
ANTI-C*ALGEBRAS

ROBERT PLUTA AND BERNARD RUSSO

Abstract. We introduce a class of Banach algebras that we call anti-C*-algebras. We show that the

normed standard embedding of a C*-ternary ring is the direct sum of a C*-algebra and an anti-C*-
algebra. We prove that C*-ternary rings and anti-C*-algebras are semisimple. We give two new char-

acterizations of C*-ternary rings which are isomorphic to a TRO (ternary ring of operators), providing

answers to a query raised by Zettl in 1983, and we propose some problems for further study.

1. Introduction

One of the results of [15], namely, [15, Prop. 2.7], is not accurately formulated as stated. It is not true
that the normed standard embedding A(M) of a C*-ternary ring M is always a C*-algebra. The corrected
version of Proposition 2.7 in [15] states that A(M) is the direct sum of a C*-algebra (corresponding to
the positive sub-C*-ternary ring M+ of M) and a Banach algebra B (corresponding to the negative sub-
C*-ternary ring M− of M). This is made precise in Theorem 2.7 below. The algebra B is a Banach
algebra with a continuous involution and an approximate identity, and exploring the properties of this
class of algebras is a topic worthy of further study. We embark on that study in this paper by showing,
among other things, that it is semisimple.

This correction affects only the results of [15, Section 4]. The necessary adjustments for [15, Section
4] are provided in detail in section 5 below. All other results of [15] remain valid as stated.

In this paper we shall call the algebra B an anti-C*-algebra, since on the one hand, it is derived from an
anti-TRO in the same way that the linking C*-algebra is derived from a TRO (Definition 2.3). Another
justification is that, although by virtue of the semisimplicity it has a unique complete norm topology, it
cannot be renormed to be a C*-algebra.

In section 2, we introduce the algebra B via a dense *-subalgebra B0 (Proposition 2.2), and in addition
to Theorem 2.7, we give two new characterizations of when a C*-ternary ring is isomorphic to a TRO
(Theorem 2.8). In section 3 we prove the semisimplicity of B (Theorem 3.9). In section 4 we state a
relation between the ideals of a C*-ternary ring and those of its normed standard embedding (Proposi-
tion 4.2), and include a list of questions for further study. In section 5, as noted above, we revisit the
topic of ternary operator categories, indicating the necessary adjustments to [15, Section 4]. An appendix
reviews the construction of the standard embedding of an associative triple system.

Two distinct kinds of associative triple systems are recognized in the literature: those of the first kind
and those of the second kind. The first one has been studied by Lister [10] but their mention here is
solely for the purpose of completeness and will not be exploited. Instead, our attention will be directed
toward examining the latter. An associative triple system of the second kind is defined as a complex
vector space M equipped with a function (x, y, z) 7→ [xyz] from M ×M ×M to M that exhibits linearity
with respect to the outer variables, conjugate-linearity with respect to the middle variable, and satisfies

[[xyz]uv] = [x[uzy]v] = [xy[zuv]]

for all x, y, z, u, v in M .
These systems have been studied by Hestenes [7], Loos [11], Meyberg [12], and others, for example,

[1, 9, 13–15, 19]. Recall that a C*-ternary ring was introduced by Zettl1 in [19] as an associative triple
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system M which is also a complex Banach space for which

‖[x, y, z]‖ ≤ ‖x‖‖y‖‖z‖ and ‖[x, x, x]‖ = ‖x‖3.
In addition, if M is a dual Banach space, it is called a W*-ternary ring.

In what follows, we shall use some notation and some results from [15], making precise references to
[15] when necessary.

2. The normed standard embedding of a C*-ternary ring

We begin by recalling the construction of the linking algebra of a TRO. This will motivate our intro-
duction of an anti-C*-algebra.

Remark 2.1. Let M ⊂ B(H,K) be a ternary ring of operators ([15, Subsection 1.3]), so that M is a
C*-ternary ring with the triple product [xyz] := xy∗z. Then the standard embedding A0(M) of M
is a pre-C*-algebra, which is *-isomorphic to a dense *-subalgebra of the linking C*-algebra AM of M
([15, Example 1.6]). See [15, Subsection 1.2] for the construction of A0(M), denoted there by A(M). (See
the appendix to this paper for a summary of the construction.) In this paper we use A(M) to denote the
normed standard embedding of a C*-ternary ring ([15, Remark 1.4]).

Recall that AM is the closure of[
MM∗ M
M∗ M∗M

]
=

{[∑
i xiy

∗
i z

w∗
∑
j u
∗
jvj

]
: xi, yi, uj , vj , z, w ∈M

}
⊂
[
B(K) B(H,K)
B(K,H) B(H)

]
with (matrix) multiplication[

α z
w∗ β

]
×
[
α′ z′

w′∗ β′

]
=

[
αα′ + zw′∗ αz′ + zβ′

w∗α′ + βw′∗ w∗z′ + ββ′

]
,

and involution

(2.1)

[
α z
w∗ β

]∗
=

[
α∗ w
z∗ β∗

]
,

which is *-isomorphic to A0(M) via the map

(2.2) A0(M) 3
[
`(x, y) z
w r(u, v)

]
7→
[
xy∗ z
w∗ u∗v

]
∈ AM .

We have the following companion result, which is fundamental in this paper, and whose proof is
straightforward, and hence omitted.

Proposition 2.2. Let M ⊂ B(H,K) be an anti-TRO, that is, as a set, M is equal to a sub-TRO of
B(H,K), and it is considered as a C*-ternary ring with the triple product [xyz] := −xy∗z. Then the
standard embedding A0(M) is *-isomorphic to the *-algebra

B0 =

{[∑
i xiy

∗
i z

w∗
∑
j u
∗
jvj

]
: xi, yi, uj , vj , z, w ∈M

}
⊂
[
B(K) B(H,K)
B(K,H) B(H)

]
with multiplication

(2.3)

[
α z
w∗ β

]
·
[
α′ z′

w′∗ β′

]
=

[
−αα′ + zw′∗ −αz′ − zβ′
−w∗α′ − βw′∗ w∗z′ − ββ′

]
,

and involution (same as (2.1))

(2.4)

[
α z
w∗ β

]∗
=

[
α∗ w
z∗ β∗

]
,

via the map (same as (2.2))

A0(M) 3
[
`(x, y) z
w r(u, v)

]
7→
[
xy∗ z
w∗ u∗v

]
∈ B0.

Definition 2.3. By an anti-C*-algebra is meant a Banach algebra of the form A(M), for some anti-TRO
M .
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Example 2.4. In Proposition 2.2, if M = C with triple product −xyz, then A0(M) is equal to M2(C) as
a linear space and is an associative *-algebra, with multiplication and involution given by (2.3) and (2.4)
respectively. This anti-C*-algebra (M2(C), ·) has a unit element[

−1 0
0 −1

]
,

and like its counterpart (M2(C),×) (× denoting matrix multiplication), it has a trivial center and no
nonzero proper two-sided ideals. An element [

a b
c d

]
is invertible if and only if the “determinant” ad+ bc 6= 0.

Remark 2.5. Since the anti-C*-algebra (M2(C), ·) is central and simple, according to Wedderburn’s
theorem, it is isomorphic to the C*-algebra (M2(C),×). However, this isomorphism cannot be a *-
isomorphism, since in that case it would contradict the last statement in Theorem 2.7 below.

The multiplication table for (M2(C), ·) is

E11 E12 E21 E22

E11 −E11 −E12 0 0
E12 0 0 E11 −E12

E21 −E21 E22 0 0
E22 0 0 −E21 −E22

and a Wedderburn isomorphism φ : (M2(C), ·)→ (M2(C),×), given by

φ(Eij) =
∑
p,q

aijpqEpq,

satisfies, for all p, s, i, j, `, the 32 nonlinear equations with 16 unknowns aijpq∑
q

aijpqaj`qs = ε(ij`)ai`ps,

where

φ(Eij)× φ(Ej`) = φ(Eij · Ej`) = ε(ij`)Ei`.

More generally, by Theorem 3.9, any finite dimensional anti-C*-algebra is semisimple and hence iso-
morphic, but not *-isomorphic to a C*-algebra. It follows that if M is an infinite direct sum of finite
dimensional anti-TROs, then A(M) is an infinite dimensional anti-C*-algebra which is isomorphic, but
not *-isomorphic, to a C*-algebra.

Recall from [15, Rem. 1.4] that a C*-ternary ring M is a right R(M)op-Banach module. It was proved
in [15, Prop. 2.3(iv)] that if M is a right R(M)op-Hilbert module, then the normed standard embedding
A(M) can be normed to be a C*-algebra. The following proposition is the converse of the latter result.

Proposition 2.6. If M is a C*-ternary ring, then the normed standard embedding A(M) can be normed
to be a C*-algebra if and only if M is a right R(M)op-Hilbert module.

Proof. As noted above, one direction has been proved in [15, Prop. 2.3(iv)]. Suppose then that A(M)
can be normed to be a C*-algebra. Since M is an associative triple subsystem of the supposed C*-algebra
A(M) it is therefore isomorphic as a C*-ternary ring to a TRO, say V ⊂ B(H). By [15, Prop. 2.6 and
Example 1.6], if φ : M → V is the isomorphism, then the map

A0(M) 3
[
([gh·], [hg·]) f

g ([·hk], [·kh])

]
7→
[
φ(g)φ(h)∗ φ(f)
φ(g)∗ φ(h)∗φ(k)

]
∈ AV

extends to a *-isomorphism of A(M) onto the linking algebra

AV =

[
V V ∗ V
V ∗ V ∗V

]
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of V .
Let us denote the C*-algebra V ∗V by D. The TRO V is a right D-Hilbert module with inner product

〈u, v〉D = v∗u. With γ denoting the *-isomorphism of R(M) onto D (γ : [·hk], [·kh]) 7→ φ(h)∗φ(k)), the
map 〈f, g〉R(M) := γ−1(〈φ(f), φ(g)〉D) is an R(M)-valued inner product making M into a right R(M)op-
Hilbert module. Indeed, it is obvious that 〈f, f〉R(M) ≥ 0, 〈f, g〉∗R(M) = 〈g, f〉R(M), and

‖〈f, f〉R(M)‖ = ‖〈φ(f), φ(f)〉D‖ = ‖φ(f)‖2 = ‖f‖2.

It remains to show that2 〈f · r(h, k), g〉R(M) = 〈f, g〉R(M) ◦ r(h, k). First,

〈f · r(h, k), g〉R(M) = 〈[fhk], g〉R(M) = γ−1〈φ[fhk], φ(g)〉D = γ−1(φ(g)∗φ[fhk]) = ([·g[fhk]], [·[fhk]g]),

and second, using [15, Lemma 1.1(iii)],

〈f, g〉R(M) ◦ r(h, k) = γ−1(〈φ(f), φ(g)〉D) ◦ ([·hk], [·kh])

= γ−1(φ(g)∗φ(f)) ◦ ([·hk], [·kh])

= ([·gf ], [·fg]) ◦ ([·hk], [·kh])

= ([·hk], [·kh])([·gf ], [·fg])

= ([·hk][·gf ], [·fg][·kh])

= ([[·gf ]hk], [[·kh]fg],

as desired. �

In general, the normed standard embedding A(M) of a C*-ternary ring is a *-algebra which can be
normed to be a C*-algebra if M is an Rop-Hilbert module by using a *-isomorphism π into B(M ⊕ R),
with M ⊕R considered as a Hilbert Rop-module ([15, Section 6]). If M is not a Hilbert Rop-module, then
M ⊕R is just a Banach space (under any convenient `p2-norm). The proof that π is a homomorphism in
this case is the same as the proof in the Hilbert module case in [15, pp. 34-35]. The proof given in [15, p.
36] for completeness works in this case also.

In the Hilbert module case in [15, Section 6], π was shown to be injective by using the fact that π
was a self adjoint mapping, which however does not make sense if B ⊕M is not a Hilbert module over
Rop. However, a modification of that proof will now be given in the following theorem, which is the
replacement for [15, Prop. 2.7], to show that in this case, π is injective.

Theorem 2.7. The normed standard embedding A(M) of a C*-ternary ring M is the direct sum of a
C*-algebra and a semisimple Banach algebra B with a continuous involution and a bounded approximate
identity. The algebra B cannot be renormed to be a C*-algebra.

Proof. By Zettl’s decomposition ([15, Theorem 2.1]), M = M+ ⊕ M−, where M+ is isomorphic as a
C*-ternary ring to a TRO, and M− is isomorphic as a C*-ternary ring to an anti-TRO. By Remark 2.1
and [15, Prop. 2.6], A(M+) is *-isomorphic to a C*-algebra. Moreover A(M) = A(M+) ⊕ A(M−). It
remains to show that B = A(M−) has the required properties.

Recall that the map π : A(M) → B(M ⊕ R) to the bounded operators on the Banach space M ⊕ R,
normed as above, say for definiteness,∥∥∥∥[f ′B′

]∥∥∥∥ =
(
‖f ′‖2 + ‖B′‖2

)1/2
,

is defined, for a =

[
A f
g B

]
∈ A(M) by

(2.5) π(a)

[
f ′

B′

]
=

[
A f
g B

] [
f ′

B′

]
=

[
A · f ′ + f ·B′
r(g, f ′) +B ◦B′

]
.

We have,

‖π(a)‖ =

∥∥∥∥[A f
g B

]∥∥∥∥ = sup
‖(f ′,B′)‖≤1

∥∥∥∥[ A · f ′ + f ·B′
r(g, f ′) +B ◦B′

]∥∥∥∥ ,
2Recall that ◦ denotes the product in R(M)op.
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so that ∥∥∥∥[A f
g B

]∥∥∥∥ ≥ sup
‖f ′‖≤1

(‖A · f ′‖2 + ‖r(g, f ′)‖2)1/2 ≥ sup
‖f ′‖≤1

‖A1f‖ = ‖A1‖ = ‖A‖,

and∥∥∥∥[A f
g B

]∥∥∥∥ ≥ sup
‖f ′‖≤1

(‖A · f ′‖2 + ‖r(g, f ′)‖2)1/2 ≥ sup
‖f ′‖≤1

‖r(g, f ′)‖ = sup
‖f ′‖≤1

sup
‖f ′′‖≤1

‖[f ′′f ′g]‖ = ‖g‖,

the last equality holding by applying [6, Lemma 2.3(iv)] to M+ and M−. Similarly,∥∥∥∥[A f
g B

]∥∥∥∥ ≥ ‖B‖ and

∥∥∥∥[A f
g B

]∥∥∥∥ ≥ ‖f‖.
Thus, if [

A f
g B

]
→ 0, then

[
A f
g B

]#

=

[
A g

f B

]
→ 0.

Let us now show that π is injective. For a =

[
A f
g B

]
∈ A, if π(a) = 0, then by (2.5)

A · f ′ + f ·B′ = 0 and r(g, f ′) +B ◦B′ = 0

for all f ′ ∈M,B′ ∈ R, and in particular,

(2.6) A · f ′ = 0 and f ·B′ = 0,

and

(2.7) r(g, f ′) = 0 and B ◦B′ = 0.

From (2.6) with B′ = r(f, f), [fff ] = 0 so f = 0. From (2.7), BB = 0 and r(g, g) = 0, so B = 0 and
g = 0. From (2.6) with A = `(g, h), [ghf ′] = 0 so that A1 = L(g, h) = 0, and L(h, g) = L(g, h)∗ = 0 so
A = (L(g, h), L(h, g)) = 0. By the same argument, if A =

∑
i `(gi, hi), then A = 0. Now suppose A ∈ L,

let ε > 0 and choose A′ =
∑
i `(gi, hi) with ‖A − A′‖ < ε. Then ‖A′ · f ′‖ = ‖(A − A′) · f ′‖ ≤ ε‖f ′‖, so

that ‖A‖ ≤ ‖A−A′‖+ ‖A′‖ < 2ε, and A = 0.
Next, if (Aγ)γ∈Γ is an approximate identity for the C*-algebra L(M), and (Bδ)δ∈∆ is an approximate

identity for the C*-algebra R(M), then ([
Aγ 0
0 Bδ

])
(γ,δ)∈Γ×∆

is an approximate identity for A(M). To see this, one needs to prove that Aγ · f → f and Bγ · g → g.
For example, if Aγ = (A1

γ , A
2
γ) and3 f = [ggg], then Aγ · f = A1

γf = A1
γL(g, g)g → L(gg)g = f .

We now have that A(M−) is a Banach algebra with a continuous involution. Since a C*-ternary ring
M is embedded in its standard embedding A(M) as a sub-associative triple system, it is not possible
for A(M−) to support a norm making it a C*-algebra, since in that case M− would be isomorphic as a
C*-ternary ring to a sub-TRO of the supposed C*-algebra A(M−), which violates the uniqueness of the
Zettl decomposition.

For the proof of semisimplicity, see Theorem 3.9. �

We close this section by summarizing some results already mentioned which characterize TROs in the
context of C*-ternary rings. The equivalence of (i) (or (ii)) and (v) in [14] answered a question posed by
Zettl in [19, p. 136], namely, “characterizing the C*-ternary rings which yield T = I”, equivalently, that
are isomorphic to a TRO. Conditions (iii) and (iv) provide two new answers to Zettl’s question.

Theorem 2.8. Let M be a C*-ternary ring. The following are equivalent:

3Cube roots exist in C*-ternary rings. It suffices to know that cube roots exist in TROs and in anti-TROs. Since a
TRO can be made into a JB*-triple by symmetrizing its triple product, TROs have cube roots ([8, p. 1135]). Let M be an
anti-TRO, M ⊂ B(H,K), with triple product [xyz] = −xy∗z, and if a ∈ M , then −a ∈ M so −a = bb∗b for some b ∈ M
and a = (−b)(−b∗)(−b) = −bb∗b = [bbb].
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(i): M is isomorphic as a C*-ternary ring to a TRO.
(ii): M− = 0.
(iii): M is a right R(M)op-Hilbert module.
(iv): A(M) can be normed to be a C*-algebra.
(v): M is a JB*-triple under the triple product

{abc} =
[abc] + [bca]

2
.

Proof.

(i)⇔ (v): : [14, p. 342]
(i)⇔ (ii): : Zettl’s representation theorem ([15, Theorem 2.1])
(iii)⇒ (iv): : [15, Prop. 2.3 (iv)]
(iv)⇒ (iii): : Proposition 2.6
(i)⇒ (iv): : [15, Lemma 2.6, Example 1.6]
(iv)⇒ (i): : see the penultimate paragraph of the proof of Theorem 2.7.

�

3. Semisimplicity

In this section, following closely [12], we prove that an anti-C*-algebra is semisimple. Along the way
we prove that TROs and anti-TROs are semisimple.

Definition 3.1. A left ideal (resp. right ideal) I in an associative triple system M is a linear subspace
which satisfies [MMI] ⊂ I (resp. [IMM ] ⊂ I). An ideal is both a left ideal and a right ideal which
satisfies [MIM ] ⊂ I. (In a C*-ternary ring, a subspace which is both a left ideal and a right ideal
automatically satisfies [MIM ] ⊂ I.)

With M a C*-ternary ring, we denote by Ã(M) the unitization of A(M):

(3.1) Ã(M) = A(M)⊕ C IdE(M)⊕E(M)op =

[
L(M) + CE1 M

M R(M) + CE2

]
,

where E1 = IdE(M) and E2 = IdE(M)op . The Peirce components of Ã(M) relative to the idempotent

E1 are therefore precisely the entries in the matrix (3.1). With Ã denoting Ã(M),

Ã = Ã11 ⊕ Ã10 ⊕ Ã01 ⊕ Ã00

= E1ÃE1 ⊕ E1ÃE2 ⊕ E2ÃE1 ⊕ E2ÃE2

= (L(M) + CE1)⊕M ⊕M ⊕ (R(M) + CE2).

For any closed ideal I in Ã, we have (cf. [12, Lemma 7, p. 18])

I = ⊕i,j∈{0,1}(Ãij ∩ I).

Thus, if I is a closed ideal in A(M) ⊂ Ã(M), then

(3.2) I = (I ∩ L(M))⊕ (I ∩M)⊕ (I ∩M)⊕ (I ∩R(M)),

and I ∩M is a closed ideal in M (cf. [12, Lemma 4, p. 31]). Indeed, if b ∈ I ∩M and x, y ∈M , then[
0 [xyb]
0 0

]
=

[
0 x
0 0

] [
0 y
0 0

]# [
0 b
0 0

]
∈ I,

and similarly [bxy] ∈ I ∩M , so I ∩M is an ideal in M .
Moreover, if I ⊂ L(M) ⊕ R(M), then I = 0. Indeed, since I ∩M = I ∩M = 0, I = (L(M) ∩ I) ⊕

(R(M) ∩ I). Let A = (A1, A2) ∈ L(M) ∩ I and f ∈M . Then

(3.3)

[
A 0
0 0

] [
0 f
0 0

]
=

[
0 A · f
0 0

]
=

[
0 A1f
0 0

]
∈ I ∩M = 0,

so A1 = 0 and A2 = A∗1 = 0, and A = 0. Similarly R(M) ∩ I = 0.
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Recall that the Jacobson radical of an associative algebra A is the ideal consisting of the set of elements
x ∈ A which are quasi-invertible in every homotope Au of A, that is, for every u ∈ A, there exists y ∈ A
(depending on x and u) such that y − x = xuy = yux.

Definition 3.2. The (Jacobson) radical Rad M of an associative triple system, such as a C*-ternary
ring M , is the set of elements x ∈M which are quasi-invertible in every homotope Mu of M, that is, for
every u ∈M , there exists y ∈M such that

y − x = [yux] = [xuy].

A C*-ternary ring is said to be semisimple if its radical is 0.

Lemma 3.3. (cf. [12, Lemma 5, p. 32]) For x and u in a C*-ternary ring M , the following are equivalent:

(i): x is quasi-invertible in Mu, that is, there exists y ∈M such that y − x = [yux] = [xuy].

(ii):

[
0 x
0 0

]
is quasi-invertible in A(M)0 u

0 0

# , that is, there exists Y ∈ A(M) such that

Y −
[
0 x
0 0

]
= Y

[
0 u
0 0

]# [
0 x
0 0

]
=

[
0 x
0 0

] [
0 u
0 0

]#

Y.

Proof. Assume that (i) holds. Then just check that[
0 y
0 0

]
−
[
0 x
0 0

]
=

[
0 y
0 0

] [
0 u
0 0

]# [
0 x
0 0

]
=

[
0 x
0 0

] [
0 u
0 0

]# [
0 y
0 0

]
.

Conversely, assume (ii) holds. With Y =

[
A f
g B

]
, we have[

A f
g B

]
−
[
0 x
0 0

]
=

[
A f
g B

] [
0 0
u 0

] [
0 x
0 0

]
=

[
0 x
0 0

] [
0 0
u 0

] [
A f
g B

]
,

which reduces to [
A f − x
g B

]
=

[
0 `(f, u) · x
0 r(B · u, x)

]
=

[
`(x, u ·A) x · r(u, f)

0 0

]
.

Thus, A = 0, g = 0, B = 0 and f − x = [fux] = [xuf ]. �

With M a C*-ternary ring, and since Rad A is an ideal, then by (3.2) (cf. [12, Theorem 5, p. 18]),

Rad A = [(Rad A) ∩ L(M)]⊕ [(Rad A) ∩M ]⊕ ([Rad A) ∩M ]⊕ [(Rad A) ∩R(M)].

Moreover

(3.4) (Rad A) ∩ L(M) = Rad L(M)

and

(3.5) (Rad A) ∩R(M) = Rad R(M).

To prove (3.4), let X =

[
A 0
0 0

]
∈ (Rad A) ∩ L(M). Then for all U =

[
A′′ f ′′

g′′ B′′

]
∈ A, there exists

Q =

[
A′ f ′

g′ B′

]
∈ A with Q−X = QUX = XUQ, which after calculation yields

A′ −A = A′A′′A = AA′′A′,

so A ∈ Rad L(M) and (Rad A) ∩ L(M) ⊂ Rad L(M) .
To show the reverse inclusion4 we use the following two lemmas.

4Since L(M) and R(M) are C*-algebras, their radicals vanish; the proof given here for the reverse inclusion is therefore

valid for general associative triple systems.
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Lemma 3.4. (cf. [12, Lemma 4, p. 12] “Symmetry principle”) Given x, y in an associative algebra A, x
is quasi-invertible in Ay if and only if y is quasi-invertible in Ax. That is,

(3.6) ∃u ∈ A, u− x = uyx = xyu

if and only if

(3.7) ∃w ∈ A,w − y = wxy = xyw.

Proof. From (3.6), we have
uy − xy = uyxy = xyuy,

which means that xy is quasi-invertible in A. With w = uy

w − xy = wxy = xyw

and
yw − yxy = ywxy = yxyw

so that
(yw + y)− y = yw = ywxy + yxy = yxyw + yxy

and
(yw + y)− y = (yw + y)xy = yx(yw + y)

and therefor y is quasi-invertible in Ax. The converse follows by interchanging x and y. �

Lemma 3.5. (cf. [12, Lemma 5, p. 13] “Shifting principle”) Let ϕ and ψ be endomorphisms of an
associative algebra A which satisfy, for all x, y, z ∈ A,

(3.8) ϕ(x)zϕ(y) = ϕ(xψ(z)y),

and

(3.9) ψ(x)zψ(y) = ψ(xϕ(z)y).

Then for every x ∈ A, x is quasi-invertible in Aψ(y) if and only if ϕ(x) is quasi-invertible in Ay, that is,

(3.10) ∃u ∈ A, u− x = xψ(y)u = uψ(y)x,

if and only if

(3.11) ∃w ∈ A,w − ϕ(x) = ϕ(x)yw = wyϕ(x).

In each case, ϕ(u) = w.

Proof. Applying ϕ to (3.10) using (3.8) yields

ϕ(u)− ϕ(x) = ϕ(x)yϕ(u) = ϕ(u)yϕ(x),

so that ϕ(x) is quasi-invertible in Ay with quasi inverse ϕ(u), proving one direction as well as the last
statement.

Conversely, assuming that ϕ(x) is quasi-invertible in Ay, then by Lemma 3.4, y is quasi-invertible in
Aϕ(x), so there exists u ∈ A with

u− y = uϕ(x)y = yϕ(x)u.

Applying ψ using (3.9) yields

ψ(u)− ψ(y) = ψ(u)xψ(y) = ψ(y)xψ(u),

so that ψ(y) is quasi-invertible in Ax, and by Lemma 3.4, x is quasi-invertible in Aψ(y). �

We can now complete the proof of (3.4). We shall apply Lemma 3.5 with ϕ = ψ = E1 · E1 in the

case that x =

[
A 0
0 0

]
= E1xE1 ∈ Rad L(M). Then x is quasi-invertible in Aψ(y) for every y ∈ A and

therefore x = ϕ(x) is quasi-invertible in Ay for every y ∈ A, so x ∈ Rad (A). This proves (3.4), and (3.5)
follows by a parallel argument.

We have proved part of the following theorem (cf. [12, Theorem 3, p. 32]).

Theorem 3.6. If M is a C*-ternary ring, and A(M) its normed standard embedding, then
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(i): Rad A = [Rad L(M)]⊕ [Rad M ]⊕ [Rad M ]⊕ [(Rad R(M)]
(ii): Rad M is an ideal in M
(iii): A(M) is semisimple if and only if M is semisimple.

Proof. To finish the proof of (i), it suffices to show that Rad M = [Rad A(M)] ∩ M and Rad M =

[Rad A(M)] ∩M . Suppose that x ∈ [Rad A(M)] ∩M , that is,

[
0 x
0 0

]
is quasi-invertible in A(M)Y for

every Y =

[
A f
g B

]
∈ A(M). Thus, there exists Q =

[
A′ f ′

g′ B′

]
∈ A(M) such that

Q−
[
0 x
0 0

]
=

[
0 x
0 0

]
Y Q = QY

[
0 x
0 0

]
,

which leads to A′ = 0, B′ = 0, g′ = 0 and f ′ − x = [xgf ′] = [f ′gx], and this means that x ∈ Rad M , that
is, [Rad A(M)] ∩M ⊂ Rad M .

Conversely, let x ∈ Rad M , so that x is quasi-invertible in Mu for all u ∈ M . Then by Lemma 3.3,[
0 x
0 0

]
is quasi-invertible in A0 0

u 0

. Define ϕ,ψ : A(M)→ A(M) by

ϕ

([
A f
g B

])
= E1

[
A f
g B

]
E2 =

[
0 f
0 0

]
and

ψ

([
A f
g B

])
= E2

[
A f
g B

]
E1 =

[
0 0
g 0

]
.

Then by Lemma 3.5, ϕ

([
0 x
0 0

])
=

[
0 x
0 0

]
is quasi-invertible inA(M)ψ(y), that is,

[
0 x
0 0

]
∈ [Rad A(M)]∩

M , proving that Rad M = [Rad A(M)] ∩M .
Since Rad A is self-adjoint (X is quasi-invertible in AU for all U ∈ A if and only if X# is quasi-

invertible in AU# for all U# ∈ A), we have[
0 0
u 0

]
∈ (Rad A)∩M if and only if

[
0 u
0 0

]
∈ [(Rad A)∩M ]# = (Rad A)∩M = Rad M . Therefore

Rad M = (Rad A) ∩M , completing the proof of (i), and also proving (ii) as in (3.2).
Finally, if Rad A = 0, obviously, Rad M = 0. Conversely, if Rad M = 0, then Rad A ⊂ L(M)⊕R(M)

so as in (3.3), Rad A = 0. �

Corollary 3.7. If M is a TRO, then M is semisimple.

Proposition 3.8. Let M ⊂ B(H,K) be an anti-TRO, that is, as a linear space, M is equal to a sub-TRO
M ′ of B(H,K), and it is considered as a C*-ternary ring with the triple product [xyz] := −xy∗z. Then
Rad M = Rad M ′. Thus, an anti-TRO is semisimple.

Proof. We note first that ideals in M are also ideals in M ′, and conversely. According to [13, Theorem
9], for any associative triple system N of the second kind, with ternary product denoted [xyz],

(3.12) Rad N = {x ∈ N : the principal ideal [xNN ] or [NNx] is quasi-regular in N}.

Quasi-regular for the right ideal [xNN ], which is equivalent to quasi-regularity for left ideals [13, p. 32],
means that

(3.13) N = {u− [vyu] : u, y ∈ N, v ∈ [xNN ]},

so in our case, we need to prove for the anti-TRO M , that

M = {u+ vy∗u : u, y ∈M, v ∈ xM∗M}.

By (3.12), for the TRO M ′,

Rad M ′ = {x ∈M ′ : the principal ideal xM ′∗M ′ or M ′M ′∗x is quasi-regular in M ′},
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that is,
M ′ = {u− vy∗u : u, y ∈M ′, v ∈ xM ′∗M ′}.

In addition to ideals of M and M ′ coinciding, quasi-regularity is preserved, that is,

{u+ vy∗u : u, y ∈M,v ∈ xM∗M} = {u− v(−y)∗u : u,−y ∈M, v ∈ xM∗M} = M ′ = M,

proving (3.13) with N = M ′. Hence Rad M = Rad M ′. �

Theorem 3.9. The Banach algebra B in Theorem 2.7 is semisimple. Hence, all C*-ternary rings and
all anti-C*-algebras are semisimple.

Proof. This follows from Theorem 3.6(iii) and Proposition 3.8. �

4. Ideals

There is a one to one correspondence between closed ideals in a TRO M and closed ideals in the
C*-algebra R(M). This was proved directly (that is, not using [17]) in [2, Prop. 3.8]. This result was
extended to C*-ternary rings in [1, Prop. 4.2], by using the TRO M+⊕Mop

− and appealing to [17, Theorem
3.22]. It can also be proved by using the TRO M+ ⊕Mop

− and appealing to [2, Prop. 3.8] (in general, if
(M, [·, ·, ·]) is a C*-ternary ring, then Mop denotes the C*-ternary ring (M,−[·, ·, ·])).

We now consider the corresponding property in the context of C*-ternary rings. We begin by modifying
some earlier notation. Recall that if M is a C*-ternary ring, `(f, g), for f, g ∈ M , is the element of
B(M⊕M) defined by `(f, g)(x, y) = ([fgx], [gfy]). To emphasize the dependence on M we denote `(f, g)
by `M (f, g). Thus

L(M) := sp{`M (f, g) : f, g ∈M} ⊂ B(M ⊕M).

Let I be a closed ideal in the C*-ternary ring M . Since I is also a C*-ternary ring,

L(I) := sp{`I(f, g) : f, g ∈ I} ⊂ B(I ⊕ I).

We now define
L̃(I) = sp{`M (f, g) : f, g ∈ I} ⊂ L(M) ⊂ B(M ⊕M).

Note that
`I(f, g) = `M (f, g)|I⊕I .

Similarly, recall that r(f, g), for f, g ∈ M , is the element of B(M ⊕M) defined by r(f, g)(x, y) =
([xfg], [ygf). To emphasize the dependence on M we denote r(f, g) by rM (f, g). Thus

R(M) := sp{rM (f, g) : f, g ∈M} ⊂ B(M ⊕M).

For a close ideal I in M , we have

R(I) := sp{rI(f, g) : f, g ∈ I} ⊂ B(I ⊕ I),

and we define
R̃(I) = sp{rM (f, g) : f, g ∈ I} ⊂ R(M) ⊂ B(M ⊕M).

Note that
rI(f, g) = rM (f, g)|I⊕I .

The proof of the following proposition is a straightforward application of the definitions.

Proposition 4.1. Let I be a closed ideal in the C*-ternary ring M .

(a): L̃(I) is a closed two-sided ideal in the C*-algebra L(M), and the map φ defined as φ(`M (f, g)) =

`I(f, g), for f, g ∈ I, extends to a contractive *-homomorphism of L̃(I) onto L(I).

(b): R̃(I) is a closed two-sided ideal in the C*-algebra L(M), and the map ψ defined as ψ(rM (f, g)) =

rI(f, g), for f, g ∈ I, extends to a contractive *-homomorphism of R̃(I) onto R(I).

We next define

Ã(I) =

[
L̃(I) I

I R̃(I)

]
⊂ A(M) =

[
L(M) M
M R(M)

]
.

The proof of the following proposition is also a straightforward application of the definitions. It is
included for the convenience of the reader and to motivate one of the questions which follows it.
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Proposition 4.2. Let I be a closed ideal in a C*-ternary ring M . Then Ã(I) is a closed self-adjoint

ideal in A(M). The map I 7→ Ã(I) is injective from closed ideals of M to closed self-adjoint two-sided
ideals of A(M).

Proof. We show for example that A(I) is a right ideal in A(M). For[
A f
g B

]
∈ Ã(I) and

[
A′ f ′

g′ B′

]
∈ A(M)

we have [
A f
g B

] [
A′ f ′

g′ B′

]
=

[
AA′ + `(f, g′) A · f ′ + f ·B′
g ·A′ +B · g′ r(g, f ′) +B ◦B′

]
.

and it is required to show that

(4.1) AA′ + `(f, g′) ∈ L̃(I),

(4.2) A · f ′ + f ·B′ ∈ I

(4.3) g ·A′ +B · g′ ∈ I

(4.4) r(g, f ′) +B ◦B′ ∈ R̃(I).

To prove (4.1) and (4.2), we may assume that A = `M (g, h) for g, h ∈ I, A′ = `M (g′, h′) for g′, h′ ∈M ,
and B′ = rM (g′′, h′′) for g′′, h′′ ∈M . By [15, Lemma 1.1(ii)],

AA′ = `M (g, h)`M (g′, h′) = `M (g, [h′g′h]) ∈ L̃(I).

Write f = [ggg] for some g ∈ I (see footnote 3). Then `M (f, g′) = `M (g, [g′gg]) ∈ L̃(I), proving (4.1).
Since A · f ′ = [ghf ′] ∈ I and f · B′ = [fg′′h′′] ∈ I, this proves (4.2). (4.3) and (4.4) are proved
similarly. �

The following proposition was stated in [1, Prop. 4.5] as a special case of [17, Prop. 3.25]. We present
here a direct proof based on the Zettl representation.

Proposition 4.3. If M is a C*-ternary ring, and J is a closed ideal in M , then the quotient M/J is a
C*-ternary ring.

Proof. As in the proof of [15, Lemma 2.4], the decomposition M = M+ ⊕M− is obtained by

M+ = {f ∈M : α(f, f) ≥ 0}, M− = {f ∈M : α(f, f) ≤ 0},
where α is defined5 by α(f, g) = r(g, f) for f, g ∈M .

It is now easy to check that with α′ = α|J×J , and A′ the closed span of α(J, J), then the C*-ternary
ring J , together with α′ and A′, satisfy the conditions stated in [15, Rem. 2.2]. It follows that the Zettl
decomposition of J is J = J+ ⊕ J− = (J ∩M+)⊕ (J ∩M−) and that algebraically,

M/J = (M+/J+)⊕ (M−/J−) .

Finally, since M+ is isomorphic as a C*-ternary ring to a TRO, and J+ is a closed ideal in M+, it
follows from [4, Prop. 2.2], that M+/J+ is isomorphic to a TRO. As M− is isomorphic to an anti-TRO,
the same argument shows that M−/J− is isomorphic to an anti-TRO, and therefore M/J is a C*-ternary
ring. �

Some questions

Question 1. Which C*-algebras can appear as the linking algebra of a TRO? Which semisimple Banach
algebras with approximate identities and with continuous involution can appear as anti-C*-algebras?

Question 2. In what sense is the decomposition in Theorem 2.7 unique? In particular, if M and N
are C*-ternary rings, with *-isomorphic normed standard embeddings, does it follow that M and N are
isomorphic?

5In [15, Lemma 2.4], α was defined incorrectly as α(f, g) = r(f, g).
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Question 3. If M is a C*-ternary ring, is the map I 7→ Ã(I) in Proposition 4.2 from closed ideals of M to
closed self-adjoint two-sided ideals of A(M) surjective? In the special case that M is a TRO (and hence
A(M) is a C*-algebra), this has been proved in [18, Prop. 2.7].

Question 4. If M is a C*-ternary ring, then its bidual M∗∗ is a C*-ternary ring ([9, Theorem 2]). What is
the relation between L(M)∗∗ and L(M∗∗), between R(M)∗∗ and R(M∗∗), between A(M)∗∗ and A(M∗∗)?

5. Ternary Operator Categories—Revisited

5.1. Adjustments to [15, Section 4]. In what follows, we shall use some notation and some results from
[15], making precise references to [15] when necessary. We first modify, as suggested in [15], the definition
of linking category. Recall that the morphism sets (X,Y )C in a linear ternary category are associative
triple systems.

Definition 5.1. (Modification of [15, Def. 3.8]) Given a linear ternary category C, the linking category
AC of C is as follows. The objects of the category AC are the same as the objects of C. The morphism
set Hom(X,Y ) (= (X,Y )AC ) is defined to be A(X,Y ) (= A((X,Y )C), with composition as follows. If
a ∈ Hom(X,Y ) and b ∈ Hom(Y,Z), then b ◦a must be 0 unless X = Y = Z, in which case b ◦a is defined
to be the product ab in A(X,X).

Remark 5.2. The category AC can be considered as a ternary category ([15, Definition 3.1]) under the

composition [abc] = ab#c and, by [15, Lemma 1.3], we obtain an injective linear ternary functor F from
C to AC by associating the object X of C to the object X of AC and the morphism f ∈ (X,Y ) to the

morphism

[
0 f
0 0

]
∈ A(X,Y ).

Recall that the morphism sets in a T*-category ([15, Definition 4.6]) are C*-ternary rings ([15, Section
2]), so they satisfy Zettl’s representation theorem [15, Theorem 2.1].

Definition 5.3. Given a T*-category C, the positive (resp. negative) linking category A±C of C is as follows.

The objects of the category A±C are the same as the objects of C. The morphism set Hom(X,Y ) is defined

to be Hom(X,Y ) = A((X,Y )±), with composition as follows. If a ∈ Hom(X,Y ) and b ∈ Hom(Y,Z),
then b◦a must be 0 unless X = Y = Z, in which case b◦a is defined to be the product ab in A((X,X)±).

Thus the linking categories A±C of the T*-category C are subcategories of the linking category AC of

the linear ternary category C, and AC = A+

C ⊕A
−
C , by [15, Remark 4.13(ii)].

Theorem 5.4. (Replacement for [15, Theorem 4.11]) If C is a T*-category then A+

C is a C*-category

([15, Definition 4.1]) and there is a faithful T*-functor F from C+ to A+

C , the latter considered as a

T*-category.

Proof. It is clear that A+

C , as defined in Definition 5.3, is a linear non-unital category which, when

considered as a ternary category, satisfies (ii), (iii) and (vi) in [15, Def. 4.1]. Items (i), (iv), and (v)
of that definition are tantamount to the morphism sets of A+

C , namely, A((X,Y )+), being normed as

C*-algebras. This fact is immediate from Theorem 2.7, and the faithful functor is the restriction of the
functor defined in Remark 5.2. �

Let ρ = (ρ0, {ρX,Y }) be a linear ternary functor from a linear ternary category C to a a linear ternary
category D. We write ρ = (ρ0, {ρX,Y : X,Y objects of C}), where ρ0 maps objects of C to objects of D,
and ρX,Y is a linear transformation from (X,Y )C to (ρ0(X), ρ0(Y ))D satisfying

ρX,W (h ◦ g∗ ◦ f) = ρZ,W ◦ ρZ,Y (g)∗ ◦ ρX,Y (f),

for f ∈ (X,Y )C , g ∈ (Z, Y )C , and h ∈ (Z,W )C .
If C is a T*-category, T*-subcategories C± are defined as follows. By Zettl’s representation theorem,

we have (X,Y ) = (X,Y )+ ⊕ (X,Y )− for each pair of objects X,Y of C. The objects of C± are the same
as the objects of C, and for such objects X,Y ,

(X,Y )C± := (X,Y )±.
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It is clear that C is isomorphic to C+ ⊕ C− and that AC is isomorphic to AC+
⊕ AC− (cf. [15, Remark

4.13(ii)]).

Remark 5.5. (Replacement for [15, Remark 4.12]) If ρ0 is injective, then there is a linear functor ρ̂ from
AC to AD which extends ρ. In particular, if C and D are T*-categories, then every T*-functor from C+

to D+, which is injective on objects, extends to a C*-functor from A+

C to A+

D.

Proof. Recall that (X,Y )C is an associative triple system, and ρX,Y is a homomorphism of (X,Y )C
to (ρ0(X), ρ0(Y ))D, so by [15, Lemma 2.6], it extends to a *-homomorphism ρ̂X,Y = A(ρX,Y ) from
(X,Y )AC to (ρ0(X), ρ0(Y ))AD .

Thus ρ̂ = (ρ̂0, {ρ̂X,Y : X,Y objects of AC}), where ρ̂0(X) = ρ0(X), is the desired linear functor from

AC to AD whose restriction to A+
C is a C*-functor to A+

D. �

Theorem 5.6. (Replacement for [15, Theorem 4.14]) Let C be a T*-category. Then there is a faithful
T*-functor from C+ to the T*-category H of Hilbert spaces and continuous linear maps ([15, Example
4.2, Remark 4.8]).

Proof. By [15, Theorem 4.5], there is a faithful C*-functor G+ from AC+
to H. With AC+

considered

as a T*-category, we have that G+ is a T*-functor from AC+
to H. By Theorem 5.4, there is a faithful

T*-functor F+ from C+ to AC+
, and it suffices to consider H = G+ ◦ F+. �

Let V be a C*-ternary ring. By Theorem 2.7, V is the off-diagonal corner of a Banach algebra with
continuous involution (a C*-algebra if V is a TRO), A(V ), where

A(V ) =

[
L V
V R

]
,

and L = L(V ) and R = R(V ) are C*-algebras. Consider

(5.1) Ã(V ) =

[
M(L) V
V M(R)

]
,

where M(L) and M(R) are the multiplier algebras of L and of R. Zettl has shown in [19, Prop. 4.9] that
if V is a W*-ternary ring ([15, Section 2]), then M(R) and consequently M(L) are W*-algebras.

Recall that a T*-category is a TW*-category if each morphism set is a dual Banach space, and that
for objects X,Y in a TW*-category, (X,Y ) is a W*-ternary ring.

Definition 5.7. (Replacement for [15, Def. 4.22]) Given a TW*-category C ([15, Definition 4.6]), the

linking W*-category Ã+

C of C is as follows. The objects of the category Ã+

C are the same as the objects of

C. The morphism set Hom(X,Y ) is defined to be Ã((X,Y )+), as in (5.1) with V = (X,Y )+, and with
composition as follows. If a ∈ Hom(X,Y ) and b ∈ Hom(Y, Z), then b ◦ a must be 0 unless X = Y = Z,

in which case b ◦ a is defined to be the product ab in Ã((X,X)+).

Theorem 5.8. (Replacement for [15, Theorem 4.23]) If C is a TW*-category then Ã+

C is a W*-category

(C*-category with morphism sets being dual spaces) and there is a faithful TW*-functor F from C+ to

Ã+

C , the latter considered as a TW*-category.

Proof. It is clear that Ã+

C , as defined in Definition 5.7, is a linear non-unital category which, when

considered as a ternary category, satisfies (ii), (iii) and (vi) in [15, Def. 4.6]. Items (i), (iv), and (v)

of that definition are tantamount to the morphism sets of Ã+

C , namely, A((X,Y )+), being normed as

W*-algebras. This fact is immediate from [15, Prop. 4.21]. �

Theorem 5.9. (Replacement for [15, Theorem 4.25]) Let C be a TW*-category. Then there is a faithful
TW*-functor from C+ to the TW*-category H of Hilbert spaces and continuous linear maps.

Proof. By [5, Prop. 2.13], there is a faithful W*-functor F from Ã+

C to H. With Ã+

C considered as a

TW*-category, we have that G is a TW*-functor from Ã+

C to H. By Theorem 5.8, there is a faithful

TW*-functor F from C+ to Ã+

C , and it suffices to consider H = G ◦ F . �
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5.2. Two completed proofs for [15].

Remark 5.10. (Completion of the proof of [15, Rem. 4.10]) In the proof of [15, Rem. 4.10], only items
(i)-(iv) of the five conditions in [15, Def. 4.6] were proved. The remaining item (v) (as well as item (iv))
follows immediately from Proposition 4.3.

In the proof of [15, Prop. 5.13], it was stated incorrectly that C*-ternary rings are JB*-triples, and
therefore, since JB*-triples satisfy Pelczynski’s property V [3], so do C*-ternary rings. However, as
pointed out in Theorem 2.8, a C*-ternary ring M = M+⊕M− is (isomorphic to) a JB*-triple if and only
if M− = 0. Thus a C*-ternary ring is a JB*-triple if and only if it is isomorphic to a TRO. Using this
fact, we can prove the following proposition, which completes the proof of [15, Prop. 5.13].

Proposition 5.11. A C*-ternary ring (M, [·, ·, ·]) satisfies Pelczynski’s property V.

Proof. According to the theorem of Zettl [15, Theorem 2.1], there is a bounded operator T on M such
that (M,T ◦ [·, ·, ·]) is isomorphic to a TRO. Therefore (M,T ◦ [·, ·, ·]) satisfies Pelczynski’s property V.
Since (M, [·, ·, ·]) and (M,T ◦ [·, ·, ·]) are identical as Banach spaces, the proposition is proved. �

Appendix. Standard Embedding

Let M be an associative triple system with triple product denoted by [hgf ]. Let

E(M) = End (M)⊕ [End (M)]op,

where the notation V for a complex vector space means that the scalar multiplication in V is (λ, v) ∈
C× V 7→ λ ◦ v = λv. We shall denote the products in E(M)op and in [End (M)]op by X ◦ Y := Y X.

Involutions are defined on E(M) by

A = (A1, A2) 7→ A = (A1, A2) = (A2, A1),

and on E(M)op by

B = (B1, B2) 7→ B = (B1, B2) = (B2, B1).

For g, h ∈M , define L(g, h) = [gh·], R(g, h) = [·hg],

`(g, h) = (L(g, h), L(h, g)) = ([gh·], [hg·]) ∈ E(M),

r(g, h) = (R(h, g), R(g, h)) = ([·gh], [·hg]) ∈ E(M)op,

L0 = L0(M) = span {`(g, h) : g, h ∈M} ⊂ E(M),

R0 = R0(M) = span {r(g, h) : g, h ∈M} ⊂ E(M)op.

Let A = (A1, A2) ∈ E(M), B = (B1, B2) ∈ E(M)op, and f ∈ M . Let M denote the vector space M

with the element f denoted by f and with scalar multiplication defined by (λ, f) 7→ λ ◦ f = λf . Then

(i): M is a left E(M)-module via (A, f) 7→ A · f = A1f, a right E(M)op-module via (f,B) 7→
f ·B = B1f, and an (L0, R0)-bimodule.

(ii): M is a left E(M)op-module via (B, f) 7→ B · f = B2f, a right E(M)-module via (f,A) 7→
f ·A = A2f, and an (R0, L0)-bimodule.

Given an associative triple system M , let

A0 = A0(M) = L0(M)⊕M ⊕M ⊕R0(M)

and write the elements a of A0 as matrices

a =

[
A f
g B

]
∈
[
L0(M) M
M R0(M)

]
.

Define multiplication and involution in A0 by

aa′ =

[
A f
g B

] [
A′ f ′

g′ B′

]
=

[
AA′ + `(f, g′) A · f ′ + f ·B′
g ·A′ +B · g′ r(g, f ′) +B ◦B′

]
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and

a] =

[
A f
g B

]#

=

[
A g

f B

]
.

Then A0(M) is an associative *-algebra and for f, g, h ∈M ,[
0 f
0 0

] [
0 g
0 0

]# [
0 h
0 0

]
=

[
0 [fgh]
0 0

]
.

The map f 7→
[
0 f
0 0

]
is a triple isomorphism of M into A0(M), the latter considered as an associative

triple system with triple product ab#c, for a, b, c ∈ A0(M), We refer to A0(M) as the standard embedding
of M . If the associative triple system M is a normed space, and ‖[hgf ]‖ ≤ ‖f‖‖g‖‖h‖, then the normed
standard embedding of M , denoted by A(M), is defined in the same way but with R0(M) and L0(M)
replaced by their closures L(M) and R(M) in B(M ⊕M).
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