

The Derivation Algebra of Gametic Algebra for Linked Loci

LUIZ A. PERESI

*Instituto de Matemática e Estatística, Universidade de São Paulo,
Caixa Postal 20570, São Paulo, Brazil 01498*

Received 21 October 1986; revised 29 July 1987

ABSTRACT

It is known that a derivation of a genetic algebra has genetic meaning and reflects the symmetries of the algebra. Some well-known results on Lie groups are used to give a structure theorem for the derivation algebra of gametic algebra for linked loci.

1. INTRODUCTION

Consider an infinite randomly mating population, not subject to selection, of diploid individuals which differ in k linked loci. Assume that the number of possible alleles in the m th locus is $r_m + 1$. If U' and U'' are complementary subsets of $K = \{1, 2, \dots, k\}$, we indicate by $U = (U', U'') = (U'', U')$ the partition of K determined by U' and U'' . For a given U , we assume that in the zygotes the loci in U' are considered as one block, the loci in U'' as another block, and recombination occurs between the blocks with probability $\lambda(U)$. The gametic inheritance for all k loci has been extensively studied by algebraic methods [1–5]. In this paper, we adopt the approach given by Heuch [2].

To this genetic model there corresponds the real commutative algebra G called the gametic algebra for linked loci. A canonical basis for G may be formally represented by the set of monomials

$$X_{i^*} \equiv X_{1i_1} \cdots X_{ki_k} \quad (0 \leq i_m \leq r_m, \quad 1 \leq m \leq k),$$

where i^* is the multiindex (i_1, \dots, i_k) , and the multiplication table is given by

$$X_{0^*}^2 = X_{0^*} \quad [0^* \text{ is the multiindex } (0, 0, \dots, 0)];$$
$$X_{i^*} X_{j^*} = \begin{cases} \lambda(i^*, j^*) X_{i^* + j^*} & \text{if } s(i^*) \cap s(j^*) = \emptyset, \\ 0 & \text{otherwise.} \end{cases}$$

$s(i^*)$ is the set $\{t \in K : i_t \neq 0\}$, and $2\lambda(i^*, j^*) = \sum \lambda(U)$, where the sum is taken over the collection of all partitions U with $s(i^*)$ contained in one of the sets U' or U'' and $s(j^*)$ in the other.

A derivation d of G is a linear map $d: G \rightarrow G$ verifying $d(xy) = d(x)y + xd(y)$. The set $\text{Der}(G)$ of all derivations is closed under the Lie bracket $[d, d'] = dd' - d'd$, and it is a Lie algebra.

Holgate [7] gave an explanation of the genetic meaning of derivations in genetic algebras. Briefly, if we have a genetically determined trait with array of values d and d is a derivation, then the above equation verified by d reflects a kind of symmetry in the time direction.

The purpose of this paper is to determine the derivations of G . This is done by using Lie group theory.

2. AUTOMORPHISMS

An automorphism of G is a nonsingular linear map $\psi: G \rightarrow G$ that preserves products: $\psi(xy) = \psi(x)\psi(y)$. The collection of all automorphisms of G is a group, which we indicate by $\text{Aut}(G)$.

In this section, we shall get some results about automorphisms that we shall use to obtain the derivations of G .

Given a k -tuple $a = (a_1, \dots, a_k)$, where a_m ($1 \leq m \leq k$) is an $(r_m + 1) \times (r_m + 1)$ real matrix (a_{mij}) , and multiindices i^*, j^* , we denote the product $a_{1i_1j_1} \cdots a_{ki_kj_k}$ by $a_{i^*j^*}$. We define the linear map \bar{a} of G by setting

$$\bar{a}(X_{j^*}) = \sum_{i^* = 0^*}^{r^*} a_{i^*j^*} X_{i^*}.$$

Let $A(m)$ ($1 \leq m \leq k$) be the affine group of \mathbb{R}^m (i.e., the set of all nonsingular matrices a_m with $a_{m00} = 1$ and $a_{m0j} = 0$, $1 \leq j \leq r_m$). We designate by \bar{A} the set of all \bar{a} with a in the direct product $A(1) \times \cdots \times A(k)$.

PROPOSITION

- (i) *The map $a \in A(1) \times \cdots \times A(k) \rightarrow \bar{a} \in \bar{A}$ is an isomorphism of groups.*
- (ii) *\bar{A} is a subgroup of $\text{Aut}(G)$.*

Proof. Statement (i) is clear. In order to prove (ii) it is enough to show that \bar{a} preserves products, since \bar{a} is nonsingular by (i). From [3, p. 37] it follows that $\bar{a}(X_{0^*})$ is an idempotent of G and thus \bar{a} preserves the product $X_{0^*} X_{0^*}$. Let p^*, q^* be multiindices with $q^* \neq 0^*$. To prove that \bar{a} preserves $X_{p^*} X_{q^*}$, we shall analyze two cases: $s(p^*) \cap s(q^*) \neq \emptyset$ and $s(p^*) \cap s(q^*) = \emptyset$. We have

$$\bar{a}(X_{p^*}) \bar{a}(X_{q^*}) = \sum_{m^*, n^* = 0^*}^{r^*} a_{m^*p^*} a_{n^*p^*} X_{m^*} X_{n^*}.$$

Since $a_{i0p_i} = a_{j0q_j} = 0$ for any $i \in s(p^*)$ and $j \in s(q^*)$, we assume that in the above sum m^*, n^* are such that $s(p^*) \subset s(m^*)$ and $s(q^*) \subset s(n^*)$. When $s(p^*) \cap s(q^*) \neq \phi$, we have $s(m^*) \cap s(n^*) \neq \phi$ and thus $\bar{a}(X_{p^*})\bar{a}(X_{q^*}) = 0 = \bar{a}(X_{p^*}X_{q^*})$. Now, suppose that $s(p^*) \cap s(q^*) = \phi$. The component of $\bar{a}(X_{p^*})\bar{a}(X_{q^*})$ in the direction of X_{t^*} , in the case where $s(p^*) \cup s(q^*) \subset s(t^*)$, is $[\sum \lambda(m^*, n^*)]a_{t^*, p^*+q^*}$; the sum is taken over all m^*, n^* with $m^* + n^* = t^*$, $s(m^*) \cap s(n^*) = \phi$, $s(p^*) \subset s(m^*)$, and $s(q^*) \subset s(n^*)$. As is readily seen, $\sum \lambda(m^*, n^*) = \lambda(p^*, q^*)$, and so the component is equal to $\lambda(p^*, q^*)a_{t^*, p^*+q^*}$. When $s(p^*) \cup s(q^*) \not\subset s(t^*)$, this component is zero. From this, it is now clear that

$$\bar{a}(X_{p^*})\bar{a}(X_{q^*}) = \bar{a}(X_{p^*}X_{q^*}).$$

We notice that if $r_i \neq r_j$ for all $i, j \in K$, $i \neq j$, we have $\text{Aut}(G) = \bar{A}$ and then $\text{Aut}(G)$ is isomorphic to $A(1) \times \cdots \times A(k)$. When $r_i = r_j$ for some $i \neq j$, it seems that whether \bar{A} is or is not the automorphism group of G depends on the linkage distribution $\{\lambda(U)\}$. We do not give details here, because these facts are not necessary to prove the main result of the paper.

3. DERIVATIONS

The affine group of \mathbf{R}^m is a Lie group, and its Lie algebra is the vector space $L(m) \equiv \mathbf{R}^m \oplus \text{gl}(r_m, \mathbf{R})$ with the Lie bracket $[h, h'] = (c\delta' - c'\delta, cc' - c'c)$, where $\text{gl}(r_m, \mathbf{R})$ denotes the set of all $r_m \times r_m$ real matrices, $h = (\delta, c)$, and $h' = (\delta', c')$ [11, p. 192]. On the other hand, it is well known that if G_1, \dots, G_k are Lie groups with Lie algebras L_1, \dots, L_k , then the Lie algebra of the direct product $G_1 \times \cdots \times G_k$ is the direct product of Lie algebras $L_1 \times \cdots \times L_k$ [9, p. 10-9]. Therefore, the Lie algebra of $A(1) \times \cdots \times A(k)$ is $L(1) \times \cdots \times L(k)$.

From the proposition, we have that the map

$$a \in A(1) \times \cdots \times A(k) \xrightarrow{\theta} \bar{a} \in \text{Aut}(G)$$

is a homomorphism of (abstract) groups; furthermore, since the coordinate functions of θ are polynomials in the indeterminates a_{mij} , θ is C^∞ . We may thus conclude that θ is a homomorphism of Lie groups. Therefore, the differential map

$$d\theta: L(1) \times \cdots \times L(k) \rightarrow \text{Der}(G)$$

is a homomorphism of Lie algebras (see [10, Theorem 3.14] and recall that the Lie algebra of the automorphism group of G is its derivation algebra $\text{Der}(G)$ [10, Theorem 3.54]). Hence, given a k -tuple $h = (h_1, \dots, h_k)$, where $(h_{mij}) \in L(m)$, $d = d\theta \cdot h$ is a derivation of G .

The coordinate function of θ in the direction of (X_{i^*}, X_{j^*}) [i.e., the function that maps the element a of $A(1) \times \cdots \times A(k)$ to the coordinate of $\bar{a}(X_{i^*})$ in the direction of X_{j^*}] is

$$a \xrightarrow{\psi} a_{1j_1i_1} \cdots a_{k j_k i_k}.$$

Since this is a polynomial function, it is easy to obtain its partial derivatives, and then to conclude that

$$d\psi \cdot h = h_{mt_mi_m} \quad \text{if } X_{1j_1} \cdots X_{kj_k} = X_{mt_m} X_{1i_1} \cdots \hat{X}_{mi_m} \cdots X_{ki_k} \quad (1 \leq t_m \leq r_m)$$

($\hat{}$ denotes absence) and $d\psi \cdot h = 0$ in any other case. Therefore,

$$d(X_{i^*}) = \sum_{m=1}^k \sum_{t_m=1}^{r_m} h_{mt_mi_m} X_{mt_m} \hat{X}_{i^*}, \quad (1)$$

where $X_{mt_m} \hat{X}_{i^*}$ denotes $X_{mt_m} X_{i_1} \cdots \hat{X}_{mi_m} \cdots X_{ki_k}$.

It is easy to see that $d\theta$ is injective. Now, we claim that $d\theta$ is onto. Let d be a derivation of G . We must prove that d is given by (1). Write

$$d(X_{i^*}) = \sum_{t^*=0^*}^{r^*} \alpha_{t^*i^*} X_{t^*} \quad (\alpha_{t^*i^*} \in \mathbb{R}).$$

If $\omega: G \rightarrow \mathbb{R}$ is the linear form defined by $\omega(X_{0^*}) = 1$, $\omega(X_{t^*}) = 0$ ($t^* \neq 0^*$), then $\omega d = 0$ [6, Theorem 1]. It follows thus that $\alpha_{0^*i^*} = 0$. Since X_{0^*} is an idempotent, we have $d(X_{0^*}) = 2X_{0^*}d(X_{0^*})$ and so

$$\sum_{t^*=0^*}^{r^*} [1 - 2\lambda(0^*, t^*)] \alpha_{t^*0^*} X_{t^*} = 0.$$

Thus, if t^* has at least two nonzero coordinates, we have that $\alpha_{t^*} = 0$, since $2\lambda(0^*, t^*) < 1$ (as noticed in [3, p. 37], we may assume this condition without loss of generality). Next, assume that the only nonzero coordinate of t^* is the s th. Since d is derivation, we obtain

$$\begin{aligned} \frac{1}{2} \sum_{t^*=0^*}^{r^*} \alpha_{t^*i^*} X_{t^*} &= X_{0^*} \left(\sum_{t^*=0^*}^{r^*} \alpha_{t^*i^*} X_{t^*} \right) \\ &+ X_{i^*} \left(\sum_{m=1}^k \sum_{t_m=1}^{r_m} h_{mt_mi_m} X_{mt_m} \hat{X}_{0^*} \right). \end{aligned}$$

Hence, if t^* has more than two nonzero coordinates or if t^* has exactly two nonzero coordinates and neither of them is the s th, we have (by the same argument used above) that $\alpha_{t^*i^*} = 0$. On the other hand, let $X_{p^*} = X_{mt_m} \hat{X}_{0^*}$ ($m \neq s$). If $t^* = p^* + i^*$ then

$$[\tfrac{1}{2} - \lambda(0^*, t^*)] \alpha_{t^*i^*} = \lambda(p^*, i^*) h_{mt_m 0}$$

and so $\alpha_{t^*i^*} = h_{mt_m 0}$. Also, from $X_{i^*} d(X_{i^*}) = 0$ we get $\alpha_{t^*i^*} = 0$, when t^* has one nonzero coordinate and it is not the s th. Therefore, $d(X_{i^*})$ is given by (1). Now, we finish the proof of our claim by induction. Assume that $d(X_{i^*})$ has the form (1) for any i^* with no more than $t-1$ nonzero coordinates. Let i^* be a multiindex with t nonzero coordinates, and take nonzero p^*, q^* such that $p^* + q^* = i^*$ and $s(p^*) \cap s(q^*) = \emptyset$. Let t_m be such that $1 \leq t_m \leq r_m$. For $m \in K$ with $i_m \neq 0$ we obtain

$$X_{q^*} (X_{mt_m} \hat{X}_{p^*}) = \begin{cases} \lambda(p^*, q^*) X_{mt_m} \hat{X}_{i^*} & \text{if } q_m = 0, \\ 0 & \text{if } q_m \neq 0, \end{cases}$$

and

$$X_{p^*} (X_{mt_m} \hat{X}_{q^*}) = \begin{cases} \lambda(p^*, q^*) X_{mt_m} \hat{X}_{i^*} & \text{if } p_m = 0, \\ 0 & \text{if } p_m \neq 0. \end{cases}$$

On the other hand, for $m \in K$ with $i_m = 0$, we get

$$X_{q^*} (X_{mt_m} \hat{X}_{p^*}) = \lambda(q^*, n^*) X_{mt_m} \hat{X}_{i^*}$$

and

$$X_{p^*} (X_{mt_m} \hat{X}_{q^*}) = \lambda(p^*, m^*) X_{mt_m} \hat{X}_{i^*},$$

where m^* (n^*) is the sum of q^* (p^* , respectively) with the multiindex whose sole nonzero coordinate is the m th and is equal to t_m . It is immediate to verify that $\lambda(p^*, m^*) + \lambda(q^*, n^*) = \lambda(p^*, q^*)$. Thus, using again the fact that d is a derivation, we have

$$\begin{aligned} \lambda(p^*, q^*) d(X_{i^*}) &= X_{q^*} \left(\sum_{m=1}^k \sum_{t_m=1}^{r_m} h_{mt_m p_m} X_{mt_m} \hat{X}_{p^*} \right) \\ &\quad + X_{p^*} \left(\sum_{m=1}^k \sum_{t_m=1}^{r_m} h_{mt_m q_m} X_{mt_m} \hat{X}_{q^*} \right) \\ &= \lambda(p^*, q^*) \sum_{m=1}^k \sum_{t_m=1}^{r_m} h_{mt_m i_m} X_{mt_m} \hat{X}_{i^*}. \end{aligned}$$

Therefore, $d(X_{i^*})$ is given by (1).

These considerations can be summarized as follows:

THEOREM

The derivation algebra of G is isomorphic to the direct product of Lie algebras $L(1) \times \cdots \times L(k)$.

The derivations of the corresponding zygotic algebra can be easily obtained from (1); see [8].

REFERENCES

- 1 P. Holgate, The genetic algebra of k linked loci, *Proc. London Math. Soc.* 18:315–327 (1968).
- 2 I. Heuch, The linear algebra for linked loci with mutation, *Math. Biosci.* 16:263–271 (1973).
- 3 I. Heuch, Genetic algebras for systems with linked loci, *Math. Biosci.* 34:34–47 (1977); Erratum, *ibid.* 37:279 (1977).
- 4 P. Holgate, Canonical multiplication in the genetic algebra for linked loci, *Linear Algebra Appl.* 26:281–286 (1979).
- 5 P. Fortini and R. Barakat, An algorithm for gene frequency changes for linked autosomal loci based on genetic algebras, *J. Math. Anal. Appl.* 83:135–143 (1981).
- 6 R. Costa, On derivations of gametic algebras for polyploidy with multiple alleles, *Bol. Soc. Brasil. Mat.* 13:69–81 (1982).
- 7 P. Holgate, The interpretation of derivations in genetic algebras, *Linear Algebra Appl.* 85:75–79 (1987).
- 8 L. A. Peresi, A note on duplication of algebras, *Linear Algebra Appl.*, to appear.
- 9 M. Spivak, *A Comprehensive Introduction to Differential Geometry*, Vol. I, Publish or Perish Inc., Boston, 1970.
- 10 F. W. Warner, *Foundations of Differentiable Manifolds and Lie Groups*, Scott, Foresman, Glenview, Ill., 1972.
- 11 P. Malliavin, *Geometrie Différentielle Intrinsèque*, Hermann, Paris, 1975.