Complex Analysis Math 147—Winter 2008
Review Problems for final exam; March 14, 2008

1. Let f be entire and suppose that the second derivative of f is bounded: $|f''(z)| \leq M$ for all $z \in \mathbb{C}$. Prove that f is a polynomial of degree at most 2.

 Hint: Use Liouville’s theorem on f'' and then the fact that in a polygonally connected open set, an analytic function whose derivative vanishes everywhere must be a constant.

2. Suppose that f is entire and that $|f(z)| \leq |z|^{2.5}$ for all $|z| > 100$.
 (a) Given z_0, show that for R sufficiently large, $|f^{(3)}(z_0)| \leq 3!R^{3.5}/(R - |z_0|)^4$.
 (b) Prove that f must be a polynomial of degree at most 2.

 Hint: Use the Cauchy integral formula for the third derivative of f and estimate the integral using the fact that since $|z| = R$, $|z - z_0| \geq R - |z_0|$

3. Let f be an entire function and let $a, b \in \mathbb{C}$.
 (a) Evaluate the integral $\int_{|z|=R} \frac{f(z)}{(z-a)(z-b)} \, dz$ if $R > |a|$ and $R > |b|$.
 (b) Use the result of (a) to give a proof of Liouville’s theorem.

 Hint: Estimate the integral and let $R \to \infty$.

4. (a) Show that the following function is analytic on the open unit disk: $f(z) = \int_0^1 \frac{dt}{1-tz}$

 Hint: Use Morera’s theorem and an interchange of the order of integration.

 (b) Find a power series expansion for this function.

 Hint: Use the known power series for the integrand and interchange the summation and integration.

5. Let $0 < r < R$ and $A := \{z \in \mathbb{C} : r \leq |z| \leq R\}$. Show that there is a positive number ϵ such that for each polynomial p,

 $\sup \{|p(z) - z^{-1}| : z \in A\} \geq \epsilon$.

 Hint: Suppose it is not true, either find a sequence of polynomials converging uniformly to $1/z$ on compact subsets of A, then integrate over a circle, or alternatively, use the estimate on contour integrals.

6. Let f_n be a sequence of functions which are continuous on the closed unit disk $\{|z| \leq 1\}$ and analytic on the open disk $\{|z| < 1\}$. Suppose the f_n converges uniformly to a function f on the unit circle $\{|z| = 1\}$. Show that f can be extended to a function g on $\{|z| \leq 1\}$ which is analytic on $\{|z| < 1\}$.

 Hint: Apply the maximum modulus theorem to $f_n - f_m$.

1
7. (a) Prove that if \(f \) is an automorphism of the open unit disk (that is, \(f : \{ |z| < 1 \} \to \{ |z| < 1 \} \) is analytic, one-to-one and onto) and if \(f(0) = 0 \), then \(f(z) = e^{i\theta}z \) for all \(|z| < 1 \).

Hint: Assuming, as you may, that \(f^{-1} \) is analytic, use Schwarz’s lemma for \(f \) and \(f^{-1} \).

For (b) and (c), let \(D \) be an open subset of \(\mathbb{C} \) and fix a point \(a \in D \).

(b) Show that there is at most one analytic function \(f : D \to \{ |z| < 1 \} \) which is one-to-one and onto and satisfies \(f(a) = 0 \) and \(f'(a) > 0 \).

Hint: If \(f \) and \(g \) are two such functions, then \(f \circ g^{-1} \) is an automorphism of the open unit disk. (Also, recall that \((g^{-1})'(g(z)) = 1/g'(z) \).

(c) Let \(g \) be any one-to-one analytic function mapping \(D \) onto the open unit disk. Show that

\[
g(z) = \frac{e^{i\theta}f(z) + \alpha}{1 + \overline{\alpha}e^{i\theta}f(z)} \quad (z \in D)
\]

where \(\alpha \) and \(\theta \) are defined by \(\alpha = g(a) \) and \(g'(a) = e^{i\theta}|g'(a)| \).

Hint: Let \(h := \varphi_{-\alpha} \circ g \) and evaluate \(h'(a) \), where as usual \(\varphi_{\alpha}(z) = \frac{z+\alpha}{1+\overline{\alpha}z} \).

8. Let \(f \) be analytic on an open polygonally connected set \(D \) containing an open interval \(I \) of the real axis. Suppose that \(D \) is symmetric about the real axis: \(z \in D \iff \overline{z} \in D \), and that \(f \) is real-valued on \(I \). Prove that \(\overline{f(z)} = f(z) \) for all \(z \in D \).

Hint: Define \(g(z) = \overline{f(z)} \). Show, by using the Cauchy-Riemann equations that \(g \) is analytic on \(D \). Then use the identity theorem to show that \(f = g \).

9. Show that there does not exist a one-to-one analytic function of \(\{ z \in \mathbb{C} : 0 < |z| < 1 \} \) onto the open unit disk \(\{ z \in \mathbb{C} : |z| < 1 \} \).

Hint: If \(f \) is such a function, show first that it would have an analytic extension \(g \) to \(z = 0 \). Then consider the cases \(|g(0)| = 1 \) and \(|g(0)| < 1 \). In the latter case there exists \(\beta \) with \(0 < |\beta| < 1 \) and \(f(\beta) = g(0) \). (Note that \(f(\beta) = g(\beta) \).) Obtain a contradiction by justifying the following steps:

- For \(\epsilon > 0 \), there exists \(\delta > 0 \) such that \(f^{-1}(B(g(0), \delta)) \subset B(\beta, \epsilon) \)
- For this \(\delta \), there exists \(\delta' > 0 \) such that \(g(B(0, \delta')) \subset B(g(\beta), \delta) \) and hence \(f(B(0, \delta') - \{0\}) \subset B(g(\beta), \delta) \)
- \(B(0, \delta') - \{0\} \subset B(\beta, \epsilon) \)

10. Suppose \(f \) is analytic and zero-free in a simply connected domain \(D \). Show there is an analytic function \(g \) in \(D \) with \(e^{g(z)} = f(z) \).

Hint: Fix \(z_0 \in D \) and define \(h(z) = \frac{1}{z_0} \int_{z_0}^{z} \frac{f'(w)}{f(z)} \, dw \) where the integral is taken over any curve in \(D \) from \(z_0 \) to \(z \). Explain why \(h \) is well-defined and analytic in \(D \) with derivative \(h' = f'/f \) and then show that \(\frac{d}{dz}(e^{-h(z)}f(z)) = 0 \).