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ABSTRACT 

It is known that a derivation of a genetic algebra has genetic meaning and reflects the 

symmetries of the algebra. Some well-known results on Lie groups are used to give a 

structure theorem for the derivation algebra of gametic algebra for linked loci. 

1. INTRODUCTION 

Consider an infinite randomly mating population, not subject to selec- 
tion, of diploid individuals which differ in k linked loci. Assume that the 
number of possible alleles in the mth locus is r,,, +l. If U’ and U” are 
complementary subsets of K = { 1,2,. . . , k }, we indicate by U = (U’, CY’) = 
(ZJ”, U’) the partition of K determined by 17’ and (/“. For a given U, we 
assume that in the zygotes the loci in U’ are considered as one block, the loci 
in U” as another block, and recombination occurs between the blocks with 
probability X(U). The gametic inheritance for all k loci has been extensively 
studied by algebraic methods [l-5]. In this paper, we adopt the approach 
given by Heuch [2]. 

To this genetic model there corresponds the real commutative algebra G 
called the gametic algebra for linked loci. A canonical basis for G may be 
formally represented by the set of monomials 

_y.=xli ...xkik (Ogi,,,dr,, ldmbk), 
L 

where i* is the multiindex (i,, . . . , ik), and the multiplication table is given by 

x,2. = x,. [O*isthemultiindex(O,O,...,O)]; 

x;. xi* = ( A( i*, j*) &+j. if s(i*)ns(j*) =$J, 

0 otherwise. 
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s(i*) is the set {t E K: i, # 0}, and 2h(i*, j*) =xX(U), where the sum is 
taken over the collection of all partitions U with s(i*) contained in one of 
the sets U’ or U” and s(j*) in the other. 

A derivation d of G is a linear map d : G + G verifying d( xy) = d(x) y + 
xd(y). The set Der(G) of all derivations is closed under the Lie bracket 
[d, d’] = dd’- d’d, and it is a Lie algebra. 

Holgate [7] gave an explanation of the genetic meaning of derivations in 
genetic algebras. Briefly, if we have a genetically determined trait with array 
of values d and d is a derivation, then the above equation verified by d 
reflects a kind of symmetry in the time direction. 

The purpose of this paper is to determine the derivations of G. This is 
done by using Lie group theory. 

2. AUTOMORPHISMS 

An automorphism of G is a nonsingular linear map 4 : G + G that 
preserves products: \cl(xy) = 4 (x) Ic, ( y). The collection of all automorphisms 
of G is a group, which we indicate by Aut(G). 

In this section, we shall get some results about automorphisms that we 
shall use to obtain the derivations of G. 

Given a k-tuple a = (a,,..., uk), where u, (l~mfk) is an (rm+l)x 
(rm + 1) real matrix (umij), and multiindices i*, j*, we denote the product 

%j, . . . ukikjk by u~.~.. We define the linear map 5 of G by setting 

a( x,.) = 2 U,*,*&. j* = o* 

Let A(m) (1 Q m < k) be the affine group of Km (i.e., the set of all 
nonsingular matrices u, with u,,,,, =l and u,aj = 0, 1~ j Q rm). We desig- 
nate by i the set of all Z with u in the direct product A(1) X . . . X A(k). 

PROPOSITION 

(i) The map aEA(l)X .f* X A(k) * Z E A- is an isomorphism of groups. 
(ii) x is a subgroup of Aut(G). 

Proof. Statement (i) is clear. In order to prove (ii) it is enough to show 
that 5 preserves products, since 5 is nonsingular by (i). From [3, p. 371 it 
follows that a( Xc.) is an idempotent of G and thus 5 preserves the product 
Xc. Xc.. Let p*, q* be multiindices with q* + O*. To prove that 5 preserves 
Xp, X4., we shall analyze two cases: s( p*) n s( q*) # + and s( p*) fl s( q*) = +. 
We have 

z( x,*)z( x,J = 5 um’p.un.p. x,.x,. . 
m*, n* - 0’ 
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Since aioP, = ajo, = 0 for any i E s(p*) and j E s(q*), we assume that in 
the above sum m:, n* are such that s(p*) c s(m*) and s(q*) c s(n*). When 
~(p*)ns(q*)#~,wehaves(m*)ns(n*)#9andthusa(X,.)a(X,.)=O= 
a( XPSXq.). Now, suppose that s( p*) fl s(q*) = +. The component of 
Z(X,.)Z(X,.) in the direction of X,.,in thecase where s(p*)Us(q*) c s(t*), 

is [CA(m*, n*)la,.,,.+,., . the sum is taken over all rrr*, n* with m* + n* = t*, 
s( WI*) n s( n*) = $, s(p*) c s( PI*), and s(q*) c s(n*). As is readily 
seen, x:X(m*, n*) = X(p*, q*), and so the component is equal to 

h(P*4*)%*,.*+,*. When s( p*)u s(q*) Q s(t*), this component is zero. 
From this, it is now clear that 

a( x,*)ii( x,.) = cq x,*x,*). 

We notice that if c # ‘J for all i, j E K, i # j, we have Aut(G) = A and 
then Aut(G) is isomorphic to A(1) X . . ’ X A(k). When c = ‘J for some 
i # j, it seems that whether x is or is not the automorphism group of G 
depends on the linkage distribution {A(U)}. We do not give details here, 
because these facts are not necessary to prove the main result of the paper. 

3. DERIVATIONS 

The affine group of R’m is a Lie group, and its Lie algebra is the vector 
space L(m) = Rm@gl(r,,R) with the Lie bracket [h, h’] = (cS’- ~‘8, 
cc’ - c’c), where gl( r,,R) denotes the set of all rm x r,,, real matrices, h = 
(6, c), and h’= (S’, c’) 111, p. 1921. On the other hand, it is well known that if 
G t,. . . , G, are Lie groups with Lie algebras L,,. . . , L,, then the Lie algebra 
of the direct product G, X . . . X Gk is the direct product of Lie algebras 
L, x ** . X L, [9, p. 10-91. Therefore, the Lie algebra of A(1) X . . . X A(k) 
is L(l)X .-- XL(k). 

From the proposition, we have that the map 

UEA(l)X .** xA(k) %iEAut(G) 

is a homomorphism of (abstract) groups; furthermore, since the coordinate 
functions of 0 are polynomials in the indeterminates a,,,, 8 is C”. We may 
thus conclude that 6’ is a homomorphism of Lie groups. Therefore, the 
differential map 

d0: L(l)X .** XL(k) +Der(G) 

is a homomorphism of Lie algebras (see [lo, Theorem 3.141 and recall that 
the Lie algebra of the automorphism group of G is its derivation algebra 
Der(G) [lo, Theorem 3.541). Hence, given a k-tuple h = (hi,. . . , hk), where 
(hmii) E L(m), d = de-h is a derivation of G. 
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The coordinate function of 0 in the direction of (Xix,., Xj.) [i.e., the 
function that maps the element a of A(1) X . . . X A(k) to the coordinate of 
Z( X,.) in the direction of X,.] is 

Since this is a polynomial function, it is easy to obtain its partial derivatives, 
and then to conclude that 

(- denotes absence) and dJ, -h = 0 in any other case. Therefore, 

(1) 

where X,,,,,$ denotes Xmt,X,, . . . _f%?,,,i, . . . Xkik. 

It is easy to see that de is injective. Now, we claim that de is onto. Let d 

be a derivation of G. We must prove that d is given by (1). Write 

If w : G + R is the linear form defined by o( X0.) = 1, o( X,.) = 0 (t* f O*), 
then wd = 0 [6, Theorem 11. It follows thus that aoei* = 0. Since X0. is an 
idempotent, we have d( X0.) = 2X,,d( X0,) and SO 

Thus, if t* has at least two nonzero coordinates, we have that a,. = 0, since 
2X(0*, t*) < 1 (as noticed in [3, p. 371, we may assume this condition without 
loss of generality). Next, assume that the only nonzero coordinate of i* is the 
s th. Since d is derivation, we obtain 

r* 
+ c appx,. = x0. 

P-0. 
( typo* %*i* &) 
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Hence, if t* has more than two nonzero coordinates or if t* has exactly two 
nonzero coordinates and neither of them is the sth, we have (by the same 
argument used above) that c+~. = 0. On the other hand, let XP. = Xmf,XO. 
(m + s). If t * = p* + i* then 

[+ -x(0*, t*)] a,*,* = A( p*, i*)h,,_o 

and so (r,ei. = h,,, 0. Also, from X.d( 3.) = 0 we get LY,.~* = 0, when t* has 
one nonzero coorknate and it is not the s th. Therefore, d( Xi*) is given by 
(1). Now, we finish the proof of our claim by induction. Assume that d( X.) 
has the form (1) for any i* with no more than t - 1 nonzero coordinates. Let 
i* be a multiindex with t nonzero coordinates, and take nonzero p*, q* such 
that p* + q* = i* and s( p*) n s( q*) = $L Let t, be such that 1~ t, < r,. For 
m E K with i, f 0 we obtain 

$4 x&P) = 
i  

X(p*,q*)XmtmX8 if q,=O, 
o 

if q,#O, 

and 

x,‘( x2,,.&*) = 
i 

X( p*, q*) X,,,$* if p, = 0, 
o 

if p,fO. 

On the other hand, for m E K with i, = 0, we get 

x,.( Xmrj$*) = A( 4*, n*) X,,,,&* 

and 

XPg( Xm,mXq.) = X(p*, m*> Xm,,%, 

where m* (n*) is the sum of q* (p*, respectively) with the multiindex whose 
sole nonzero coordinate is the mth and is equal to t,. It is immediate to 
verify that X( p*, m*)+ X(q*, n*) = A( p*, q*). Thus, using again the fact 
that d is a derivation, we have 

A( p*, q*)d( 4.) = X4* 5 ? 4,,,m,mX,,,m~p. 
m-l I,=1 

Therefore, d( X;..) is given by (1). 
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These considerations can be summarized as follows: 

THEOREM 

LUIZ A. PERES1 

The derivation algebra of G is isomorphic to the direct product of Lie 
algebras L(l)X . * * X L(k). 

The derivations of the corresponding zygotic algebra can be easily ob- 
tained from (1); see [8]. 
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