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Sudoku: Strategy versus Structure 
J. Scott Provan 

1. INTRODUCTION. Sudoku puzzles, and their variants, have become extremely 
popular in the last decade, and can now be found daily in most major U.S. newspapers. 
In addition to the countless books of Sudoku puzzles, there are many guides to Sudoku 
strategy and logic. (Some good references are the books [1, 3], and the web pages [5, 
6]. The reader is also directed to these for explanations of some of the terms mentioned 
throughout this discussion.) The purpose of this paper is to relate a common class of 
strategies, used to solve the vast majority of Sudoku puzzles, to the formulation of 
Sudoku puzzles as assignment problems and as linear programs. In particular, we give 
a simple characterization of this class, using a well-known graph theorem, and show 
further how the ability of this set of strategies to solve a Sudoku puzzle also implies 
that the solution can be represented as the unique nonnegative solution to a system of 
linear equations. These results provide excellent applications of principles commonly 
presented in introductory classes in finite mathematics and combinatorial optimization, 
and point as well to some interesting open research problems in the area. 

2. SUDOKU PUZZLES, SOLUTION FORMATS, AND LINEAR SYSTEMS. A 
general Sudoku puzzle is defined by 

• a set 5 of n grid squares, 
• an index set I = {1, . . . , m}, 
• a collection B of blocks, each block B e B consisting of a set of exactly m squares 

in S, and 
• an initial assignment A = {(/?;,&,) : i = 1, . . . , r}, with square p¡ e S assigned 

index £/ e /, / = 1, . . . , r. 

The goal is to assign indices from / to each of the remaining squares of S in such a way 
that each block B € B has a complete set / of indices assigned to it. A requirement 
for all valid Sudoku puzzles is that there is exactly one solution that is consistent with 
the initial assignment. 

A standard Sudoku puzzle has grid squares comprising a 9 x 9 grid, with 27 blocks 
represented by the nine rows, nine columns, and nine 3x3 subsquares of that grid. 
An example, along with its unique solution, is given in Table 1. Other popular Su- 
doku variants such as Jigsaw Sudoku, Sudoku X, Windodoku, and Asterisk can also be 
described in the above form. 

The solution to a Sudoku puzzle can be represented as the unique 0-1 solution for 
a specific set of linear equations. In particular, define the mn variables xpk to have 
xpk = 1 if the index k is assigned to square p of the grid and xpk = 0 otherwise. In 
order to solve a given Sudoku puzzle, the variables xpk must satisfy the following set 
of constraints: 

• Every square contains exactly one index: 

J2*pk = h peS, (1) 
kel 
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Table 1. A standard Sudoku puzzle and its solution. 

4 11 68 542793168 

_7  ^jT^  5_ J  _7_ 1 _8_ 6 4 5 392 

 9 y 2  _6_ 3 9 821 574 
3 5 7 364589217 

12649 871264953 

_2  7  6_ _2_ _9__5_ J_ 3 7 8 4 6 

5 7 123456789 

 6_ j  i_ JLJLJL JLJLJL 4 A J_ 
4 8  3  _4_ 8 7 912 635 

• Every block has exactly one of each index: 

£jtM = l, BeB,keI, (2) 
peB 

• Each initial assignment is honored: 

xPik. = 1, i = l,...,r. (3) 

A 0-1 solution to equations (l)-(3) will be a solution to the associated Sudoku puzzle. 
It is useful to note here that equations (1) and (2) comprise a set of assignment con- 
straints, where 1-1 assignments are made in each block. The fact that assignments are 
made over multiple overlapping blocks makes the problem difficult. It is known that 
solving general-sized Sudoku puzzles is NP-hard, even for square grids with blocks 
consisting of the sets of rows and columns (Latin Squares) [2], or for p2 x p2 grids 
with blocks consisting of rows, columns, and the p2 partitioned p x p subsquares [7, 
Section 3.2]. Finding 0-1 solutions to equations (l)-(3) for the standard 9x9 version, 
however, is quite easy using any reasonable integer program solver. 

Solving Sudoku puzzles by hand is generally done through elimination strategies 
that keep track of what indices are available to be placed in each square of the grid, 
and updating these by eliminating indices that cannot be allowed in a square based on 
some line of reasoning. Specifically, we define a candidate set associated with each 
square /?, denoted Cp, to be the set of indices that have not been eliminated from 
consideration for that square. Initially, CPi = {&,-} for assigned squares (/?,-, &,-), and 
Cp = / for unassigned squares. In this context equation (3) can be replaced by 

xpk = 0, p € S, k i Cp. (30 

When the candidate set for any square has only one index in it, then that square can be 
assigned this index. The Sudoku is solved when only one index remains in every one 
of the candidate sets. 

Two questions are of interest here. 

• How easy is it to solve Sudoku puzzles, that is, how likely is it that one can solve 
a Sudoku puzzle by employing a specified set 1Z of rules for eliminating elements 
from candidate sets? A rule set K can become quite complex, and could include 
extensive chain reasoning, in order that it be powerful enough to solve the harder 
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Sudoku puzzles. At present there is no known set of rules, short of using trial and 
error, that is guaranteed to solve all standard 9x9 Sudoku puzzles. 

• How close is the linear system given by (l)-(3) above to solving a Sudoku puzzle? 
One popular heuristic for finding 0-1 solutions to a set of linear equations is to re- 
lax the problem to that of finding nonnegative solutions to these equations. Finding 
nonnegative solutions to a system of equations is considerably easier than finding 
0-1 solutions, and if the relaxed solution has all 0-1 values, then it will in fact be a 
solution to the Sudoku puzzle. It would be interesting to know under what circum- 
stances this does occur, since this would make the solution for larger puzzles much 
faster. 

It turns out that these two questions are related in an interesting way. We investigate 
a particular set 1Z of rules, called the one-block strategies, that are almost universally 
used among Sudoku enthusiasts. We give a simple characterization for this set of rules, 
and show that the success of the one-block strategies in solving a Sudoku puzzle also 
means that the relaxation above is guaranteed to give a solution to the associated Su- 
doku puzzle. 

3. ONE-BLOCK STRATEGIES AND RELAXATIONS. To answer the first ques- 
tion above, we investigate one of the simplest classes of elimination strategies: 

One-block strategy. A strategy that eliminates a particular assignment based on the 
constraints (1), (2), and (3') as they apply to a single block B € B. 

That is, a one-block strategy involves looking at the relationship between candidate 
indices in just one block, ignoring how they interact with other blocks. Note that a 
one-block strategy is not restricted to be used only on a particular block, but can be 
applied successively to different blocks, so long as each application considers just one 
block, along with the current candidate sets. 

A set of one-block elimination strategies that is in virtually every intermediate 
player's arsenal can be described fairly succinctly. 

Pigeon-hole rule. Let M C I bea subset of indices, and let D be a subset of squares, 
all contained in a single block B, such that (a) 'M' = 'D' and (b) Cp ç M for every 
square p e D. Then the elements of M can be removed from Cpfor each p e B 'D. 

In other words, if there is any subset of k squares in a single block whose candidate sets 
together contain only k different indices, then these indices can appear nowhere else 
in that block. This rule, or tandem uses of it, includes most of the basic Sudoku strate- 
gies such as "squeezing," "crosshatching," "lone-number spotting," "naked/hidden 
pairs/triples/quads," etc., and is fairly easy to implement. Using this set of rules alone 
seems to solve about 90% of all Sudoku puzzles, and for our example it reduces the 
number of candidate indices considerably, as shown in Table 2. (We leave to the in- 
terested reader the task of applying the appropriate rules to obtain the table numbers.) 
Although the pigeon-hole rules were able to determine the solution numbers for 63 
out of the possible 81 squares in this example, the rules are not quite powerful enough 
to solve the entire puzzle. 

It turns out that the pigeon-hole rules account for all of the one-block solution 
strategies. 

Theorem 1. Any elimination that can be made using a one-block strategy can also be 
inferred using one of the pigeon-hole rules. 
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Table 2. The candidate sets Cp after applying all possible 
pigeon-hole rules to the puzzle given in Table 1. 

15 4 23 7 9 13 125 6 8 

7 12 8 6 4 5 3 129 29 

6 135 9 8 2 13 15 7 4 

364 589 12 12 7 

871 264 953 

295 137 846 

19 123 23 4 5 6 7 8 29 

59 25 6 3 7 8 4 29 1 

487912635 

Proof. Consider a one-block strategy applied to block BeBatã particular stage of 
the solution to the puzzle, with current candidate sets Cp, p e S. Then the one-block 
strategy must use only the following subsets of constraints (1), (2), and (3') to imply 
that a particular assignment xpoko = 1 cannot hold: 

£]*„* = 1, p€B, (4) 
k€l 

]Tjcm = 1, kel, (5) 
peB 

xp¿ = 0, peB, k£Cp. (6) 

In particular, the assignment {po, k0) is eliminated if, when we set xPokQ = 1, we cannot 
find a 0-1 solution to equations (4)-(6). 

Now equations (4)-(6) can be interpreted as requiring an assignment of the indices 
in / to the squares in block 2?, using only assignments allowed by the sets Cp, p e 
B, or equivalently, finding a perfect matching on the bipartite subgraph G of B x 
I that contains only the edges (p,k)9k e Cp. Assignment (/?0, k0) is eliminated by 
demonstrating that no perfect matching exists that contains the edge (p0, k0). 

Forcing the edge (/?0, k0) into the matching is equivalent to removing the vertices 
Po and ko from G, along with their adjacent edges. The assignment (po, ko) is then 
eliminated if and only if the resulting graph Gf admits no perfect matching. By Hall's 
Theorem [4, Section 6.3.1], if G has no perfect matching then there exist subsets 
X ç / ' {jto} and D ç B ' {p0}, with |X| < |D|, such that every edge of G' that is 
adjacent to a vertex in D is also adjacent to a vertex in X. But this in turn means that 
the set M = X U {k0} has the property that 'M' < 'D' and every edge of the original 
graph G that is adjacent to a vertex in D is also adjacent to a vertex in M, that is, 
Cp ç M for every p e D. Further, since the original graph G does admit a perfect 
matching, then 'M' = |D|, and it follows that the pigeon-hole rule, using sets D and 
M as defined above, eliminates the assignment (/?0, £o)- ■ 
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To answer the second question posed in Section 1, we investigate under what cir- 
cumstances the relaxation of the linear system defined by (l)-(3) to nonnegative vari- 
ables is guaranteed to produce a 0-1 solution, and hence to solve the Sudoku puzzle. It 
turns out that the success of the pigeon-hole rules in solving a Sudoku puzzle is also a 
guarantee that the relaxation solves it as well. 

Theorem 2. If a Sudoku puzzle can be solved completely using pigeon-hole rules, 
then there exists a unique nonnegative solution to equations (l)-(3), which in turn is 
a solution to the puzzle itself. 

Proof Let jc* be the unique 0-1 solution for equations (l)-(3), and suppose there is 
a second nonnegative solution x for these equations. Begin solving the puzzle using 
pigeon-hole rules until the first point at which an index ko is eliminated from one 
of the candidate sets CP0 for which xPoko ^ 0. This must always happen, since the 
pigeon-hole rules eventually eliminate every candidate pair (/?, k) for which x*k = 0, 
and there must be at least one of these for which xpk ̂ x*k. Now by Theorem 1, this 
elimination is forced by the one-block equations (4)-(6), and further, equation (6) does 
not yet include the pair (p0, k0). Consider the linear program 

max z = xPoko : x > 0 and equations (4)-(6) hold. (7) 

Then x is feasible for (7), since again by the choice of (p0, fco), the other assignments 
for equation (6) are already satisfied by x. Further, since the constraints of (7) are 
assignment constraints, then (7) will always have a 0-1 solution (see [4], Section 6.3. 1). 
Therefore the optimal objective function value z* for (7) must likewise be 0 or 1. But 
the fact that xPQkQ > 0 implies that z* ̂  0, and the fact that k0 was eliminated from CP0 
at this point using a one-block strategy implies that z* ̂  1. This is a contradiction, and 
therefore there cannot be a second nonnegative solution to equations (l)-(3). ■ 

4. EXTENSIONS AND FURTHER QUESTIONS. One further question one might 
consider is whether Theorem 2 can be extended to rule sets that are more sophisticated 
than the one-block strategies. A logical extension would be to two-block strategies, 
that is, strategies that involve simultaneously considering two blocks in order to elim- 
inate a candidate. Strategies such as "intersection removal," "cross-constraints," and 
"pointing pairs" are examples of two-block strategies. It turns out that our example 
can be completely solved by a single application of a two-block strategy (though not 
of any of the types above), along with the one-block strategies. Specifically, start with 
the candidate sets in Table 2 obtained after applying the one-block strategies, and con- 
sider the two intersecting blocks consisting of the top left 3x3 square and the second 
column. We can eliminate the index 1 from the square (1,1), since if we assign 1 to this 
square, we must assign 2 to square (2,2) and 5 to square (3,2) in order to satisfy the 
block constraints for the 3 x 3 square. But then square (8,2) cannot be assigned either 
of the indices 2 or 5 without violating the block constraints for column 2. Eliminating 
index 1 from square (1,1), and continuing to apply the pigeon-hole rules, we proceed 
to obtain the complete solution shown in Table 1. 

One could now ask whether expanding our strategy set by adding the two-block 
strategies moves us out of the realm of problems where Theorem 2 continues to hold. 
The example above shows that this indeed happens. A nonnegative but fractional so- 
lution to equations (l)-(3) is given in Table 3, where a singleton k in a square p rep- 
resents the assignment xpk = 1, and a doubleton k' and k2 in square p represents the 
assignment xpkx = xpkl = 1/2. Thus this example cannot be solved uniquely by relax- 
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Table 3. A fractional LP solution for the puzzle given in 
Table 1. 

15 4 23 7 9 13 25 6 8 

7 12 8 6 4 5 3 19 29 

6 35 9 8 2 13 15 7 4 

364 589 12 12 7 

871264953 

295 137 846 

19 13 23 4 5 6 7 8 29 

59 25 6 3 7 8 4 29 1 

487912635 

ing equations (l)-(3), even though it can be solved by using only one- and two-block 
strategies. 

We end the paper by leaving the reader with several interesting open questions that 
are suggested by the above results: 

1. Is there a good description of all two-block elimination strategies analogous to 
the pigeon-hole rules for one-block strategies? 

2. What is the minimum number k for which the A; -block strategies (elimination 
strategies that consider k blocks simultaneously) solve all standard Sudoku 
puzzles? Obviously 27-block strategies will work, and one can find examples 
where 2-block strategies are not strong enough. We suspect, though, that the 
number is considerably closer to 2 than to 27. 

3. Is there a set of elimination rules whose success in solving a Sudoku puzzle 
characterizes all Sudoku instances where equations (l)-(3) admit a unique non- 
negative solution? 

4. What is the simplest set of elimination rules that is guaranteed to solve all stan- 
dard Sudoku puzzles? 
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