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On classification problem of Loday algebras

I. S. Rakhimov

Abstract. This is a survey paper on classification problems of some classes of
algebras introduced by Loday around 1990s. In the paper the author intends to
review the latest results on classification problem of Loday algebras, achieve-
ments have been made up to date, approaches and methods implemented.

1. Introduction

It is well known that any associative algebra gives rise to a Lie algebra, with
bracket [x, y] := xy − yx. In 1990s J.-L. Loday introduced a non-antisymmetric
version of Lie algebras, whose bracket satisfies the Leibniz identity

[[x, y], z] = [[x, z], y] + [x, [y, z]]

and therefore they have been called Leibniz algebras. The Leibniz identity combined
with antisymmetry, is a variation of the Jacobi identity, hence Lie algebras are
antisymmetric Leibniz algebras. The Leibniz algebras are characterized by the
property that the multiplication (called a bracket) from the right is a derivation but
the bracket no longer is skew-symmetric as for Lie algebras. Further Loday looked
for a counterpart of the associative algebras for the Leibniz algebras. The idea is to
start with two distinct operations for the products xy, yx, and to consider a vector
space D (called an associative dialgebra) endowed by two binary multiplications
� and � satisfying certain “associativity conditions”. The conditions provide the
relation mentioned above replacing the Lie algebra and the associative algebra by
the Leibniz algebra and the associative dialgebra, respectively. Thus, if (D,�,�)
is an associative dialgebra, then (D, [x, y] = x � y − y � x) is a Leibniz algebra.
The functor (D,�,�) −→ (D, [x, y]) has a left adjoint, the algebra (D,�,�) is the
universal enveloping dialgebra of the Leibniz algebra (D, [x, y]). The Kozsul dual
of the associative dialgebras are algebras (called dendriform algebras) possessing
two operations ≺ and � such that the product made of the sum x ≺ y + y � x is
associative. Loday has given the explicit description of the free dendriform algebras
by means of binary trees and constructed the (co)homology groups for dendriform
algebras which, as in the case of dialgebras, vanish on the free objects. The class of
dendriform algebras with dual-Leibniz algebras and associative algebras based on
the relationship between binary trees and permutations.
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226 I. S. RAKHIMOV

The (co)homology theory for dialgebras has been constructed by Loday. As it
was mentioned above he also has proved that the (co)homology groups vanish on
the free dialgebra. As a consequence, one gets a new approach to the (co)homology
theory for ordinary associative algebras. The surprising fact is that in the construc-
tion of the chain complex of the new classes of algebras the combinatorics of planar
binary trees is involved.

The purpose of this article is to review the classification results on four classes of
algebras introduced by Loday: associative dialgebras, dendriform algebras, Leibniz
and Zinbiel algebras. In fact, much attention is paid on algebraic classification prob-
lem of Leibniz algebras along with a brief review on classification of other classes
of Loday algebras, whereas the most (co)homological results, applications of Loday
algebras, the geometric classification problem, that is finding generic structural con-
stants in the sense of algebraic groups, the rigidity problems and finding Lie-group
like objects, and others are beyond the scope of the paper. The problems related to
the group theoretical realizations and integrability problems of Leibniz algebras are
studied by Kinyon and Weinstein [42]. Deformation theory of Leibniz algebras and
related physical applications of it are initiated by Fialowski, Mandal, Mukherjee
[32]. The notion of simple Leibniz algebra was suggested by Dzhumadil’daev in
[29]

2. Loday diagram

2.1. Leibniz algebras: appearance. It is well-known that the Chevalley-
Eilenberg chain complex of a Lie algebra g is the sequence of chain modules given
by the exterior powers of g

∧
∗ g : ... −→ ∧n+1

g
dn+1−→ ∧n

g
dn−→ ∧n−1

g
dn−1−→ ...

and the boundary operators dn : ∧ng −→ ∧n−1g classically defined by

dn(x1 ∧x2 ∧ ...∧xn) :=
∑
i<j

(−1)n−jx1 ∧ ...∧xi−1 ∧ ̂[xi, xj ]∧ ...∧xj−1∧ x̂j ∧ ...∧xn.

The property d ◦ d = 0, which makes this sequence a chain complex, is proved by
using the antisymmetry x∧ y = −y ∧ x of the exterior product, the Jacobi identity
[[x, y], z] + [[y, z], x] + [z, x], y] = 0 and the antisymmetry [x, y] = −[y, x] of the
bracket on g.

Let us consider the following chain complex replacing in the above chain com-
plex of the Lie algebra g by an algebra L and the exterior product ∧ by the tensor
product ⊗, respectively:

... −→ L⊗(n+1) dn+1−→ L⊗n dn−→ L⊗(n−1) dn−1−→ ...

If one rewrites the boundary operator as

dn(x1⊗x2⊗...⊗xn) =
∑

1≤i<j≤n

(−1)n−jx1⊗...⊗xi−1⊗ ̂[xi, xj ]⊗...⊗xj−1⊗x̂j⊗...⊗xn,

then the property d ◦ d = 0 is proved without making use of the antisymmetricity
properties of both the exterior product and the binary operation (bracket) on the
algebra L, it suffices that the bracket on L satisfies the so called Leibniz identity

[x, [y, z]] = [[x, y], z]− [[x, z], y].
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ON CLASSIFICATION PROBLEM OF LODAY ALGEBRAS 227

This was a motivation to introduce a new class of algebras called Leibniz algebras
by J.-L. Loday in 1990s. In fact, Leibniz algebras have been introduced in the mid-
1960’s by Bloh under the name D-algebras [16]. They appeared again after Loday’s
work [44], where they have been called Leibniz algebras. Thus a Leibniz algebra L
is a vector space over a field K equipped with a bilinear map

[·, ·] : L× L −→ L

satisfying the Leibniz identity

[x, [y, z]] = [[x, y], z]− [[x, z], y], ∀x, y, z ∈ L.

If dz(·) = [·, z] then the Leibniz identity is written as dz([x, y]) = [dz(x), y] +
[x, dz(y)] which is the Leibniz rule for the operator dz, where z ∈ L.

During the last 20 years the theory of Leibniz algebras has been actively studied
and many results on Lie algebras have been extended to Leibniz algebras.

The (co)homology theory, representations and related problems of Leibniz al-
gebras have been studied by Loday himself, his students and colleagues [47], [46].
Most developed part of the class of Leibniz algebras is its solvable and nilpo-
tent parts (and their subclasses, later on we review the results on classification
of these subclasses). However, in 2011 the analogue of Levi’s theorem was proved
by D. Barnes [14]. He showed that any finite-dimensional complex Leibniz algebra
is decomposed into a semidirect sum of its solvable radical and a semisimple Lie
algebra. As it is well-known that the semisimple part can be decomposed into a
direct sum of simple Lie algebras and therefore the main issue in the classifica-
tion problem of finite-dimensional complex Leibniz algebras is reduced to the study
of the solvable part. Therefore, the classification of solvable Leibniz algebras is
important to construct finite-dimensional Leibniz algebras.

2.2. Associative dialgebras: enveloping algebras of Leibniz algebras.
We start with a generalization of associative algebras called associative dialgebras
by Loday. Diassociative algebra D is a vector space equipped with the two
bilinear binary operations:

�: D ×D → D and �: D ×D → D

satisfying the axioms

(x � y) � z = (x � y) � z,
(x � y) � z = x � (y � z),
x � (y � z) = x � (y � z).

for all x, y, z ∈ D.
The classification of the associative dialgebras in low-dimensions has been given

by using the structure constants and a Computer program in Maple [15], [62], [63].

2.3. Category of Zinbiel algebras: Kozsul dual of Leibniz algebras.
Loday defined a class of Zinbiel algebras, which is Koszul dual to the category of
Leibniz algebras as follows.

Definition 2.1. Zinbiel algebra R is an algebra with a binary operation · :
R×R → R, satisfying the condition:

(a · b) · c = a · (b · c) + a · (c · b)
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228 I. S. RAKHIMOV

A.S. Dzhumadildaev et al. proved that any finite-dimensional Zinbiel algebra
is nilpotent and have given the lists of isomorphism classes of Zinbiel algebras in
dimension 3 [30]. Early 2-dimensional case has been classified by B. Omirov [51].
Further classifications have been carried out by using the isomorphism invariant
called characteristic sequence [3], [4], [5], [17] (the characteristic sequences have
been successfully used in Lie algebras case).

2.4. Category of Dendriform algebras: Kozsul dual of associative
dialgebras.

Definition 2.2. Dendriform algebra E is an algebra with two binary operations

�: E × E → E, ≺: E × E → E

satisfying the following axioms:

(a ≺ b) ≺ c = (a ≺ c) ≺ b+ a ≺ (b � c),
(a � b) ≺ c = a � (b ≺ c),

(a ≺ b) � c+ (a � b) � c = a � (b � c).

The essential results on Dendriform algebras have been obtained by Aguiar,
Guo and Ebrahimi-Fard [6], [31], [37]. There is classification of two-dimensional
dendriform algebras [70].

2.5. Loday Diagram and Kozsul duality. The results intertwining Loday
algebras are best expressed in the framework of algebraic operads. The notion of
diassociative algebra defines an algebraic operad Dias, which is binary and qua-
dratic. According to the theory of Ginzburg and Kapranov there is a well-defined
“dual operad” Dias!. Loday has showed that this is exactly the operad Dend of
the dendriform algebras, in other words a dual diassociative algebra is nothing but
a dendriform algebra. The similar duality can be established between the algebraic
operads Leib defined by the notion of Leibniz algebra and the algebraic operads
Zinb defined by the notion of Zinbiel algebra. Operadic dualities Com! = Lie,
As! = As have been proved in [33], Dias! = Dend is in [46] and Leib! = Zinb is
in [45]. The categories of algebras over these operads assemble into a commutative
diagram of functors which reflects the Koszul duality (see [46]).

Picture 1. Loday Diagram and Kozsul Duality.
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ON CLASSIFICATION PROBLEM OF LODAY ALGEBRAS 229

3. Leibniz algebras: Structural Theory

3.1. More on Leibniz algebras. In fact, the definition of the Leibniz alge-
bras given above is a definition of the right Leibniz algebras, whereas the identity
for the left Leibniz algebra is as follows

[x, [z, y]] = [[x, z], y] + [z, [x, y]], for all x, y, z ∈ L.

The passage from the right to the left Leibniz algebra can be easily done by con-
sidering a new product “[·, ·]opp” on the algebra by “[x, y]opp = [y, x].” Clearly, a
Lie algebra is a Leibniz algebra, and conversely, a Leibniz algebra L with property
[x, y] = −[y, x], for all x, y ∈ L is a Lie algebra. Hence, we have an inclusion func-
tor inc : Lie −→ Leib. This functor has a left adjoint imr : Leib −→ Lie which is
defined on the objects by LLie = L/I, where I is the ideal of L generated by all
squares. That is any Leibniz algebra L gives rise to the Lie algebra LLie, which is
obtained as the quotient of L by the relation [x, x] = 0. The I is the minimal ideal
with respect to the property that g := L/I is a Lie algebra. The quotient mapping
π : L −→ g is a homomorphism of Leibniz algebras. One has an exact sequence of
Leibniz algebras:

0 −→ I −→ L −→ LLie −→ 0.

We consider finite-dimensional algebras L over a fieldK of characteristic 0 (in fact it
is only important that this characteristic is not equal to 2). A linear transformation
d of a Leibniz algebra L is said to be a derivation if d([x, y]) = [d(x), y] + [x, d(y)]
for all x, y ∈ L. The set of all derivations of L is denoted by Der(L). Due to the op-
eration of commutation of linear operators Der(L) is a Lie algebra. Let us consider
da : L −→ L defined by da(x) = [x, a] for a ∈ L. Then the Leibniz identity is written
as da([x, y]) = [da(x), y] + [x, da(y)] for any a, x ∈ L showing that the operator da
for all a ∈ L is a derivation on the Leibniz algebra L. In other words, the right Leib-
niz algebra is characterized by this property, i.e., any right multiplication operator
is a derivation of L. Notice that for the left Leibniz algebras a left multiplication
operator is a derivation. The theory of Leibniz algebras was developed by Loday
himself with his coauthors. Mostly they dealt with the (co)homological problems
of this class of algebras. The study of structural properties of Loday algebras has
begun after private conversation between Loday and Ayupov in Strasbourg in 1994.

The automorphism group Aut(L) of a Leibniz algebra L can be naturally de-
fined. If the field K is R or C, then the automorphism group is a Lie group and
the Lie algebra Der(L) is its Lie algebra. One can consider Aut(L) as an algebraic
group (or as a group of K-points of an algebraic group defined over the field K).
Note that those results proven for the right Leibniz algebras (L, ·) can be easily
rewritten for the left Leibniz algebras (L, �) by using the x � y = y · x, and another
way around. Also note that for the right Leibniz algebras the set of all right mul-
tiplications rx form a Lie subalgebra ([ry, rx] = ry ◦ rx − rx ◦ ry = r[x,y]) of DerL
denoted by ad(L).

Let L be any right Leibniz algebra. Consider a subspace spanned by elements
of the form [x, x] for all possible x ∈ L denoted by I : I = SpanK{[x, x]| x ∈ L}.
(Loday has denoted it by Lann and another term “liezator” has been used by
Gorbatsevich [35]). In fact, I is a two-sided ideal in L. The product [L, I] is equal
to 0 due to the Leibniz identity. The fact that it is a right ideal follows from the
identity

[[x, x], y] = [[y, y] + x, [y, y] + x]− [x, x] in L.

Licensed to Univ of Calif, Irvine.  Prepared on Thu Sep 28 18:55:48 EDT 2017for download from IP 128.195.64.2.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms



230 I. S. RAKHIMOV

For a non-Lie Leibniz algebra L the ideal I always is different from the L. The
quotient algebra L/I is a Lie algebra. Therefore I can be viewed as a “non-Lie
core” of the L. The ideal I can also be described as the linear span of all elements
of the form [x, y] + [y, x]. The quotient algebra L/I is called the liezation of L
and it could be denoted by LLie. There is a natural action of the Lie algebra LLie

on a vector space I (multiplication in which is trivial). If the Leibniz algebra L is
commutative (i.e. [x, y] = [y, x],) then the subset [x, y]+[y, x] coincides with the set
[L,L] = {[x, y] x, y ∈ L}. But then liezation of the algebra L is just a commutative
Lie algebra L/[L,L]. Commutative Leibniz algebras are nilpotent, their class of
nilpotency is equal to 2. This kind of Leibniz algebras can be described in some
detail (Gorbatsevich’s suggestion!).

Let us now consider the centers of Leibniz algebras. Since there is no commu-
tativity there are two left and right centers, which are given by

Zl(L) = {x ∈ L|[x, L] = 0} and Zr(L) = {x ∈ L|[L, x] = 0},
respectively. Both these centers can be considered for the left and right Leibniz
algebras. For the right Leibniz algebra L the right center Zr(L) is an ideal, moreover
it is two-sided ideal (since [L, [x, y]] = −[L, [y, x]]) but the Zl(L) need not be a
subalgebra. For the left Leibniz algebra it is exactly opposite. In general, the left
and right centers are different; even they may have different dimensions. Obviously,
I ⊂ Zr(L). Therefore L/Zr(L) is a Lie algebra, which is isomorphic to the Lie
algebra ad(L) mentioned above.

Many notions in the theory of Lie algebras may be naturally extended to Leibniz
algebras. For example, the solvability is defined by the derived series:

Dn(L) : D1(L) = [L,L], Dk+1(L) = [Dk(L), Dk(L)], k = 1, 2, ...

A Leibniz algebra is said to be solvable if its derived series terminates. It is easy to
verify that the sum of solvable ideals in a Leibniz algebra also is a solvable ideal.
Therefore, there exists a largest solvable ideal R containing all other solvable ideals.
Naturally, it is called the radical of Leibniz algebra. Since the ideal I of a Leibniz
algebra L is abelian it is contained in the radical R of L.

The notion of nilpotency also can be defined by using the decreasing central
series

Cn(L) : C1(L) = [L,L], Ck+1(L) = [L,Ck(L)], k = 1, 2, 3, ... of L.

Despite of a certain lack of symmetry of the definition (multiplication by L only
from the right) members of this series are two-sided ideals, moreover, a simple
observation shows that the inclusion [Cp(L), Cq(L)] ⊂ Cp+q(L) is implied. Leibniz
algebra is called nilpotent if its central series terminates. As it is followed from
the definition that the centers (left and right) for nilpotent Leibniz algebras are
nontrivial. Any Leibniz algebra L has a maximal nilpotent ideal containing all
other nilpotent ideals of L. This ideal of L is said to be the nilradical of L denoted
by N. The nilradical is a characteristic ideal, i.e., it remains invariant under all
automorphisms of the Leibniz algebra L. Obviously, it is contained in the radical of
L and it equals to the nilradical of the solvable radical of L. The nilradical contains
left center, as well as the ideal I.

Linear representation (sometimes referred as module) of a Leibniz algebra is a
vector space V, equipped with two actions (left and right) of the Leibniz algebra L

[·, ·] : L× V −→ V and [·, ·] : V × L −→ V,
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ON CLASSIFICATION PROBLEM OF LODAY ALGEBRAS 231

such that the identity

[x, [y, z]] = [[x, y], z] + [y, [x, z]]

is true whenever one (any) of the variables is in V, and the other two in L, i.e.,

• [[x, y], v] = [[x, v], y]− [x, [y, v]];
• [[x, v], y]] = [[x, y], v]− [x, [v, y]];
• [[v, x], y]] = [[v, y], x]− [v, [x, y]].

Note that the concept of representations of Lie algebras and Leibniz algebras are
different. Therefore, such an important theorem in the theory of Lie algebras, as
the Ado theorem on the existence of faithful representation in the case of Leib-
niz algebras was proved much easier and gives a stronger result. It is because the
kernel of the Leibniz algebra representation is the intersection of kernels (in gen-
eral,different one’s) of right and left actions, in contrast to representations of Lie
algebras, where these kernels are the same. Therefore, an faithful representation of
Leibniz algebras can be obtained easier than faithful representation of the case of
Lie algebras (see [13]).

Proposition 3.1. Any Leibniz algebra has a faithful representation of dimen-
sion no more than dim(L) + 1.

Here is Barnes’s result on an analogue of Levi-Malcev Theorem for Leibniz
algebras.

Proposition 3.2. (Levi theorem for Leibniz algebras) For a Leibniz algebra L
there exists a subalgebra S which gives the decomposition L = S � R, where R is
the radical of L.

Barnes has given the non-uniqueness of the subalgebra S (the minimum dimen-
sion of Leibniz algebra in which this phenomena appears is 6). It is known that
in the case of Lie algebras the semi-simple Levi factor is unique up to conjugation.
Moreover, from the proof of the theorem it can be easily seen that S is a semisimple
Lie algebra.

3.2. Universal enveloping algebra (Poincare-Birkhoff-Witt Theorem).
The universal enveloping algebra for a Leibniz algebra has been constructed by Lo-
day and Pirashvili. Loday showed that such an algebra comes in as an algebra with
two bilinear binary associative operations satisfying three axioms (see Section 2.2)
(the algebra has been called associative dialgebra by Loday). Loday and Pirashvili
constructed an enveloping algebra of a Leibniz algebra L by using the concept the
free diassociative algebra. In algebras over fields this construction is interpreted as
follows. Let V be a vector space over a field K. By definition the free dialgebra
structure on V is the dialgebra D(V ) equipped with a K-linear map i : V −→ D
such that for any K-linear map f : V −→ D′, where D′ is a dialgebra over K, there
exists a unique factorization

f : V
i−→ D(V )

h−→ D′,

where h is a dialgebra morphism. The authors proved the existence of D(V ) giving
it as tensor module

T (V ) := K ⊕ V ⊕ V ⊗2 ⊕ · · · ⊕ V ⊗n ⊕ · · ·
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232 I. S. RAKHIMOV

with the two products inductively defined by

(v−n · · · v−1 ⊗ v0 ⊗ v1 · · · vm) � (w−p · · ·w−1 ⊗ w0 ⊗ w1 · · ·wq)

= v−n · · · v−1 ⊗ v0 ⊗ v1 · · · vmw−p · · ·wq,

(v−n · · · v−1 ⊗ v0 ⊗ v1 · · · vm) � (w−p · · ·w−1 ⊗ w0 ⊗ w1 · · ·wq)

= v−n · · · · · · vmw−p · · ·w−1 ⊗ w0 ⊗ w1 · · ·wq,
where vi, wj ∈ V.
The universal enveloping dialgebra of a Leibniz algebra L is defined as the

following quotient of the free dialgebra on L :

Ud(L) := T (L)⊗ L⊗ T (L)/{[x, y]− x � y + y � x| x, y ∈ L}.

3.3. Solvable Leibniz algebras. Owing to a result of Mubarakzjanov [49] a
new approach for studying the solvable Lie algebras by using their nilradicals was
developed (see [9], [21], [50], [73] and [74]). The analogue of Mubarakzjanov’s
results has been applied for Leibniz algebras in [23] which shows the importance of
the consideration of their nilradicals in Leibniz algebras case as well (also see [22],
[24], [40] and [41]).

Proposition 3.3. (Lie Theorem for solvable Leibniz algebras) A solvable right
Leibniz algebra L over C has a complete flag of subspaces which is invariant under
the right multiplication.

In other words, all linear operators rx of right multiplications can be simulta-
neously reduced to triangular form.

Proposition 3.4. Let R be the radical of a Leibniz algebra L, and N be its
nilradical. Then [R,L] ⊂ N.

Propositions 3.3 and 3.4 for left Leibniz algebras have been given in [35].

Corollary 3.5. One has [R,R] ⊂ N. In particular, [R,R] is nilpotent.

Corollary 3.6. Leibniz algebra L is solvable if and only if [L,L] is nilpotent.

Proposition 3.7. Multiplications (right and left) in the Leibniz algebra are
degenerate linear operators.

3.4. Nilpotent Leibniz algebras (Engel’s Theorem).

Proposition 3.8. (Engel’s theorem for Leibniz algebras) If all operators rx of
right multiplication for the right Leibniz algebra L are nilpotent, then the algebra L
is nilpotent. In particular, for right multiplications there is a common eigenvector
with zero eigenvalue.

There exists a basis with respect to that the matrices of all rx have upper-
triangular form. The notion of normalizer is defined as follows. The left and right
normalizers N l

L(U) and Nr
L(U) of a subset U of a Leibniz algebra L are given as

follows

N l
L(U) = {x ∈ L| [x, U ] ⊂ U} Nr

L(U) = {x ∈ L| [U, x] ⊂ U}.

Corollary 3.9. The normalizers of a subalgebra M in a nilpotent Leibniz
algebra L strictly contain M.
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ON CLASSIFICATION PROBLEM OF LODAY ALGEBRAS 233

Corollary 3.10. A subspace V ⊂ L generates a Leibniz algebra if and only if
V + [L,L] = L.

It is interesting to note that not all properties of nilpotent Lie algebras, even
a simple and well-known one’s, hold for the case of Leibniz algebras. For example,
there is a simple statement for nilpotent Lie algebras of dimension 2 or more: “the
codimension of the commutant is more or equal to 2”. For Leibniz algebras it
is not true (though not only for nilpotent, but for all solvable Leibniz algebras
we have codimL[L,L] > 0). For example, two-dimensional Leibniz algebra L =
span{e1, e2}, with [e1, e1] = e2 is nilpotent, but its commutant has codimension 1.
This is due to the fact that its liezation is one-dimensional. But for one-dimensional
Lie algebras above mentioned statement is incorrect. We obtain the following useful
corollary.

Corollary 3.11. If Leibniz algebra L is nilpotent and codimL([L,L]) = 1,
then the algebra L is generated by one element.

So for codimL([L,L]) = 1 a nilpotent Leibniz algebra is a kind of “cyclic”. The
study of such nilpotent algebras is the specifics of the theory of Leibniz algebras; Lie
algebra has no analogue. Such cyclic L can be explicitly described (Gorbatsevich’s
suggestion).

Corollary 3.12. The minimal number of generators of a Leibniz algebra L
equals dim L/[L,L].

3.5. Filiform Leibniz algebras. Let L be a Leibniz algebra. Define

L1 = L, Lk+1 = [Lk, L], k ≥ 1.

Clearly,
L1 ⊇ L2 ⊇ · · · .

Definition 3.13. A Leibniz algebra L is said to be a nilpotent, if there exists
s ∈ N, such that

L1 ⊃ L2 ⊃ ... ⊃ Ls = {0}.

Definition 3.14. A Leibniz algebra L is said to be a filiform, if dimLi = n− i,
where n = dimL and 2 ≤ i ≤ n.

The class of filiform Leibniz algebras in dimension n over K we denote by
Lbn(K). There is a breaking of Lbn(C) into three subclasses:

Lbn(C) = FLbn ∪ SLbn ∪ TLbn.

Classification results. Let us now to give an up-to-date results on classifi-
cation of complex Leibniz algebras. Two-dimensional Leibniz algebras have been
given by Loday [44]. In dimension three there are fourteen isomorphism classes (5
parametric family of orbits and 9 single orbits), the list can be found in [26] and
[69]. There is no simple Leibniz algebra in dimension three. Starting dimension four
there are partial classifications. The list of isomorphisms classes of four-dimensional
nilpotent Leibniz algebras has been given by Albeverio et al. [8]. The papers [22],
[23], [24], [40] and [41] are devoted to the classification problem of low-dimensional
complex solvable Leibniz algebras. In dimensions 5–10 there are classifications of
filiform parts of nilpotent Leibniz algebras. The notion of filiform Leibniz algebra
was introduced by Ayupov and Omirov [11]. According to Ayupov-Gómez-Omirov
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theorem, the class of all filiform Leibniz algebras is split into three subclasses which
are invariant with respect to the action of the general linear group. One of these
classes contains the class of filiform Lie algebras. There is a classification of the
class of filiform Lie algebras in small dimensions (Gómez-Khakimdjanov) and there
is a classification of filiform Lie algebras admitting a nontrivial Malcev Torus (Goze-
Khakimdjanov) [36]. The other two of the three classes come out from naturally
graded non-Lie filiform Leibniz algebras. For this case the isomorphism criteria
have been given (see [34] ). In [55] a method of classification of filiform Leibniz
algebras based on algebraic invariants has been developed. Then the method has
been implemented to low-dimensional cases in [65] and [66]. The third class that
comes out from naturally graded filiform Lie algebras, has been treated in the paper
[52]. Then the classifications of some subclasses and low-dimensional cases of this
class have been given [57], [58] and [59].

Definition 3.15. An action of algebraic group G on a variety Z is a morphism
σ : G× Z −→ Z with
(i) σ(e, z) = z, where e is the unit element of G and z ∈ Z,s
(ii) σ(g, σ(h, z)) = σ(gh, z), for any g, h ∈ G and z ∈ Z.

We shortly write gz for σ(g, z), and call Z a G-variety.

Definition 3.16. A morphism f : Z −→ K is said to be invariant if f(gz) =
f(z) for any g ∈ G and z ∈ Z.

Let V be a vector space of dimension n over an algebraically closed field K
(charK=0). Bilinear maps V × V → V form a vector space Hom(V ⊗ V, V ) of
dimension n3, which can be considered together with its natural structure of an

affine algebraic variety over K and denoted by Algn(K) ∼= Kn3

. An n-dimensional
algebra L over K can be regarded as an element λ(L) of Algn(K) via the bi-
linear mapping λ : L ⊗ L → L defining a binary algebraic operation on L : let
{e1, e2, . . . , en} be a basis of the algebra L. Then the table of multiplication of L is
represented by point (γk

ij) of this affine space as follows:

λ(ei, ej) =
n∑

k=1

γk
ijek.

Here γk
ij are called structure constants of L. The linear reductive group GLn(K)

acts on Algn(K) by (g ∗ λ)(x, y) = g(λ(g−1(x), g−1(y)))(“transport of structure”).
Two algebras λ1 and λ2 are isomorphic if and only if they belong to the same orbit
under this action.

Let LBn(K) be a subvariety of Algn(K) consisting of all n-dimensional Leibniz
algebras over a field K. It is stable under the above mentioned action of GLn(K).
As a subset of Algn(K) the set LBn(K) is specified by the system of equations
with respect to structure constants γk

ij :

n∑
l=1

(γl
jkγ

m
il − γl

ijγ
m
lk + γl

ikγ
m
lj ) = 0, where i, j, k = 1, 2, ..., n.

The first naive way to describe LBn(K) is to solve this quadratic system of equa-
tions with respect to γk

ij , which is somewhat cumbersome. It has been done for
some classes of algebras in low-dimensional cases [12], [39], etc. The complexity
of the computations increases much with increasing of the dimension. Therefore

Licensed to Univ of Calif, Irvine.  Prepared on Thu Sep 28 18:55:48 EDT 2017for download from IP 128.195.64.2.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms



ON CLASSIFICATION PROBLEM OF LODAY ALGEBRAS 235

one has to create some appropriate methods of study. However, to classify whole
LBn(K) for a fixed large n is a hopeless task. Hence one considers some subclasses
of LBn(K) to be classified. We propose a structure scheme for LBn(C) which is
counterpart of the structural scheme of finite dimensional complex Lie algebras.

Picture 2. Structural scheme for Leibniz algebras.

In [11] the authors split the class of complex filiform Leibniz algebras obtained
from naturally graded filiform non-Lie Leibniz algebras into two disjoint classes. If
we add here the class of filiform Leibniz algebras appearing from naturally graded
filiform Lie algebras then the final result can be written as follows.

Theorem 3.1. Any (n + 1)-dimensional complex non-Lie filiform Leibniz al-
gebra L admits a basis {e0, e1, e2, ..., en} such that L has a table of multiplication
one of the following form (unwritten product are supposed to be zero)

FLbn+1 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

[e0, e0] = e2,

[ei, e0] = ei+1, 1 ≤ i ≤ n− 1

[e0, e1] = α3e3 + α4e4 + ...+ αn−1en−1 + θen,

[ej , e1] = α3ej+2 + α4ej+3 + ...+ αn+1−jen, 1 ≤ j ≤ n− 2

SLbn+1 =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

[e0, e0] = e2,

[ei, e0] = ei+1, 2 ≤ i ≤ n− 1

[e0, e1] = β3e3 + β4e4 + ...+ βnen,

[e1, e1] = γen,

[ej , e1] = β3ej+2 + β4ej+3 + ...+ βn+1−jen, 2 ≤ j ≤ n− 2
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TLbn+1 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[e0, e0] = en,

[e1, e1] = αen,

[ei, e0] = ei+1, 1 ≤ i ≤ n− 1

[e0, e1] = −e2 + βen,

[e0, ei] = −ei+1, 2 ≤ i ≤ n− 1

[ei, ej ] = −[ej , ei] ∈ lin < ei+j+1, ei+j+2, . . . , en >, 1 ≤ i ≤ n− 3,

2≤j≤n− 1− i

[en−i, ei] = −[ei, en−i] = (−1)iδen, 1 ≤ i ≤ n− 1

where [·, ·] is the multiplication in L and δ ∈ {0, 1} for odd n and δ = 0 for even n.

4. Semisimple case

There is one more case which should be mentioned here. As it has been men-
tioned above the quotient of a Leibniz algebra with respect to the ideal I generated
by squares is a Lie algebra and I itself can be regarded as a module over this Lie
algebra. There are results on description of such a Leibniz algebras with a fixed
quotient Lie algebra. The case L/I = sl2 has been treated in [53]. In [19] the
authors describe Leibniz algebras L with L/I = sl2 � R, where R is solvable and
dimR = 2. When L/I = sl2 � R with dimR = 3 the result has been given in
[64]. All these results are based on the classical result on description of irreducible
representations of the simple Lie algebra sl2. Unfortunately, the decomposition of
a semisimple Leibniz algebra into direct sum of simple ideals is not true. Here
an example from [20] supporting this claim. Let L be a complex Leibniz algebra
satisfying the following conditions

(a) L/I ∼= sl12 ⊕ sl22;
(b) I = I1,1⊕I1,2 such that I1,1, I1,2 are irreducible sl

1
2-modules and dimI1,1 =

dimI1,2;
(c) I = I2,1⊕I2,2⊕ ...⊕I2,m+1 such that I2,k are irreducible sl22-modules with

1 ≤ k ≤ m+ 1.

Then there is a basis {e1, f1, h1, e2, f2, h2, x
1
0, x

1
1, x

1
2, ..., x

1
m, x2

0, x
2
1, x

2
2, ..., x

2
m} such

that the table of multiplication of L in this basis is represented as follows:

L ∼=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[ei, hi] = −[hi, ei] = 2ei,
[ei, fi] = −[fi, ei] = hi,
[hi, fi] = −[fi, hi] = 2fi,
[xi

k, h1] = (m− 2k)xi
k, 0 ≤ k ≤ m,

[xi
k, f1] = xi

k+1, 0 ≤ k ≤ m− 1,
[xi

k, e1] = −k(m+ 1− k)xi
k−1, 1 ≤ k ≤ m,

[x1
j , e2] = [x2

j , h2] = x2
j ,

[x1
j , h2] = [x2

j , f2] = −x1
j ,

with 1 ≤ i ≤ 2 and 0 ≤ j ≤ m. The algebra L can not be represented as a direct
sum of simple Leibniz algebras.

5. Generalizations

Several generalizations of Leibniz algebras have been introduced and studied.
We list just few of them below.

• n-Leibniz algebras have been introduced in [27]
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• The papers [7], [18] contain results on Cartan subalgebras, nilpotency
properties of n-Leibniz algebras (also see [54]).

• Results on an enveloping algebra and PBW theorem for n-Leibniz algebras
are given in [25]).

• Leibniz superalgebras are introduced and studied in [10].

6. Approaches applied: Classification of complex filiform
Leibniz algebras

In the classification problem of algebraic structures the isomorphism invariants
play an important role. The main isomorphism invariants have been used to classify
and distinguish classes of algebras are given as follows.

6.1. Discrete Invariants.

• The dimension of characteristic ideals and the nilindex;
• The characteristic sequence;
• The rank of nilpotent Lie algebras;
• The dimension of group (co)homologies;
• The characteristic of the derivation algebra;
• The dimension of the center, the right and left annihilators;
• The Dixmier Invariant.

6.2. Algebraic Invariants: new.
6.2.1. Vector space of algebras. Let n be an nonnegative integer. A solution

to the classification problem for n-dimensional nonassociative algebras consists
in setting up a list of examples which represents each isomorphism class exactly
once. Such a list may also be interpreted as a parametrization of the orbit space
GL(V )�Hom(V

⊗
V, V ), where V is an n-dimensional vector space acted upon

canonically by the general linear group, with the induced diagonal action on V
⊗

V
and its natural extension to Hom(V

⊗
V, V ). In this way, the classification problem

for n-dimensional algebras relates to questions in invariant theory.
6.2.2. Group action. A Leibniz algebra on n-dimensional vector space V over

a field K can be regarded as a pair L = (V, λ), where λ is a Leibniz algebra law on
V , the underlying vector space to L. As above by LBn(K) we denote the set of all
Leibniz algebra structures on the vectors space V over K. It is a subspace of the
linear space of all bilinear mappings V × V −→ V.

The linear reductive group GLn(K) acts on Algn(K) by (g ∗ λ)(x, y) =
g(λ(g−1(x), g−1(y))) (“transport of structure”).

Definition 6.1. Two laws λ1 and λ2 from LBn(K) are said to be isomorphic,
if there is g ∈ GLn(K) such that

λ2(x, y) = (g ∗ λ1)(x, y) = g−1(λ1(g(x), g(y)))

for all x, y ∈ V. Thus we get an action of GLn(K) on LBn(K).

The set of the laws isomorphic to λ is called the orbit of λ.
Remind that Lbn(K) denote the variety of all filiform Leibniz algebra structures

on n-dimensional vector space V over a field K.
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6.2.3. Strategy. Our strategy to classify Lbn(C) is as follows:

(1) We break up the class Lbn(C) into three subclasses. They are denoted
by FLbn, SLbn and TLbn, respectively. Two of the classes come out
from naturally graded non-Lie filiform Leibniz algebras and the third one
comes out from naturally graded filiform Lie algebras. Note that filiform
Lie algebras are in TLbn.

(2) We choose bases called adapted and write each of FLbn, SLbn and TLbn
in terms of their structure constants.

(3) Consider respective subgroup Gad of GLn(C) operating on FLbn, SLbn
and TLbn. This subgroup is called adapted transformations group. Hence
the classification problem reduces to the problem of classifying the orbits
of Gad acting on Lbn(C).

(4) Define elementary base change. We show that only few types of elementary
transformations act on Lbn(C). Therefore, it suffices to consider the only
specified base changes.

6.2.4. Results.

(1) The general isomorphism criteria for each of FLbn, SLbn and TLbn are
given by using rational invariant functions depending on structure con-
stants of algebras (see[52] and [55]).

(2) The classes FLbn, SLbn and TLbn are classified for n ≤ 10 (see [28], [56]
for SLb9, [65], [66] for FLbn and SLbn, n = 5, 6, 7, [71] for FLb10, [48] for
SLb10 and [1], [2], [38], [57] for TLbn, n = 5− 10). Each of FLbn, SLbn
and TLbn is broken down into disjoint invariant, with respect to base
change, subsets and for each of the subsets the respective set of rational
invariants (orbit functions) are given.

(3) In [58] and [59] some subclasses of TLbn are represented as a Leibniz cen-
tral extensions of a Lie algebra and they are classified up to isomorphisms.

6.3. (Co)homological approach. Let L be a Leibniz algebra and V be a
vector space over a field K (Char K �= 2. Then a bilinear map θ : L × L −→ V
with the property

θ(x, [y, z]) = θ([x, y], z)− θ([x, z], y), for all x, y, z ∈ L

is called Leibniz cocycle. The set of all Leibniz cocycles is denoted by ZL2 (L, V ).
Let θ ∈ ZL2(L, V ). Then, we set Lθ = L⊕ V and define a bracket [·, ·] on Lθ by

[x+ v, y + w] = [x, y]L + θ(x, y),

where [·, ·]L is the bracket on L.
The proof of the following lemma can be found by a simple computation.

Lemma 6.1. Lθ is a Leibniz algebra if and only if θ is a Leibniz cocycle.

The Leibniz algebra Lθ is called a central extension of L by V . Let ν : L −→
V be a linear map, and define η (x, y) = ν ([x, y]). Then it is easy to see that η
is a Leibniz cocycle called coboundary. The set of all coboundaries is denoted
by BL2 (L, V ) . Clearly, BL2(L, V ) is a subgroup of ZL2 (L, V ). We call the factor
space, denoted by HL2(L, V ) = ZL2 (L, V )

/
BL2 (L, V ), the second cohomology

group of L by V.
The following lemma shows that the central extension of a given Leibniz algebra

L is limited to the coboundary level.
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Lemma 6.2. Let L be a Leibniz algebra and η be a coboundary, then the central
extensions Lθ and Lθ+η are isomorphic.

When constructing a central extension of a Leibniz algebra L as Lθ = L ⊕ V ,
we want to restrict θ such a way that the center of Lθ equals V. In this way,
we discard constructing the same Leibniz algebra as central extension of different
Leibniz algebras.

The center of a Leibniz algebra L is defined as follows:

C(L) = {x ∈ L | [x, L] = [L, x] = 0}.
For θ ∈ ZL2 (L, V ) set

θ⊥ = {x ∈ L | θ(x, L) = θ(L, x) = 0},
which is called the radical of θ (Rad(θ)=θ⊥). We conclude that any Leibniz algebra
with a nontrivial center can be obtained as a central extension of a Leibniz algebra
of smaller dimension.

The proof of the following lemma is straightforward.

Lemma 6.3. If θ ∈ ZL2 (L, V ) then C(Lθ) = (θ⊥ ∩ C(L)) + V.

As a consequence of this lemma we get the following criterion.

Corollary 6.1. θ⊥ ∩ C(L) = {0} if and only if C(Lθ) = V.

Let e1, ..., ek be a basis of V and θ ∈ ZL2(L, V ). Then

θ(x, y) =

k∑
i=1

θi(x, y)ei,

where θi ∈ ZL2(L,K). Furthermore, θ is a coboundary if and only if all θi are.
The automorphism group Aut(L) acts on ZL2(L, V ) by φθ(x, y) = θ(φ(x), φ(y))

and η ∈ BL2(L, V ) if and only if φη ∈ BL2 (L, V ) . This induces an action of Aut(L)
on HL2 (L, V ) . The proof of the following theorem can be carried out for Leibniz
algebras by a minor modification of that for Lie algebras.

Theorem 6.1. Let θ (x, y) =
k∑

i=1

θi (x, y) ei and η (x, y) =
k∑

i=1

ηi (x, y) ei be

two elements of HL2 (L, V ). Suppose that θ⊥ ∩ C(L) = η⊥ ∩ C(L) = {0}. Then
Lθ

∼= Lη if and only if there is a ϕ ∈Aut(L) such that ϕηi span the same subspace
of HL2 (L, V ) as θi.

Let L = I1⊕I2, where I1 and I2, are ideals of L. Suppose that I2 is contained in
the center of L. Then I2 is called a central component of L. In order to keep away
from the Leibniz algebras with central components we use the following criterion.

Lemma 6.4. Let θ (x, y) =
k∑

i=1

θi (x, y) ei ∈ HL2 (L, V ) be such that θ⊥∩C(L) =

{0}. Then Lθ has no central components if and only if θ1, ..., θk are linearly inde-
pendent in HL2 (L,K).

LetGk(HL2(L,K)) be the Grassmanian of subspaces of dimension k inHL2(L,K).
One makes Aut(L) act on Gk(HL2(L,K)) as follows: W =< ϑ1, ϑ2, ..., ϑk >∈
Gk(HL2(L,K)),

φW =< φϑ1, φϑ2, ..., φϑk > .
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This definition is legitimate because if {ϑ1, ϑ2, ..., ϑk} is linear independent so is
{φϑ1, φϑ2, ..., φϑk}.

Define

Uk(L)=
{
W =< ϑ1, ϑ2, ..., ϑk >∈Gk(HL2(L,K)) : ϑ⊥

i ∩ Z(L)={0}, i=1, 2, ..., k
}
.

Lemma 6.5. The set Uk(L) is stable under the action of Aut(L).

The set of orbits under the actionAut(L) on Uk(L) is denoted by Uk(L)
/
Aut(L).

Here is an analogue of Skejelbred-Sund theorem (see [72]) for Leibniz algebras.

Theorem 6.2. There exists a canonical one-to-one map from Uk(L)
/
Aut(L)

onto the set of isomorphism classes of Leibniz algebras without direct abelian factor
which are central extensions of L by Kk and have k−dimensional center.

6.3.1. The classification procedure. This section deals with the procedure to
construct nilpotent Leibniz algebras which fixed dimension given that in low-dimen-
sions.

Let a nilpotent Leibniz algebra E over a field K of dimension n − k is given
as input. The outputs of the procedure are all nilpotent Leibniz algebras L of
dimension n such that L

/
C(L) ∼= E, and L has no central components. It runs as

follows.

(1) For a given algebra of smaller dimension, we list at first its center (or
the generators of its center), to help us identify the 2−cocycles satisfying
θ⊥ ∩ C(E) = 0.

(2) We also list its derived algebra (or the generators of the derived algebra),
which is needed in computing the coboundaries BL2(E,K).

(3) Then we compute all the 2−cocycles ZL2(E,K) and BL2(E,K) and
compute the set HL2(E,K) of cosets of BL2(E,K) in ZL2(E,K). For
each fixed algebra E with given base {e1, e2, ..., ek}, we may represent a

2−cocycles θ by a matrix θ =
∑k

i,j=1 cijΔij , where Δij is the k × k ma-

trix with (i, j) element being 1 and all the others 0. When computing the
2−cocycles, we will just list all the constraints on the elements cij of the
matrix θ.

(4) We have ZL2(L,K)=BL2(L,K)⊕W, whereW is a subspace of ZL2(E,K),
complementary to BL2(E,K), and

BL2(E,K) = {df | f ∈ C1(E,K) = E∗, }
where d is the coboundary operator. One easy way to obtain W is as
follows. When a nilpotent Leibniz algebra L of dimension n = r + k
has a basis in the form {e1, ..., er, er+1, ..., er+k} , where {e1, ..., er} are
the generators, and {er+1, ..., er+k} forms a basis for the derived algebra
[L,L], with er+t = [eit , ejt ], where 1 ≤ it, jt < r + t and 1 ≤ t ≤ k.
Consider C1(E,K) = E∗ generated by the dual basis

< f1, ..., fr, g1, ..., gk >

of
< e1, ..., er, er+1, ..., er+k > .

Then

BL2(E,K) = {dh | h ∈ L∗} =< df1, ..., dfr, dg1, ..., dgk > .
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Since dfi(x, y) = −fi([x, y]) = 0, we have BL2(E,K) =< dg1, ..., dgk > .
So one has

ZL2(E,K) =< dg1, ..., dgk > ⊕W.

For θ ∈ W, we may assume that θ(eit , ejt) = 0, t = 1, ..., k, otherwise, if
θ(eit , ejt) = uitjt �= 0, we choose θ + uitjtdgt instead. When we carry out
the group action on W , we do it as if it were done in HL2(E,K), and
may identify HL2(E,K) with W , by calling all the nonzero elements in
W the normalized 2−cocycles.

(5) Consider θ ∈ HL2(E, V ) with θ(x, y) =
∑k

i=1 θi(x, y)ei where θi ∈
HL2(E,K) are linearly independent, and θ⊥ ∩ C(E) = 0.

(6) Find a (maybe redundant) list of representatives of the orbits of Aut(L)
acting on the θ from 5.

(7) For each θ found, construct L = Eθ. Discard the isomorphic ones (see [60]
and [61]).
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