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1 January 3, 2007—Keyl, Section 2—Basic Con-
cepts

1.1 Composite Systems and Entangled States (Keyl 2.2)

The tensor product H®K is defined to be the span of {¢)1 @9 : ¢y € H 1y € K}
where 11 ® 1), is the bilinear form defined by*

V1 @ Pa(d1, d2) = (Y1]p1)(P2ld2) (b, ¢2) € H x K.
The inner product in H ® K is given by

(V1 @ Ya|m @ n2) = (Y1]m) (Y2]n2)

INote that, following the physicists, inner products will be linear in the second variable




The tensor product B(H)® B(K) is defined? to be the span of {A; ® Ay : A; €
B(H), Az € B(K)} where A; ® Aj is the operator defined by

A1 ® As (Y1 ® ) = A1 ® Agtha.

A partial trace of an operator p € B(H) ® B(K) is the operator trg(p) €
B(H) defined by?

tr(trg(p)A) =tr(p- (A®1)) , A€ B(H).

Symmetrically, another partial trace of an operator p € B(H) ® B(K) is the
operator try(p) € B(K) defined by

tr(trg(p)B) =tr(p- (1@ B)) , Be€ B(K).

For example, if p = By ® Bs, then trg(p) = tr(Bz2)B;. (Proof: p- (A®1) =
B1A® By and tr(p- (A® 1) = tr(B1A)tr(Bs) = tr([tr(B2)B1]A).)

Note that trg(-) is a positive linear operator from B(H) ® B(K) to B(H).

Proposition 1.1 (Proposition 2.2, page 445) For each element U of the
two-fold tensor product H® K, there are orthonormal systems {¢; : j =1,...n}
and {Yr, : k=1,...n} (not necessarily bases, i.e. n can be smaller than dim H
and dim K ) for H and K respectively, and non-negative numbers A;, such that
U =3 VAjo; ®1p; holds. The ¢; and the vy, are uniquely determined by ¥,

and the expansion is called the Schmidt decomposition and the numbers \/\;
are the Schmidt coefficients.

Proof. Let py = trg(|U)(¥|), where |U)(¥| is the rank one operator, defined
more generally by* |z)(y|(z) = (y|z)z. p1 is a positive operator so it can be
written as p;1 = > An|dn){(¢n| for some orthonormal basis {¢,} of H and
scalars A, > 0. Let {¢}.} be an orthonormal basis for K and write

V=" (0 @U|V) b @0 =Y & @]
Jsk J
where ¢ =3 (¢; ® ¥y |¥)ty,. Then for arbitrary A € B(H),
Z)‘n((bnvl(bn) = tr([z An|dn){(nl]A) = tr(p1 - A)
= tr([[UX¥]]- A1) = tr(JU)((A @ 1)¥))
= (VA0 )T) = (3; &5 @ ¢j[ 2, Adr © ¥)
> (031 A6w) (0] 147).

3.k

2This space is denoted (accurately, by finite dimensionality) by B(H ® K) in Keyl’s notes
3The tr on the left side is the trace on H and the tr on the right side is the trace on H ® K
4In physics notation, |z)(y|(z) = |z)(y|2)



Since A is arbitrary, we have (¢7[1}) = d;A; and therefore
v ="M@ W) /A7),
J

proving the existence.? 0

Corollary 1.2 (Corollary 2.3, page 445) Fach state p € B(H)* can be ex-
tended to a pure state ¥ on a larger system with Hilbert space H Q@ H' such that
trg | UY(P| = p. (P is called the “purification” of p.)

Proof. © Let p =" A\j|¢;)(¢;| be the spectral decomposition of p, where {¢;} is
an orthonormal set in H, and let ¢, be an orthonormal basis for H’, a Hilbert
space of dimension at least the dimension of H. We wish to have a ¥ € H ® H’
with [ = 1 and try(j6) (0) = p.

Define ¥ = Y~ \/A;¢; ®1;. Then

(U[0) =D (&5 @il @ )/ Ahe = D 5]l 1P = tr (p) = 1.
i

ik

For A € B(H), we need to prove that tr(pA) = tr(|U)(¥|(A ® 1)). The left
side is equal to tr(>_ Aj|o;)(Ad;|) = > Aj(¢j]Ag;) and the right side is equal
to tr(JT){(A® 1)P]) = (P(A®1)T) = (3 /Ajd; @ ¢;| X VAAG ® ¥r) =
D ik VAAR(B51AGK) (s]k) = 32 Ni(@51Ad;). m

CONVENTION: We are now going to use capital letters like A, B...to de-
note algebras of operators and lower case letters like a,b...will denotes the
operators belonging to these algebras.

Let p be a state of the composite system A @ B. Here A and B denote
either B(H), a quantum system, or C'(X), a classical system. The restriction
of p to A is given by p*(a) = p(a ® 1). The restriction of p to B is given by’
pP(b) = p(1®b).

Trivial examples:
(1) if p = p1 ® po is a product state, then p4 = p; and p? = ps (since
p(a) = pla®1) = pi(a)p2(1)).

(2)If both systems are quantum, then p? and p? are partial traces. The
trick here is to identify an operator with its role as a functional. The functional
p? acting on @ € A = B(H) is given by p?(a) = tr(p?a). The functional p
actingon a® 1 € A® B with B € B(K) is given by p(a® 1) = tr(p-a®1).
Hence p? is a partial trace of p.

51 am temporarily ignoring the uniqueness
6Not explicit in Keyl’s notes, nor mentioned in the lecture
7A harmless notational inconsistency



Definition 1.3 (Definition 2.4, page 446) A state p of a bipartite system
A ® B is called correlated if there are some a € A,b € B such that p(a ® b) #

pA(@)pB (b).

Proposition 1.4 (Proposition 2.5, page 446) FEach state p of a composite
system A ® B consisting of a classical system (A = C(X)) and an arbitrary
system (B = B(H)) has the form®

p=> Np}@p?,
jex
with positive weights A; > 0 and p;‘ € S(A), pP € S(B). (S(A) denotes the
states of A)

Proof. Write each element of A as follows: a = >, a;|j)(j|. In other words,
considering a as a function on X = {1,...,n}, a; = a(j); and thinking of a as
on operator on a Hilbert space with basis {|j)}, alj) = a;|7).

Now given p € S(A ® B), define p;-‘(a) = tr(a- [5){j]) = oy and pP(b) =
A7 p(l) (i @ b), where X; = p(lj) (j] @ )

Obviously p#t(14) = 1 = [|pft|| and pP(1) = 1. Furthermore, if b > 0, then
p(17)(j] ©b) > 0 and p? (b) > 0. Finally, for (a,b) € A x B,

D> xipt@)pl () =Y XA o) Gl @ b) = p(> ayli) (il @ b) = pla @ b).0

OFF THE WALL OBSERVATION:
Ifp=> )\jp;‘ ® pP € S(C(X) ® B(H)), then the restrictions are

Na)=pla®1) =Y Npi(a)pf (1p) =D Ajpi(a)
PO = 19D =3 Nirf (Def ) = 3 Ao 1)

and

Definition 1.5 (Definition 2.6, page 447) A state p of a composite system
B(H,) ®B(H2) is called separable or classically correlated if it can be written as
p=2; )\]pj (.2) with states p§.k) of B(Hy) and weights A\; > 0. Otherwise
p s called entangled.

REMARK: Entangled states are studied through Bell inequalities. We will
take this up later. We turn now to the study of completely positive maps, which
are described physically as “channels”.

8 Another notational warning: p;‘ is not the restriction of a state to A, it is simply a state
of A



1.2 Channels (Keyl 2.3)

We learned the following theorem in Kindergarden. This (now) simple result was
the starting point for the subject now called “operator spaces”, or “quantized
functional analysis.”

Theorem 1.6 (Theorem 2.8, page 450—Stinespring dilation) FEvery com-
pletely positive map T : B(Hy) — B(Hz) has the form

T(a) = V*(a® 1x)V,

with an additional Hilbert space K and an operator V : Hy — Hy ® K. Both
K and V' can be chosen such that {(a ® 1)V¢ : a € B(Hy),¢ € Ha} is total in
H, ® K. This decomposition is unique up to unitary equivalence and is called

the minimal decomposition. If dim Hy = dy and dim Hy = d3, the minimal K
satisfies dim K < d%dz.

Corollary 1.7 (Corollary 2.9, page 450—Kraus form) Every completely
positive map T : B(Hy) — B(Hz) can be written in the form

N
T(a) =Y _VjaV;
j=1

with operators V; : Hy — Hy and N < dim H; dim Ho.

Proof. 1t is well-known that every irreducible representation of the compact
operators is unitarily equivalent to the identity representation. Let 7w(a) = a®1
which is a representation of B(H;) on Hy ® K. By the result just quoted, 7 is
the direct sum @7 of representations equivalent to the identity representation,
that is, H; ® K = @&, K, and w(a) = ®i(a|k,). Note that we may identify K},
with H; by this equivalence. If P denotes the projection of H; ® K onto Kj
(or equivalently, onto Hy), then m(a) = Y, PraPy so that T'(a) = V*r(a)V =
YoV Py)a(PpV). |

Theorem 1.8 (Theorem 2.10, page 451) Let p be a density operator on H®
Hy. Then there is a Hilbert space K, a pure state 0 on H @ K and a channel
T : B(Hy) — B(K) with

p=Id®T")o, (1)

where Id denotes the identity map on B(H)*. The pure state o can be chosen
such that trg(o) has no zero eigenvalue. In this case, T and o are uniquely
determined up to unitary equivalence by (1), that is, if &, T with p = (Id® T*)&
are given, we have & = (10U)*c(1QU) and T(-) = U*T(-)U with an appropriate
unitary operator U.

Proof. Let’s repeat the constructions explicit in the proofs of Proposition 1.1
and Corollary 1.2.



o If ¥ € H® K, write trg (|¥)(¥]) = >, An|én)(dn| with ¢, an ONB for
H and let 1}, be an ONB for K and define ; = /\;1/2 Dok (05 @ Uy [ W)y
Then ¥ = Zj A;/Z(bj ® ;.

e If pisastate of B(H), say p = }_; Aj|¢;)(¢;| with ¢; and ONB for H and
if 1; is an ONB for H' then ¥ := )" )\;/quj ®1); satisfies p = try/ (V) (¥])
(T is the “purification” of p)

Turning to the construction for the proof of Theorem 1.8, let o be the “pu-
rification” of try, (p), so IK,3¥ € H ® K with try, (p) = trx(|¥)(¥|). By
Proposition 1.1, ¥ = Z)\Jl./21/}j ® ¢; where A;,v; is the “spectral data” for
trg, (p) and ¢; is an ONB for K. Now the operator T : B(Hy) — B(K) is

determined by applying each side of (1) to [¢ ® ng)(¢¥r ® 1p| (which equals
(1) (i]) ® (Imk)(mi])), where 7, is an ONB for H,, which results in

P19 @ ) (Wr @ mpl) = (MA@ |T (i) () 1) (2)

Here is the calculation of the right side of (1):

(deT)o(|p @) @nl) = o(1d@T((|v;) W) @ (Ink)(m])

(T[1d @ T((25) (1)) @ (|ne)(mi]) @)

= (U[[J) (W) @ T(|me) ()] )

= ) (Aars) 205 (V0 ® dalth @ T(|nk) (np])dp)
a,B

= ()21 (i) (mp ) 0)-

It remains to show that T' is completely positive. This consists of two steps,
which are going to be left as exercises (more precisely, gaps).

o (EXERCISE) Insert p = |x)(x| (with x € H ® H;) into (2) to get Ta =
V*aV where (V;ln) = A7 (5 @ melx)

e (EXERCISE) Prove the case for general p by writing p = > uilx;) (Xl
with p; > 0and Y p; = 1.

2 February 6, 2007—Keyl, Section 2—Basic Concepts—
continued

2.1 Separability Criteria and Positive Maps (Keyl 2.4)

Lemma 2.1 (Proposition 2.12, page 452) For any entangled state p € S(H®
K) there is an operator a on H® K, called entanglement witness for p with the
property p(a) < 0 and o(a) > 0 for all separable o € S(H ® K).



Proof. The set D of separable states is a closed convex set?, and p € D, so 3
a linear functional « and v € R such that a(p) < v < a(o) for all ¢ € D. By
replacing a by o — ~ytr(-) we may assume that v = 0. Since a(a) = tr(ao) for
some a € B(H ® K), the lemma is proved. a

For the proof of the next theorem, we need the results of reference [94] in
Keyl, which is summarized as follows:
Let the inner products on

Hy, Hy, Hy ® Ha, Ay := B(H1), Ay:= B(H2), A1 ® Az
be denoted respectively by
()1 (9)2e (G0)s [as bl = tr(b%a), [ ]2, [[-]]-
Define a linear operator J : B(Ay, As) — A1 ® As by the rule
[J(T),a* @b]] = [I(a),b] for a € A1,b € Az and T € B(A;q, As).
John dePillis proved in 1967 (Pacific Journal of Mathematics) that
o J(T)=73,e; ®T(e;) where (e;) is any ONB of A,

e T maps hermitian operators to hermitian operators if and ouly if J(T') is
hermitian.

Now the main results of [94] are

e Let T € B(A;, As). Then T is a positive operator if and only if
(J(T)(z®y),z®y)) >0 for all x € Hy,y € Ha,

where x ® y is the operator z — (z,y)12.

e Let T € B(A1, As) and suppose that T maps hermitian operators to her-
mitian operators. Then T preserves trace if and only if

Z((J(T)(ei®fk),ej®fk)) = 0;; for all ONBs (ey) in H; and (f;) in Ho.
k

Theorem 2.2 (Theorem 2.11, page 452) A state p € B(H @ K)* is sepa-
rable if and only if for any positive map T* : B(K)* — B(H)* the operator
(Id® T*)p is positive.

9EXERCISE: Show it is a closed set



Proof. If p is separable, it is the sum of product states p; ® p2, and since for any
positive map T : B(K)* — B(H)*, (Id @ T*)p1 ® p2 is positive, it follows that
(Id ® T*)p is positive.

Conversely, for a € B(H ® K), define T, : B(K)* — B(H)* by

tr(a-p1 @ po) = tr(py - Ty (p2))-

For the record, the trace on the left side is the trace on H @ K, p1 ® po is a
product state in B(H ® K)*, the trace on the right side is the trace on H, and
the transpose is with respect to an arbitrary but fixed ONB {|j) : j =1,...,d}
of H.

CLAIM 1: If a is such that tr(a- p1 ® p2) > 0 for all product states p; ® pa,
then T7' is a positive operator.

EXERCISE: Prove CLAIM 1 using [94].

CLAIM 2: Fora € BH®K), p€ BHH®K)* and ¥ =d~ Y2} |j)®|j) €
H ® H, then
tr(a - p) = tr(([¥)())[1d & T5)(p)])-

EXERCISE: Prove CLAIM 2 (it is just a calculation!).

We can now complete the proof of Theorem 2.2. Assume that (Id @ T*)p is
positive for all positive T* : B(K)* — B(H)*. By claims 1 and 2, tr(a - p) > 0
provided tr(a- p; ® p2) > 0 for all product states and hence all separable states.
By Lemma 2.1 we are done, for if p is entangled, then Ja with tr(p-a) < 0 and
tI‘(CL p1® pg) > 0. O

For the proof of the next theorem, we need the results of reference [174] in
Keyl, which is summarized as follows:

A linear map ® : A — B of C*-algebras is n-positive if ®®1d : AQM,, — B®
M, is positive, and completely positive (CP) if it is n-positive for all n > 1. It
is a theorem of Stormer (Lecture Notes in Physics 29, 1974) that CP(M,,, M,,)
is the convex cone generated by the maps M, > a — s*as € M,,, s € Mpxm.

A linear map ® : A — B of C*-algebras is n-copositive if 8@ 7T : A® M,, —
B ® M, is positive, and completely copositive (CCP) if it is n-copositive for all
n > 1. It is also true that CCP(M,,, M,,) is the convex cone generated by the
maps M, > a— s*a¥s € My,, s € Mpsm.

A natural question to ask in this context is: Is every positive map from A
to B is a sum of CP and CCP maps. By results of Stormer and Woronowicz
of the early 60s, the answer is yes for (A, B) = (Ma, Ms), and by a result of
Choi, the answer is no for (A4, B) = (M3, M3). The main results of [174] are
that the answer is yes for (A, B) = (M3, M3) and no for (4, B) = (My, My),
from which it follows that the answer is yes for (A, B) = (M3, Ms) and no for
(4, B) = (Mj, My).



Theorem 2.3 (Theorem 2.13, page 453) Consider a bipartite system B(H®
K) with dim H =2 and dim K = 2 or 3. A state p € S(H ® K) is separable if
and only if its partial transpose is positive.

EXERCISE: Supply the proof of Theorem 2.3 from reference [86] in Keyl
using reference [174].1°

Proposition 2.4 (Proposition 2.15, page 453) Fach ppt-state p € S(H ®
K) satisfies the reduction criterion. If dimH = 2 and dim K = 2 or 3, both
criteria are equivalent.

EXERCISE: Supply the proof (and the definitions!) of Proposition 2.4 from
references [85] and [42] in Keyl.

10Reference [86] also contains a proof of Theorem 2.2, which may be more illuminating than
the one (partially) provided here



