A Note on Duplication of Algebras

Luiz A. Peresi
Instituto de Matemática e Estatistica
Universidade de São Paulo
Caixa Postal 20570
São Paulo, Brazil 01498

Submitted by Richard A. Brualdi

Abstract

It is proved that if A is a nonassociative algebra that verifies $A^{2}=A$ and has an idempotent, then A and its duplicate have isomorphic automorphism groups and isomorphic derivation algebras. The result is then applied to the gametic algebra for polyploidy with multiple alleles.

1. PRELIMINARIES

The concept of duplicate of a nonassociative algebra was introduced by Etherington, [1, 2] and it has been used in the study of zygotic populations by algebraic methods (see [4]).

Let K be a commutative ring with a unit element, and A a K-algebra. The duplicate of A consists of the tensor product K-module $A \otimes A$ with the multiplication

$$
(a \otimes b)(c \otimes d)=a b \otimes c d
$$

We shall indicate the duplicate of A by $A \otimes A$ as well. Now, suppose that A is a commutative algebra. The duplicate of A is in general noncommutative. But the quotient algebra $A \otimes A / I$, where I is the ideal of A generated as a submodule by the elements $a \otimes b-b \otimes a(a, b \in A)$, is commutative. $A \otimes A / I$ is called the commutative duplicate of A.

The map $\sum_{i} a_{i} \otimes b_{i} \in A \otimes A \rightarrow \sum_{i} a_{i} b_{i} \in A^{2}$ is K-linear and surjective, and its kernel N is an ideal of annihilators, i.e., for any $x \in A \otimes A$ and $t \in N$, we
have $x t=t x=0$. Then, in the case where $A^{2}=A$, we have that A is isomorphic to $A \otimes A / N$; under this isomorphism, to the element $x=\sum_{i} x_{i}^{\prime} x_{i}^{\prime \prime}$ of A there corresponds the element $\sum_{i} x_{i}^{\prime} \otimes x_{i}^{\prime \prime}+N$, and we shall indicate this fact by writing $x \equiv \Sigma_{i} x_{i}^{\prime} \otimes x_{i}^{\prime \prime}+N$. An analogous result can be obtained for the commutative duplicate of a commutative algebra A such that $A^{2}=A$.

2. AUTOMORPHISMS. DERIVATIONS

Let d be a derivation and ψ be an automorphism of A. The maps

$$
(x, y) \in A \times A \rightarrow d(x) \otimes y+x \otimes d(y) \in A \otimes A
$$

and

$$
(x, y) \in A \times A \rightarrow \psi(x) \otimes \psi(y) \in A \otimes A
$$

are K-bilinear. Thus, the universal property of tensor product yields K-linear operators d_{\otimes} and ψ^{\otimes} of $A \otimes A$ such that
$d_{\otimes}(x \otimes y)=d(x) \otimes y+x \otimes d(y), \quad \psi^{\otimes}(x \otimes y)=\psi(x) \otimes \psi(y) \quad(x, y \in A)$.
An easy calculation shows that d_{\otimes} and ψ^{\otimes} are, respectively, a derivation and an automorphism of $A \otimes A$, and that the maps $d \rightarrow d_{\otimes}$ and $\psi \rightarrow \psi^{\otimes}$ are, respectively, a homomorphism of Lie algebras and a homomorphism of groups. The fact that ψ^{\otimes} is an automorphism was pointed out by Etherington [2, Theorem 4].

Proposition. Assume that $A^{2}=A$. Then, the map

$$
d \in \operatorname{Der}(A) \rightarrow d_{\otimes} \in \operatorname{Der}(A \otimes A) \quad\left[\psi \in \operatorname{Aut}(A) \rightarrow \psi^{\otimes} \in \operatorname{Aut}(A \otimes A)\right]
$$

is an isomorphism if and only if $\bar{d}(N) \subset N[\bar{\psi}(N) \subset N]$ for any derivation \bar{d} [any automorphism $\bar{\psi}$, respectively] of $A \otimes A$.

Proof. As is clear, $\bar{d}(N) \subset N$ for any derivation \bar{d} of $A \otimes A$ is a necessary condition for $d \rightarrow d_{\otimes}$ be an isomorphism. On the other hand, let \bar{d} be a derivation of $A \otimes A$, and assume that $\bar{d}(N) \subset N$. Then, the K-linear operator $d: A \rightarrow A$ defined by $d(x) \equiv \bar{d}\left(\sum_{i} x_{i}^{\prime} \otimes x_{i}^{\prime \prime}\right)+N$ is well defined and it is a
derivation, since
$d(x) y+x d(y) \equiv \bar{d}\left[\left(\sum_{i} x_{i}^{\prime} \otimes x_{i}^{\prime \prime}\right)\left(\sum_{j} y_{j}^{\prime} \otimes y_{j}^{\prime \prime}\right)\right]+N=\bar{d}(x \otimes y)+N \equiv d(x y)$
for any x, y in A. We claim that $\bar{d}=d_{*}$. For any x, y in A, we have

$$
\begin{aligned}
\vec{d}(x \otimes y)+N & \equiv d(x) y+x d(y) \\
& \equiv[d(x) \otimes y+x \otimes d(y)]+N=d_{\otimes}(x \otimes y)+N
\end{aligned}
$$

and so $\bar{d}(x \otimes y)=d_{\otimes}(x \otimes y)+n$ for some $n \in N$. But then writing $\bar{d}\left(x_{i}^{\prime} \otimes x_{i}^{\prime \prime}\right)$ $=d_{\otimes}\left(x_{i}^{\prime} \otimes x_{i}^{\prime \prime}\right)+n_{i}$ and $\bar{d}\left(y_{j}^{\prime} \otimes y_{j}^{\prime \prime}\right)=d_{\otimes}\left(y_{j}^{\prime} \otimes y_{j}^{\prime \prime}\right)+m_{j}\left(n_{i}, m_{j} \in N\right)$, we get
$\bar{d}(x \otimes y)=\sum_{i, j} \bar{d}\left[\left(x_{i}^{\prime} \otimes x_{i}^{\prime \prime}\right)\left(y_{j}^{\prime} \otimes y_{j}^{\prime \prime}\right)\right]$

$$
\begin{aligned}
& =\sum_{i, j}\left\{\left[d_{\otimes}\left(x_{i}^{\prime} \otimes x_{i}^{\prime \prime}\right)+n_{i}\right]\left(y_{j}^{\prime} \otimes y_{j}^{\prime \prime}\right)+\left(x_{i}^{\prime} \otimes x_{i}^{\prime \prime}\right)\left[d_{\otimes}\left(y_{j}^{\prime} \otimes y_{j}^{\prime \prime}\right)+m_{j}\right]\right\} \\
& =d_{\otimes}(x \otimes y)
\end{aligned}
$$

since N is an ideal of annihilators. The assertion is proved. This shows that, if $\bar{d}(N) \subset N$ for any derivation \bar{d} of $A \otimes A$, then the map $d \rightarrow d_{\otimes}$ is surjective. Now, let d be a derivation of A, and suppose that $d_{\otimes}=0$. Then, for any $x \in A$, we have

$$
\begin{aligned}
d(x) & =\sum_{i}\left\{d\left(x_{i}^{\prime}\right) x_{i}^{\prime \prime}+x_{i}^{\prime} d\left(x_{i}^{\prime \prime}\right)\right\} \equiv \sum_{i}\left\{d\left(x_{i}^{\prime}\right) \otimes x_{i}^{\prime \prime}+x_{i}^{\prime} \otimes d\left(x_{i}^{\prime \prime}\right)\right\}+N \\
& =\sum_{i} d_{\otimes}\left(x_{i}^{\prime} \otimes x_{i}^{\prime \prime}\right)+N \equiv 0
\end{aligned}
$$

i.e., $d=0$. Under that condition, the map $d \rightarrow d_{\otimes}$ is thus an isomorphism. The proof of the second part of the proposition is similar.

Corollary. Let A be a nonassociative algebra over a field F. Assume that $A^{2}=A$ and that A has an idempotent e. Then, the maps $d \in \operatorname{Der}(A) \rightarrow$ $d_{\otimes} \in \operatorname{Der}(A \otimes A)$ and $\psi \in \operatorname{Aut}(A) \rightarrow \psi^{\otimes} \in \operatorname{Aut}(A \otimes A)$ are isomorphisms.

Proof. We shall prove that $\bar{d}(n) \in N$, where \bar{d} is a derivation of $A \otimes A$ and $n \in N$. Let $\left\{e, e_{i}\right\}_{i \in P}$ be a basis for A. Then, $\left\{e \otimes e, e \otimes e_{i}, e_{i} \otimes e, e_{i} \otimes\right.$ $\left.e_{j}\right\}_{i, j \in P}$ is a basis for $A \otimes A$. Applying \bar{d} to $n(e \otimes e)$, we obtain that $\bar{d}(n)(e \otimes e)=0$, since N is an ideal of annihilators. But then, if $\bar{d}(n)=\Sigma_{i} x_{i}$ $\otimes y_{i}$ and $\sum_{i} x_{i} y_{i}=\alpha e+\sum_{j} \alpha_{j} e_{j}$, we have $0=\sum_{i} x_{i} y_{i} \otimes e=\alpha e \otimes e+\sum_{j} \alpha_{j} e_{j} \otimes e$; it follows that $\alpha=\alpha_{j}=0(j \in P)$ and so $\sum_{i} x_{i} y_{i}=0$. Therefore, $\bar{d}(n) \in N$. In the same way, we can prove that $\bar{\psi}(N) \subset N$ for any automorphism $\bar{\psi}$ of $A \otimes A$.

As is clear, similar results hold for the commutative duplicate of a commutative algebra.

The condition $A^{2}=A$ in the proposition and in its corollary is essential, as shown by the following

Example. Let $K_{n}(n>1)$ be the real algebra with basis $c_{0}, c_{1}, \ldots, c_{n}$ and multiplication table

$$
c_{0}^{2}=c_{0}, \quad c_{i} c_{j}=0 \quad \text { if }(i, j) \neq(0,0)
$$

Notice that $K_{n}^{2} \neq K_{n}$. For $K_{n}, \bar{d}(N) \subset N$ for any derivation \bar{d} of $K_{n} \otimes K_{n}$, but the map $d \in \operatorname{Der}\left(K_{n}\right) \rightarrow d_{\otimes} \in \operatorname{Der}\left(K_{n} \otimes K_{n}\right)$ is not an isomorphism [5]. As is readily seen, the linear form $\rho: K_{n} \rightarrow \mathbf{R}$, defined by $\rho\left(c_{0}\right)=1, \rho\left(c_{i}\right)=0$ ($1 \leqslant i \leqslant n$), preserves the multiplication of K_{n}, it is the unique nonzero linear form with this property, and for any $x, y \in K_{n}, x y=\rho(x) \rho(y) c_{0}$. If ψ is an automorphism of K_{n}, then $\rho \psi=\rho$ and so $\rho(x) \rho(y)\left[\psi\left(c_{0}\right)-c_{0}\right]=0 \forall x, y \in$ K_{n}; it follows that $\psi\left(c_{0}\right)=c_{0}$. On the other hand, any nonsingular linear operator ψ of K_{n} such that $\psi\left(c_{0}\right)=c_{0}$ is an automorphism. Therefore, the automorphism group of K_{n} is the general linear group $\mathrm{Gl}(n, \mathbf{R})$. The duplicate of K_{n} is isomorphic to $K_{n(n+2)}$, and its automorphism group is then $\mathrm{Gl}(n(n+2), \mathbf{R})$. Thus, for K_{n}, although $\bar{\psi}(N) \subset N$ for any automorphism $\bar{\psi}$ of $K_{n} \otimes K_{n}$, the map $\psi \in \operatorname{Aut}\left(K_{n}\right) \rightarrow \psi^{\otimes} \in \operatorname{Aut}\left(K_{n} \otimes K_{n}\right)$ is not an isomorphism.

3. APPLICATION

Let $G(n+1,2 m)$ be the gametic algebra for a $2 m$-ploid population with $n+1$ alleles. As shown by Gonshor [3], this algebra has a basis consisting of all monomials $X_{0}^{m-p} X_{i_{1}} \cdots X_{i_{p}}$ of degree m in the variables X_{0}, \ldots, X_{n}, and
the multiplication table is given by

$$
\begin{aligned}
& \left(X_{0}^{m-p} X_{i_{1}} \cdots X_{i_{p}}\right)\left(X_{0}^{m-q} X_{j_{1}} \cdots X_{j_{q}}\right) \\
& \quad=\binom{2 m}{p+q}^{-1}\binom{m}{p+q} X_{0}^{m-(p+q)} X_{i_{1}} \cdots X_{i_{p}} X_{j_{1}} \cdots X_{j_{q}} \quad \text { if } \quad p+q \leqslant m
\end{aligned}
$$

the other products are zero. The monomial X_{0}^{m} is an idempotent and $[G(n+1,2 m)]^{2}=G(n+1,2 m)$. The corresponding zygotic algebra $Z(n+$ $1,2 m)$ is the commutative duplicate of $G(n+1,2 m)$.

Theorem.

(i) The automorphism group of $\mathrm{Z}(n+1,2 m)$ is isomorphic to the affine group of \mathbf{R}^{n}.
(ii) The derivation algebra of $\mathrm{Z}(n+1,2 m)$ is isomorphic to the Lie algebra $\mathbf{R}^{\mathbf{n}} \oplus \operatorname{gl}(n, \mathbf{R})$.

Proof. Part (i) follows from our corollary and Corollary 7 of [6]. Part (ii) is a consequence of part (i), since the Lie algebra of the automorphism group of an algebra is its algebra of derivations, and the Lie algebra of the affine group of \mathbf{R}^{n} is $\mathbf{R}^{n} \oplus \operatorname{gl}(n, \mathbf{R})$.

Part (ii) of the preceding theorem was proved by Costa [5] by straightforward calculations on a canonical basis of $Z(n+1,2 m)$.

REFERENCES

1 I. M. H. Etherington, Genetic algebras, Proc. Royal Soc. Edinburgh 59:242-258 (1939).

2 I. M. H. Etherington, Duplication of linear algebras, Proc. Edinburgh Math. Soc. 6:222-230 (1941).
3 H. Gonshor, Special train algebras arising in genetics II, Proc. Edinburgh Math. Soc. (2) 14:333-338 (1965).
4 A. Wörz-Busekros, Algebra in Genetics, Lectures Notes in Biomathematics, No. 36, Springer, 1980.
5 R. Costa, On the derivation algebra of zygotic algebras for polyploidy with multiple alleles, Bol. Soc. Brasil. Mat. 14(1):63-80 (1983).
6 L. A. Peresi, On baric algebras with prescribed automorphisms, Linear Algebra Appl. 78:163-185 (1986).

Received 6 May 1987; final manuscript accepted 22 July 1987

