Complex Analysis Math 147-Winter 2006

Review Problems-Chapters 1-3; January 30, 2006

1. Write the number in the form $a+b i$ with $a, b \in \mathbf{R}$.

$$
\frac{3}{i}+\frac{i}{3} \quad, \quad(2+i)(-1-i)(3-2 i) .
$$

2. Let z be a complex number such that $\Re z>0$. Prove that $\Re(1 / z)>0$.
3. Evaluate $\quad 3 i^{11}+6 i^{3}+\frac{8}{i^{20}}+i^{-1}$
4. Describe the set of points in the complex plane that satisfies each of the following $\Im z=2 \quad, \quad|2 z-i|=4 \quad, \quad|z|=\Re z+2 \quad, \quad|z|=3|z-1| \quad, \quad|z-i|<2$.
5. Prove that if $(\bar{z})^{2}=z^{2}$, then z is either real or purely imaginary.
6. Decide which of the following statements are true.
(a) $\operatorname{Arg} z_{1} z_{2}=\operatorname{Arg} z_{1}+\operatorname{Arg} z_{2}$ if $z_{1} \neq 0$ and $z_{2} \neq 0$.
(b) $\operatorname{Arg} \bar{z}=-\operatorname{Arg} z$ if z is not a real number.
7. Write each of the given numbers in the form $a+b i$ with $a, b \in \mathbf{R}$.

$$
\exp (-i \pi / 4) \quad, \quad \frac{\exp (1+i 3 \pi)}{\exp (-1+i \pi / 2)} \quad, \quad \exp (\exp i)
$$

8. Write each of the given numbers in the polar form $r \cos \theta+i r \sin \theta$.

$$
\left(\cos \frac{2 \pi}{9}+i \sin \frac{2 \pi}{9}\right)^{3} \quad, \quad \frac{2+2 i}{-\sqrt{3}+i} \quad, \quad \frac{2 i}{3 \exp (4+i)}
$$

9. The function $\gamma(t)=\exp (i t), 0 \leq t \leq 2 \pi$ describes the unit circle traversed in the counter-clockwise direction. Describe each of the following curves.
(a) $\gamma(t)=3 \exp (i t), 0 \leq t \leq 2 \pi$
(b) $\gamma(t)=2 \exp (i t)+i, 0 \leq t \leq 2 \pi$
10. Use the identity $[r(\cos \theta+i \sin \theta)]^{n}=r^{n}(\cos n \theta+i \sin n \theta)$ for any positive integer n to show that $(\sqrt{3}-i)^{7}=-64 \sqrt{3}+i 64$.
11. Write each of the following functions in the form $w=u(x, y)+i v(x, y)$.
(a) $f(z)=3 z^{2}+5 z+i+1$
(b) $h(z)=\frac{z+i}{z^{2}+1}$
(c) $F(z)=\exp (3 z)$
12. Show that the function $\operatorname{Arg} z$ is discontinuous at each point of the non-positive real axis.
13. Prove that if f is continuous at $z=z_{0}$, then so are the functions $\overline{f(z)}$ and $\Re f(z)$.
14. Find each of the following limits.
(a) $\lim _{z \rightarrow 2 \pi i}(\exp z-\exp (-z))$
(b) $\lim _{z \rightarrow-\pi i}(z+1) \exp \left(\frac{z^{2}+\pi^{2}}{z+\pi i}\right)$
15. Where are each of the following functions analytic?
(a) $8 \bar{z}+i$
(b) $\frac{z^{3}+2 z+i}{z-5}$
(c) $x^{2}+y^{2}+y-2+i x$
(d) $|z|^{2}+2 z$
16. Use the Cauchy-Riemann equations to determine where the following functions are differentiable.
(a) $f(x+i y)=\left(x^{4 / 3} y^{5 / 3}+i x^{5 / 3} y^{4 / 3}\right) /\left(x^{2}+y^{2}\right)$ for $z \neq 0$ and $f(0)=0$.
(b) $g(x+i y)=3 x^{2}+2 x-3 y^{2}-1+i(6 x y+2 y)$.
17. Show that if f is analytic and real-valued on a connected open set, then f is a constant function.
18. Suppose $f(z)$ and $\overline{f(z)}$ are analytic on an open connected set. Show that f is a constant function.
19. Write each of the following numbers in the form $a+b i$.
(a) $\exp (2+i \pi / 4)$
(b) $\cos (1-i)$
20. Show that the formula $\exp (i z)=\cos z+i \sin z$ holds for all complex z.
21. Evaluate each of the following.
(a) $\log i$
(b) $\log (\sqrt{3}+i)$
22. Find all values of the following.
(a) $2^{\pi i}$
(b) $(1+i)^{3}$
23. Find the principal value of the following.
(a) $i^{2 i}$
(b) $(1+i)^{1-i}$
24. Find all solutions of $\sin z=2$.
