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1 January 3, 2007—Keyl, Section 2—Basic Con-
cepts

1.1 Composite Systems and Entangled States (Keyl 2.2)

The tensor productH⊗K is defined to be the span of {ψ1⊗ψ2 : ψ1 ∈ H,ψ2 ∈ K}
where ψ1 ⊗ ψ2 is the bilinear form defined by1

ψ1 ⊗ ψ2(φ1, φ2) = (ψ1|φ1)(ψ2|φ2) , (φ, φ2) ∈ H ×K.

The inner product in H ⊗K is given by

(ψ1 ⊗ ψ2|η1 ⊗ η2) = (ψ1|η1)(ψ2|η2)
1Note that, following the physicists, inner products will be linear in the second variable
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The tensor product B(H)⊗B(K) is defined2 to be the span of {A1⊗A2 : A1 ∈
B(H), A2 ∈ B(K)} where A1 ⊗A2 is the operator defined by

A1 ⊗A2(ψ1 ⊗ ψ2) = A1ψ1 ⊗A2ψ2.

A partial trace of an operator ρ ∈ B(H) ⊗ B(K) is the operator trK(ρ) ∈
B(H) defined by3

tr(trK(ρ)A) = tr(ρ · (A⊗ 1)) , A ∈ B(H).

Symmetrically, another partial trace of an operator ρ ∈ B(H)⊗B(K) is the
operator trH(ρ) ∈ B(K) defined by

tr(trH(ρ)B) = tr(ρ · (1⊗B)) , B ∈ B(K).

For example, if ρ = B1 ⊗B2, then trK(ρ) = tr(B2)B1. (Proof: ρ · (A⊗ 1) =
B1A⊗B2 and tr(ρ · (A⊗ 1) = tr(B1A)tr(B2) = tr([tr(B2)B1]A).)

Note that trK(·) is a positive linear operator from B(H)⊗B(K) to B(H).

Proposition 1.1 (Proposition 2.2, page 445) For each element Ψ of the
two-fold tensor product H⊗K, there are orthonormal systems {φj : j = 1, . . . n}
and {ψk : k = 1, . . . n} (not necessarily bases, i.e. n can be smaller than dimH
and dimK) for H and K respectively, and non-negative numbers λj, such that
Ψ =

∑
j

√
λjφj ⊗ ψj holds. The φj and the ψk are uniquely determined by Ψ,

and the expansion is called the Schmidt decomposition and the numbers
√
λj

are the Schmidt coefficients.

Proof. Let ρ1 := trK(|Ψ〉〈Ψ|), where |Ψ〉〈Ψ| is the rank one operator, defined
more generally by4 |x〉〈y|(z) = (y|z)x. ρ1 is a positive operator so it can be
written as ρ1 =

∑
n λn|φn〉〈φn| for some orthonormal basis {φn} of H and

scalars λn ≥ 0. Let {ψ′k} be an orthonormal basis for K and write

Ψ =
∑
j,k

(φj ⊗ ψ′k|Ψ)φj ⊗ ψ′k =
∑

j

φj ⊗ ψ′′j

where ψ′′j =
∑

k (φj ⊗ ψ′k|Ψ)ψ′k. Then for arbitrary A ∈ B(H),∑
n

λn(φn|Aφn) = tr([
∑

n

λn|φn〉〈φn|]A) = tr(ρ1 ·A)

= tr([|Ψ〉〈Ψ|] ·A⊗ 1) = tr(|Ψ〉〈(A⊗ 1)Ψ|)
= (Ψ|(A⊗ 1)Ψ) = (

∑
j φj ⊗ ψ′′j |

∑
k Aφk ⊗ ψ′′k )

=
∑
j,k

(φj |Aφk)(ψ′′j |ψ′′k ).

2This space is denoted (accurately, by finite dimensionality) by B(H ⊗ K) in Keyl’s notes
3The tr on the left side is the trace on H and the tr on the right side is the trace on H ⊗K
4In physics notation, |x〉〈y|(z) = |x〉(y|z)
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Since A is arbitrary, we have (ψ′′j |ψ′′k ) = δj,kλj and therefore

Ψ =
∑

j

λ
1/2
j φj ⊗ (ψ′′j /λ

1/2
j ),

proving the existence.5 2

Corollary 1.2 (Corollary 2.3, page 445) Each state ρ ∈ B(H)∗ can be ex-
tended to a pure state Ψ on a larger system with Hilbert space H ⊗H ′ such that
tr H′ |Ψ〉〈Ψ| = ρ. (Ψ is called the “purification” of ρ.)

Proof. 6 Let ρ =
∑
λj |φj〉〈φj | be the spectral decomposition of ρ, where {φj} is

an orthonormal set in H, and let ψj be an orthonormal basis for H ′, a Hilbert
space of dimension at least the dimension of H. We wish to have a Ψ ∈ H ⊗H ′

with ‖Ψ‖ = 1 and trH′(|ψ〉〈ψ|) = ρ.
Define Ψ =

∑√
λjφj ⊗ ψj . Then

(Ψ|Ψ) =
∑
j ,k

(φj ⊗ ψj |φk ⊗ ψk)
√
λjλk =

∑
j

‖φj‖2‖ψj‖2λj = tr (ρ) = 1.

For A ∈ B(H), we need to prove that tr(ρA) = tr(|Ψ〉〈Ψ|(A ⊗ 1)). The left
side is equal to tr(

∑
λj |φj〉〈Aφj |) =

∑
λj(φj |Aφj) and the right side is equal

to tr(|Ψ〉〈(A ⊗ 1)Ψ|) = (Ψ|(A⊗ 1)Ψ) = (
∑√

λjφj ⊗ ψj |
∑√

λkAφk ⊗ ψk) =∑
j,k

√
λjλk(φj |Aφk)(ψj |ψk) =

∑
λj(φj |Aφj). 2

CONVENTION: We are now going to use capital letters like A,B. . . to de-
note algebras of operators and lower case letters like a, b. . . will denotes the
operators belonging to these algebras.

Let ρ be a state of the composite system A ⊗ B. Here A and B denote
either B(H), a quantum system, or C(X), a classical system. The restriction
of ρ to A is given by ρA(a) = ρ(a ⊗ 1). The restriction of ρ to B is given by7

ρB(b) = ρ(1⊗ b).

Trivial examples:
(1) if ρ = ρ1 ⊗ ρ2 is a product state, then ρA = ρ1 and ρB = ρ2 (since

ρA(a) = ρ(a⊗ 1) = ρ1(a)ρ2(1)).

(2)If both systems are quantum, then ρA and ρB are partial traces. The
trick here is to identify an operator with its role as a functional. The functional
ρA acting on a ∈ A = B(H) is given by ρA(a) = tr(ρAa). The functional ρ
acting on a ⊗ 1 ∈ A ⊗ B with B ∈ B(K) is given by ρ(a ⊗ 1) = tr(ρ · a ⊗ 1).
Hence ρA is a partial trace of ρ.

5I am temporarily ignoring the uniqueness
6Not explicit in Keyl’s notes, nor mentioned in the lecture
7A harmless notational inconsistency
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Definition 1.3 (Definition 2.4, page 446) A state ρ of a bipartite system
A ⊗ B is called correlated if there are some a ∈ A, b ∈ B such that ρ(a ⊗ b) 6=
ρA(a)ρB(b).

Proposition 1.4 (Proposition 2.5, page 446) Each state ρ of a composite
system A ⊗ B consisting of a classical system (A = C(X)) and an arbitrary
system (B = B(H)) has the form8

ρ =
∑
j∈X

λjρ
A
j ⊗ ρB

j ,

with positive weights λj > 0 and ρA
j ∈ S(A), ρB

j ∈ S(B). (S(A) denotes the
states of A)

Proof. Write each element of A as follows: a =
∑

j αj |j〉〈j|. In other words,
considering a as a function on X = {1, . . . , n}, αj = a(j); and thinking of a as
on operator on a Hilbert space with basis {|j〉}, a|j〉 = αj |j〉.

Now given ρ ∈ S(A ⊗ B), define ρA
j (a) = tr(a · |j〉〈j|) = αj and ρB

j (b) =
λ−1

j ρ(|j〉〈j| ⊗ b), where λj = ρ(|j〉〈j| ⊗ 1).
Obviously ρA

j (1A) = 1 = ‖ρA
j ‖ and ρB

j (1) = 1. Furthermore, if b ≥ 0, then
ρ(|j〉〈j| ⊗ b) ≥ 0 and ρB

j (b) ≥ 0. Finally, for (a, b) ∈ A×B,∑
λjρ

A
j (a)ρB

j (b) =
∑

λjαjλ
−1
j ρ(|j〉〈j| ⊗ b) = ρ(

∑
αj |j〉〈j| ⊗ b) = ρ(a⊗ b).2

OFF THE WALL OBSERVATION:
If ρ =

∑
λjρ

A
j ⊗ ρB

j ∈ S(C(X)⊗B(H)), then the restrictions are

ρA(a) = ρ(a⊗ 1) =
∑

λjρ
A
j (a)ρB

j (1B) =
∑

λjρ
A
j (a)

and
ρB(b) = ρ(1⊗ b) =

∑
λjρ

A
j (1)ρB

j (b) =
∑

λjρ
B
j (b).

Definition 1.5 (Definition 2.6, page 447) A state ρ of a composite system
B(H1)⊗B(H2) is called separable or classically correlated if it can be written as
ρ =

∑
j λjρ

(1)
j ⊗ ρ

(2)
j with states ρ(k)

j of B(Hk) and weights λj > 0. Otherwise
ρ is called entangled.

REMARK: Entangled states are studied through Bell inequalities. We will
take this up later. We turn now to the study of completely positive maps, which
are described physically as “channels”.

8Another notational warning: ρA
j is not the restriction of a state to A, it is simply a state

of A
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1.2 Channels (Keyl 2.3)

We learned the following theorem in Kindergarden. This (now) simple result was
the starting point for the subject now called “operator spaces”, or “quantized
functional analysis.”

Theorem 1.6 (Theorem 2.8, page 450—Stinespring dilation) Every com-
pletely positive map T : B(H1) → B(H2) has the form

T (a) = V ∗(a⊗ 1K)V,

with an additional Hilbert space K and an operator V : H2 → H1 ⊗ K. Both
K and V can be chosen such that {(a ⊗ 1)V φ : a ∈ B(H1), φ ∈ H2} is total in
H1 ⊗K. This decomposition is unique up to unitary equivalence and is called
the minimal decomposition. If dimH1 = d1 and dimH2 = d2, the minimal K
satisfies dimK ≤ d2

1d2.

Corollary 1.7 (Corollary 2.9, page 450—Kraus form) Every completely
positive map T : B(H1) → B(H2) can be written in the form

T (a) =
N∑

j=1

V ∗
j aVj

with operators Vj : H2 → H1 and N ≤ dimH1 dimH2.

Proof. It is well-known that every irreducible representation of the compact
operators is unitarily equivalent to the identity representation. Let π(a) = a⊗1
which is a representation of B(H1) on H2 ⊗K. By the result just quoted, π is
the direct sum ⊕πk of representations equivalent to the identity representation,
that is, H1 ⊗K = ⊕kKk and π(a) = ⊕k(a|Kk

). Note that we may identify Kk

with H1 by this equivalence. If Pk denotes the projection of H1 ⊗K onto Kk

(or equivalently, onto H1), then π(a) =
∑

k PkaPk so that T (a) = V ∗π(a)V =∑
k(V ∗Pk)a(PkV ). 2

Theorem 1.8 (Theorem 2.10, page 451) Let ρ be a density operator on H⊗
H1. Then there is a Hilbert space K, a pure state σ on H ⊗K and a channel
T : B(H1) → B(K) with

ρ = (Id⊗ T ∗)σ, (1)

where Id denotes the identity map on B(H)∗. The pure state σ can be chosen
such that tr H(σ) has no zero eigenvalue. In this case, T and σ are uniquely
determined up to unitary equivalence by (1), that is, if σ̃, T̃ with ρ = (Id⊗ T̃ ∗)σ̃
are given, we have σ̃ = (1⊗U)∗σ(1⊗U) and T̃ (·) = U∗T (·)U with an appropriate
unitary operator U .

Proof. Let’s repeat the constructions explicit in the proofs of Proposition 1.1
and Corollary 1.2.
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• If Ψ ∈ H ⊗K, write trK(|Ψ〉〈Ψ|) =
∑

n λn|φn〉〈φn| with φn an ONB for
H and let ψ′k be an ONB for K and define ψj = λ

−1/2
j

∑
k (φj ⊗ ψ′k|Ψ)ψ′k.

Then Ψ =
∑

j λ
1/2
j φj ⊗ ψj .

• If ρ is a state of B(H), say ρ =
∑

j λj |φj〉〈φj | with φj and ONB for H and

if ψj is an ONB for H ′ then Ψ :=
∑
λ

1/2
j φj⊗ψj satisfies ρ = trH′(|Ψ〉〈Ψ|)

(Ψ is the “purification” of ρ)

Turning to the construction for the proof of Theorem 1.8, let σ be the “pu-
rification” of trH1(ρ), so ∃K,∃Ψ ∈ H ⊗ K with trH1(ρ) = trK(|Ψ〉〈Ψ|). By
Proposition 1.1, Ψ =

∑
λ

1/2
j ψj ⊗ φj where λj , ψj is the “spectral data” for

trH1(ρ) and φj is an ONB for K. Now the operator T : B(H1) → B(K) is
determined by applying each side of (1) to |ψ ⊗ ηk〉〈ψl ⊗ ηp| (which equals
(|ψj〉〈ψl|)⊗ (|ηk〉〈ηl|)), where ηk is an ONB for H1, which results in

ρ(|ψ ⊗ ηk〉〈ψl ⊗ ηp|) = (λlλj)1/2(φj |T (|ηk〉〈ηp|)φl). (2)

Here is the calculation of the right side of (1):

(Id⊗ T ∗)σ(|ψ ⊗ ηk〉〈ψl ⊗ ηp|) = σ(Id⊗ T ((|ψj〉〈ψl|)⊗ (|ηk〉〈ηl|))
= (Ψ|Id⊗ T ((|ψj〉〈ψl|)⊗ (|ηk〉〈ηl|)Ψ)
= (Ψ|[|ψj〉〈ψl|)⊗ T (|ηk〉〈ηl|)]Ψ)

=
∑
α,β

(λαλβ)1/2δβj(ψα ⊗ φα|ψl ⊗ T (|ηk〉〈ηp|)φβ)

= (λlλj)1/2(φj |T (|ηk〉〈ηp|)φl).

It remains to show that T is completely positive. This consists of two steps,
which are going to be left as exercises (more precisely, gaps).

• (EXERCISE) Insert ρ = |χ〉〈χ| (with χ ∈ H ⊗H1) into (2) to get Ta =
V ∗aV where (V φj |ηk) = λ

−1/2
j (ψj ⊗ ηk|χ)

• (EXERCISE) Prove the case for general ρ by writing ρ =
∑
µj |χj〉〈χj |,

with µj ≥ 0 and
∑
µj = 1.

2 February 6, 2007—Keyl, Section 2—Basic Concepts—
continued

2.1 Separability Criteria and Positive Maps (Keyl 2.4)

Lemma 2.1 (Proposition 2.12, page 452) For any entangled state ρ ∈ S(H⊗
K) there is an operator a on H ⊗K, called entanglement witness for ρ with the
property ρ(a) < 0 and σ(a) ≥ 0 for all separable σ ∈ S(H ⊗K).
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Proof. The set D of separable states is a closed convex set9, and ρ 6∈ D, so ∃
a linear functional α and γ ∈ R such that α(ρ) < γ ≤ α(σ) for all σ ∈ D. By
replacing α by α − γtr(·) we may assume that γ = 0. Since α(a) = tr(aσ) for
some a ∈ B(H ⊗K), the lemma is proved. 2

For the proof of the next theorem, we need the results of reference [94] in
Keyl, which is summarized as follows:

Let the inner products on

H1, H2, H1 ⊗H2, A1 := B(H1), A2 := B(H2), A1 ⊗A2

be denoted respectively by

(·, ·)1, (·, ·)2, ((·, ·)), [a, b]1 = tr(b∗a), [·, ·]2, [[·, ·]].

Define a linear operator J : B(A1, A2) → A1 ⊗A2 by the rule

[[J(T ), a∗ ⊗ b]] = [T (a), b] for a ∈ A1, b ∈ A2 and T ∈ B(A1, A2).

John dePillis proved in 1967 (Pacific Journal of Mathematics) that

• J(T ) =
∑

i e
∗
i ⊗ T (ei) where (ei) is any ONB of A1

• T maps hermitian operators to hermitian operators if and only if J(T ) is
hermitian.

Now the main results of [94] are

• Let T ∈ B(A1, A2). Then T is a positive operator if and only if

((J(T )(x⊗ y), x⊗ y)) ≥ 0 for all x ∈ H1, y ∈ H2,

where x⊗ y is the operator z 7→ (z, y)1x.

• Let T ∈ B(A1, A2) and suppose that T maps hermitian operators to her-
mitian operators. Then T preserves trace if and only if∑

k

((J(T )(ei⊗fk), ej⊗fk)) = δij for all ONBs (ek) in H1 and (fi) in H2.

Theorem 2.2 (Theorem 2.11, page 452) A state ρ ∈ B(H ⊗K)∗ is sepa-
rable if and only if for any positive map T ∗ : B(K)∗ → B(H)∗ the operator
(Id⊗ T ∗)ρ is positive.

9EXERCISE: Show it is a closed set
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Proof. If ρ is separable, it is the sum of product states ρ1⊗ρ2, and since for any
positive map T ∗ : B(K)∗ → B(H)∗, (Id⊗ T ∗)ρ1 ⊗ ρ2 is positive, it follows that
(Id⊗ T ∗)ρ is positive.

Conversely, for a ∈ B(H ⊗K), define T ∗a : B(K)∗ → B(H)∗ by

tr(a · ρ1 ⊗ ρ2) = tr(ρt
1 · T ∗a (ρ2)).

For the record, the trace on the left side is the trace on H ⊗ K, ρ1 ⊗ ρ2 is a
product state in B(H ⊗K)∗, the trace on the right side is the trace on H, and
the transpose is with respect to an arbitrary but fixed ONB {|j〉 : j = 1, . . . , d}
of H.

CLAIM 1: If a is such that tr(a · ρ1 ⊗ ρ2) ≥ 0 for all product states ρ1 ⊗ ρ2,
then T ∗a is a positive operator.

EXERCISE: Prove CLAIM 1 using [94].

CLAIM 2: For a ∈ B(H⊗K), ρ ∈ B(H⊗K)∗ and Ψ = d−1/2
∑

j |j〉⊗ |j〉 ∈
H ⊗H, then

tr(a · ρ) = tr((|Ψ〉〈Ψ|)[(Id⊗ T ∗a )(ρ)]).

EXERCISE: Prove CLAIM 2 (it is just a calculation!).

We can now complete the proof of Theorem 2.2. Assume that (Id⊗ T ∗)ρ is
positive for all positive T ∗ : B(K)∗ → B(H)∗. By claims 1 and 2, tr(a · ρ) ≥ 0
provided tr(a ·ρ1⊗ρ2) ≥ 0 for all product states and hence all separable states.
By Lemma 2.1 we are done, for if ρ is entangled, then ∃a with tr(ρ · a) < 0 and
tr(a · ρ1 ⊗ ρ2) ≥ 0. 2

For the proof of the next theorem, we need the results of reference [174] in
Keyl, which is summarized as follows:

A linear map Φ : A→ B of C∗-algebras is n-positive if Φ⊗Id : A⊗Mn → B⊗
Mn is positive, and completely positive (CP) if it is n-positive for all n ≥ 1. It
is a theorem of Stormer (Lecture Notes in Physics 29, 1974) that CP (Mn,Mm)
is the convex cone generated by the maps Mn 3 a 7→ s∗as ∈Mm, s ∈Mn×m.

A linear map Φ : A→ B of C∗-algebras is n-copositive if Φ⊗T : A⊗Mn →
B ⊗Mn is positive, and completely copositive (CCP) if it is n-copositive for all
n ≥ 1. It is also true that CCP (Mn,Mm) is the convex cone generated by the
maps Mn 3 a 7→ s∗aT s ∈Mm, s ∈Mn×m.

A natural question to ask in this context is: Is every positive map from A
to B is a sum of CP and CCP maps. By results of Stormer and Woronowicz
of the early 60s, the answer is yes for (A,B) = (M2,M2), and by a result of
Choi, the answer is no for (A,B) = (M3,M3). The main results of [174] are
that the answer is yes for (A,B) = (M2,M3) and no for (A,B) = (M2,M4),
from which it follows that the answer is yes for (A,B) = (M3,M2) and no for
(A,B) = (M4,M2).
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Theorem 2.3 (Theorem 2.13, page 453) Consider a bipartite system B(H⊗
K) with dimH = 2 and dimK = 2 or 3. A state ρ ∈ S(H ⊗K) is separable if
and only if its partial transpose is positive.

EXERCISE: Supply the proof of Theorem 2.3 from reference [86] in Keyl
using reference [174].10

Proposition 2.4 (Proposition 2.15, page 453) Each ppt-state ρ ∈ S(H ⊗
K) satisfies the reduction criterion. If dimH = 2 and dimK = 2 or 3, both
criteria are equivalent.

EXERCISE: Supply the proof (and the definitions!) of Proposition 2.4 from
references [85] and [42] in Keyl.

10Reference [86] also contains a proof of Theorem 2.2, which may be more illuminating than
the one (partially) provided here
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