Complex Analysis Math 147—Winter 2006 Review Problems—Chapters 1-3; January 30, 2006

- 1. Write the number in the form a + bi with $a, b \in \mathbf{R}$. $\frac{3}{i} + \frac{i}{3}$, (2+i)(-1-i)(3-2i).
- 2. Let z be a complex number such that $\Re z > 0$. Prove that $\Re(1/z) > 0$.
- 3. Evaluate $3i^{11} + 6i^3 + \frac{8}{i^{20}} + i^{-1}$
- 4. Describe the set of points in the complex plane that satisfies each of the following $\Im z = 2$, |2z i| = 4, $|z| = \Re z + 2$, |z| = 3|z 1|, |z i| < 2.
- 5. Prove that if $(\overline{z})^2 = z^2$, then z is either real or purely imaginary.
- 6. Decide which of the following statements are true.
 - (a) Arg $z_1 z_2$ = Arg z_1 + Arg z_2 if $z_1 \neq 0$ and $z_2 \neq 0$.
 - (b) $\operatorname{Arg} \overline{z} = -\operatorname{Arg} z$ if z is not a real number.
- 7. Write each of the given numbers in the form a + bi with $a, b \in \mathbf{R}$. $\exp(-i\pi/4)$, $\frac{\exp(1+i3\pi)}{\exp(-1+i\pi/2)}$, $\exp(\exp i)$
- 8. Write each of the given numbers in the polar form $r \cos \theta + ir \sin \theta$.

$$\left(\cos\frac{2\pi}{9} + i\sin\frac{2\pi}{9}\right)^3$$
, $\frac{2+2i}{-\sqrt{3}+i}$, $\frac{2i}{3\exp(4+i)}$

9. The function $\gamma(t) = \exp(it)$, $0 \le t \le 2\pi$ describes the unit circle traversed in the counter-clockwise direction. Describe each of the following curves.

(a)
$$\gamma(t) = 3 \exp(it), \ 0 \le t \le 2\pi$$

(b)
$$\gamma(t) = 2 \exp(it) + i, \ 0 \le t \le 2\pi$$

- 10. Use the identity $[r(\cos \theta + i \sin \theta)]^n = r^n(\cos n\theta + i \sin n\theta)$ for any positive integer n to show that $(\sqrt{3} i)^7 = -64\sqrt{3} + i64$.
- 11. Write each of the following functions in the form w = u(x, y) + iv(x, y).
 - (a) $f(z) = 3z^2 + 5z + i + 1$ (b) $h(z) = \frac{z+i}{z^2+1}$ (c) $F(z) = \exp(3z)$
- 12. Show that the function $\operatorname{Arg} z$ is discontinuous at each point of the non-positive real axis.
- 13. Prove that if f is continuous at $z = z_0$, then so are the functions f(z) and $\Re f(z)$.

- 14. Find each of the following limits.
 - (a) $\lim_{z\to 2\pi i} (\exp z \exp(-z))$
 - (b) $\lim_{z \to -\pi i} (z+1) \exp\left(\frac{z^2 + \pi^2}{z + \pi i}\right)$
- 15. Where are each of the following functions analytic?
 - (a) $8\overline{z} + i$ (b) $\frac{z^3 + 2z + i}{z - 5}$ (c) $x^2 + y^2 + y - 2 + ix$ (d) $|z|^2 + 2z$
- 16. Use the Cauchy-Riemann equations to determine where the following functions are differentiable.

(a)
$$f(x+iy) = (x^{4/3}y^{5/3} + ix^{5/3}y^{4/3})/(x^2 + y^2)$$
 for $z \neq 0$ and $f(0) = 0$.
(b) $g(x+iy) = 3x^2 + 2x - 3y^2 - 1 + i(6xy + 2y)$.

- 17. Show that if f is analytic and real-valued on a connected open set, then f is a constant function.
- 18. Suppose f(z) and $\overline{f(z)}$ are analytic on an open connected set. Show that f is a constant function.
- 19. Write each of the following numbers in the form a + bi.
 - (a) $\exp(2 + i\pi/4)$
 - (b) $\cos(1-i)$
- 20. Show that the formula $\exp(iz) = \cos z + i \sin z$ holds for all complex z.
- 21. Evaluate each of the following.
 - (a) $\log i$
 - (b) $Log(\sqrt{3}+i)$
- 22. Find all values of the following.
 - (a) $2^{\pi i}$
 - (b) $(1+i)^3$
- 23. Find the principal value of the following.
 - (a) i²ⁱ
 (b) (1 + i)^{1−i}
- 24. Find all solutions of $\sin z = 2$.