = Z Qs }(t‘ (ar*i' € R) .

*=0*

If w:G — R is the linear form defined by w(Xy.) =1, w(X,.) =0 (r* # 0%),
then wd =0 [6, Theorem 1]. It follows thus that ag.. = 0. Since X. is an
idempotent, we have d( X;.) =2 X;.d( X,.) and so

¥ [1-2A(0%, *)] auge X, = 0.

- 0*

Thus, if #* has at least two nonzero coordinates, we have that a,. = 0, since
2A(0*, 1*) <1 (as noticed in [3, p. 37], we may assume this condition without
loss of generality). Next, assume that the only nonzero coordinate of i* is the
sth. Since d is derivation, we obtain

Y e X.= XO.( Y a.. X,.)

-0 *=0*

k T'm
+ Xr‘( Z Z hmt,,,OXml,,,XO') .

m=11t,=1
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Hence, if ¢* has more than two nonzero coordinates or if t* has exactly two
nonzero coordinates and neither of them is the sth, we have (by the same
argument used above) that a,.. =0. On the other hand, let X,.= Xm,m)?o.
(m#s). If t*= p*+* then

- A(O*, t*)] al‘i‘ = A( P*, i*)hmlm()

and 50 a.;» = h,,, o. Also, from X.d(X.)=0 we get a,... =0, when ¢* has
one nonzero coordinate and it is not the sth. Therefore, d( X..) is given by
(1). Now, we finish the proof of our claim by induction. Assume that d( X.)
has the form (1) for any i* with no more than ¢t —1 nonzero coordinates. Let
i* be a multiindex with ¢ nonzero coordinates, and take nonzero p*, g* such
that p*+ ¢* = i* and s(p*)N s(q*) =¢. Let ¢,, be such that 1 < ¢, < r,. For
m € K with i, # 0 we obtain

)__ A(p*’q*)thm/\A,i* if g,=0,
i 0 if g, #0,

=9

and

. A(p*.q") X, X. if p, =0,
(%, %.) = (p*.q") X, X it pn
" 0 if p,#0.

On the other hand, for m € K with i, =0, we get

X (X, X.) =\(g* n*) X, X.

"‘ll
and
Xp‘( er,,,i;q‘) = A( p*’ m*) thm’{,i‘ ’
where m* (n*) is the sum of ¢* ( p*, respectively) with the multiindex whose
sole nonzero coordinate is the mth and is equal to ¢,,. It is immediate to

verify that A(p*, m*)+ A(q*, n*) =A(p* ¢*). Thus, using again the fact
that d is a derivation, we have

k T'm
K(p*,q*)d(Xi')=Xq.( X X R, )

m=1¢,=1
k

p‘ Z E hm1 q,,, e ‘)
m=1: =1

—>‘(P q*) Z Z h (- m:

m=1y, =1

Therefore, d( X,) is given by (1).
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These considerations can be summarized as follows:

THEOREM

The derivation algebra of G is isomorphic to the direct product of Lie

algebras L(1)X - -+ X L(k).

The derivations of the corresponding zygotic algebra can be easily ob-

tained from (1); see [8].

REFERENCES
1 P. Holgate, The genetic algebra of k linked loci, Proc. London Math. Soc. 18:315-327
(1968).
2 I Heuch, The linear algebra for linked loci with mutation, Math. Biosci. 16:263-271
(1973).
3 I Heuch, Genetic algebras for systems with linked loci, Math. Biosci. 34:34-47
(1977); Erratum, ibid. 37:279 (1977).
4 P. Holgate, Canonical multiplication in the genetic algebra for linked loci, Linear
Algebra Appl. 26:281-286 (1979).
5 P. Fortini and R. Barakat, An algorithm for gene frequency changes for linked
autosomal loci based on genetic algebras, J. Math. Anal. Appl. 83:135-143 (1981).
6 R. Costa, On derivations of gametic algebras for polyploidy with multiple alleles, Bol.
Soc. Brasil. Mat. 13:69~81 (1982).
7 P. Holgate, The interpretation of derivations in genetic algebras, Linear Algebra Appl.
85:75-79 (1987).
8 L. A. Peresi, A note on duplication of algebras, Linear Algebra Appl., to appear.
9 M. Spivak, 4 Comprehensive Introduction to Differential Geometry, Vol. 1, Publish or
Perish Inc., Boston, 1970.
10 F. W. Warner, Foundations of Differentiable Manifolds and Lie Groups, Scott,
Foresman, Glenview, Ill., 1972.
11 P. Malliavin, Geémetrie Différentielle Intrinséque, Herman, Paris, 1975.



