Complex Analysis Math 147-Winter 2008 Review Problems for final exam; March 14,2008

1. Let f be entire and suppose that the second derivative of f is bounded: $\left|f^{\prime \prime}(z)\right| \leq M$ for all $z \in \mathbf{C}$. Prove that f is a polynomial of degree at most 2 .

Hint: Use Liouville's theorem on $f^{\prime \prime}$ and then the fact that in a polygonally connected open set, an analytic function whose derivative vanishes everywhere must be a constant.
2. Suppose that f is entire and that $|f(z)| \leq|z|^{2.5}$ for all $|z|>100$.
(a) Given z_{0}, show that for R sufficiently large, $\left.\left|f^{(3)}\left(z_{0}\right)\right| \leq 3!R^{3.5} /\left(R-\left|z_{0}\right|\right)^{4}\right)$
(b) Prove that f must be a polynomial of degree at most 2 .

Hint: Use the Cauchy integral formula for the third derivative of f and estimate the integral using the fact that since $|z|=R,\left|z-z_{0}\right| \geq R-\left|z_{0}\right|$
3. Let f be an entire function and let $a, b \in \mathbf{C}$.
(a) Evaluate the integral $\int_{|z|=R} \frac{f(z)}{(z-a)(z-b)} d z$ if $R>|a|$ and $R>|b|$.
(b) Use the result of (a) to give a proof of Liouville's theorem.

Hint: Estimate the integral and let $R \rightarrow \infty$.
4. (a) Show that the following function is analytic on the open unit disk: $f(z)=\int_{0}^{1} \frac{d t}{1-t z}$

Hint: Use Morera's theorem and an interchange of the order of integration.
(b) Find a power series expansion for this function.

Hint: Use the known power series for the integrand and interchange the summation and integration.
5. Let $0<r<R$ and $A:=\{z \in \mathbf{C}: r \leq|z| \leq R\}$. Show that there is a positive number ϵ such that for each polynomial p.

$$
\sup \left\{\left|p(z)-z^{-1}\right|: z \in A\right\} \geq \epsilon .
$$

Hint: Supposing it is not true, either find a sequence of polynomials converging uniformly to $1 / z$ on compact subsets of A, then integrate over a circle, or alternatively, use the estimate on contour integrals.
6. Let f_{n} be a sequence of functions which are continuous on the closed unit disk $\{|z| \leq 1\}$ and analytic on the open disk $\{|z|<1\}$. Suppose the f_{n} converges uniformly to a function f on the unit circle $\{|z|=1\}$. Show that f can be extended to a function g on $\{|z| \leq 1\}$ which is analytic on $\{|z|<1\}$.

Hint: Apply the maximum modulus theorem to $f_{n}-f_{m}$.
7. (a) Prove that if f is an automorphism of the open unit disk (that is, $f:\{|z|<1\} \rightarrow$ $\{|z|<1\}$ is analytic, one-to-one and onto) and if $f(0)=0$, then $f(z)=e^{i \theta} z$ for all $|z|<1$

Hint: Assuming, as you may, that f^{-1} is analytic, use Schwarz's lemma for f and f^{-1}.

For (b) and (c), let D be an open subset of \mathbf{C} and fix a point $a \in D$.
(b) Show that there is at most one analytic function $f: D \rightarrow\{|z|<1\}$ which is one-to-one and onto and satisfies $f(a)=0$ and $f^{\prime}(a)>0$.

Hint: If f and g are two such functions, then $f \circ g^{-1}$ is an automorphism of the open unit disk. (Also, recall that $\left.\left(g^{-1}\right)^{\prime}(g(z))=1 / g^{\prime}(z)\right)$.
(c) Let g be any one-to-one analytic function mapping D onto the open unit disk. Show that

$$
g(z)=\frac{e^{i \theta} f(z)+\alpha}{1+\bar{\alpha} e^{i \theta} f(z)} \quad(z \in D)
$$

where α and θ are defined by $\alpha=g(a)$ and $g^{\prime}(a)=e^{i \theta}\left|g^{\prime}(a)\right|$.
Hint: Let $h:=\varphi_{-\alpha} \circ g$ and evaluate $h^{\prime}(a)$, where as usual $\varphi_{\alpha}(z)=\frac{z+\alpha}{1+\bar{\alpha} z}$
8. Let f be analytic on an open polygonally connected set D containing an open interval I of the real axis. Suppose that D is symmetric about the real axis: $z \in D \Leftrightarrow \bar{z} \in D$, and that f is real-valued on I. Prove that $\overline{f(z)}=f(\bar{z})$ for all $z \in D$.

Hint: Define $g(z)=\overline{f(\bar{z})}$. Show, by using the Cauchy-Riemann equations that g is analytic on D. Then use the identity theorem to show that $f=g$.
9. Show that there does not exist a one-to-one analytic function of $\{z \in \mathbf{C}: 0<|z|<1\}$ onto the open unit disk $\{z \in \mathbf{C}:|z|<1\}$.

Hint: If f is such a function, show first that it would have an analytic extension g to $z=0$. Then consider the cases $|g(0)|=1$ and $|g(0)|<1$. In the latter case there exists β with $0<|\beta|<1$ and $f(\beta)=g(0)$. (Note that $f(\beta)=g(\beta)$.) Obtain a contradiction by justifying the following steps:

- For $\epsilon>0$, there exists $\delta>0$ such that $f^{-1}(B(g(0), \delta)) \subset B(\beta, \epsilon)$
- For this δ, there exists $\delta^{\prime}>0$ such that $g\left(B\left(0, \delta^{\prime}\right)\right) \subset B(g(\beta), \delta)$ and hence $f\left(B\left(0, \delta^{\prime}\right)-\{0\}\right) \subset B(g(\beta), \delta)$
- $B\left(0, \delta^{\prime}\right)-\{0\} \subset B(\beta, \epsilon)$

10. Suppose f is analytic and zero-free in a simply connected domain D. Show there is an analytic function g in D with $e^{g(z)}=f(z)$.

Hint: Fix $z_{0} \in D$ and define $h(z)=\int_{z_{0}}^{z} \frac{f^{\prime}(w)}{f(w)} d w$ where the integral is taken over any curve in D from z_{0} to z. Explain why h is well-defined and analytic in D with derivative $h^{\prime}=f^{\prime} / f$ and then show that $\frac{d}{d z}\left(e^{-h(z)} f(z)\right)=$ 0.

