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1. Introduction

It was conjectured by Kaplansky [17], and proved by Sakai [19], that a derivation
6 of a C*-algebra 3t is automatically norm continuous. From this, Kadison [16:
Lemma 3] deduced that 8 is continuous also in the ultraweak topology, when 31 is
represented as an algebra of operators acting on a Hilbert space. Subsequently,
Johnson and Sinclair [11] proved the automatic norm continuity of derivations of a
semi-simple Banach algebra. For earlier related results, we refer to [20, 3, 5, 9].

In this paper, we generalize the above results of Sakai and Kadison, by considering
derivations from a C*-algebra 31 into a Banach 3t-module Ji (definitions are given in
the next section). The questions we answer arise naturally from recent work on the
cohomology of operator algebras [13, 14, 15]. Although we express our results in
cohomological notation, the present paper does not assume any knowledge of the
articles just cited. It turns out that the optimal situation obtains: our derivations are
automatically norm continuous (Theorem 2) and, for an appropriate class of dual
3l-modules M, they are continuous also relative to the ultraweak topology on 31 and
the weak * topology on Ji (Theorem 4). Our proof of norm continuity is a develop-
ment of an argument used by Johnson and Parrott [12] in a particular case, and is
perhaps a little simpler than the treatment used by Sakai [19] when Ji — 31.
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2. Notation and terminology

Except when the context indicates the contrary, it is assumed that our Banach
algebras and Banach spaces have complex scalars. With 2tf a Hilbert space, we
denote by 3b(Jif) the * algebra of all bounded linear operators acting on 34?. In the
context of C*-algebras, the term homomorphism is reserved for * homomorphisms.
By a representation of a C*-algebra 31, we always mean a * representation 0 on a
Hilbert space Jtf; and we assume that the linear span of the set {<f)(A) x: A e % x e Jf}
is everywhere dense in 34?. This last condition implies that the ultraweak (equivalently,
weak, or strong) closure 0(31)" of 0(31) contains the identity operator / on 34?. The
set of all positive elements of 31 is denoted by 31+.

If 31 is a Banach algebra (with unit /), and Ji is a Banach space, we describe Ji
as a Banach ^.-module if there are bounded bilinear mappings (A, m) -*• Am,
(A, m) -* mA: 31 x Ji -*• Ji such that (Im = ml — m for each m in JI) and the usual
associative law holds for each type of triple product, AlA2m, AlmA2,mAiA2.
By a dual %-module we mean a Banach 3T-module Ji with the following property: Ji is
(isometrically isomorphic to) the dual space of a Banach space Ji * and, for each A
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in 31, the mappings m -> Am, m -> mA: Ji -*• Jt are weak * continuous. In these
circumstances, we refer to Jt* as the predual of Ji, and write <m, co> in place of
W(Q>) when meJt and coeJt^. If 31 is a C*-algebra acting on a Hilbert space 3tf,
and Jt is a. dual 3l-module, we describe ^# as a dual normal 3I-module if, for each
m in Jt, the mappings A -> ,4m, /I -> m^l: 31 -> ^# are ultraweak—weak * continuous.

Banach modules and dual modules provide the natural setting in which to study
norm continuous cohomology of Banach algebras, while ultraweakly continuous
cohomology of operator algebras is developed in the context of dual normal modules
[10,13,14,15]. The simplest example of a Banach module for a Banach algebra 31 is
31 itself, with Am and mA interpeted as products in 31. When 31 is a C*-algebra
acting on a Hilbert space Jf, we obtain a dual normal 3I-module by taking any
ultraweakly closed subspace Ji of &(yf) which contains the operator products Am,
mA whenever A e 31, m e Ji. For the predual Jt*, we can take the Banach space of
all ultraweakly continuous linear functionals on Ji [7; Theoreme 1 (iii), p. 38], and
the weak * topology on Jt is then the ultraweak topology. Examples of interest
arise with Ji = 3I~, or Jt = ^(Jf).

By a derivation, from a Banach algebra 31 into a Banach 3l-module Jt, we mean
a linear mapping b : 31 -*• Jt such that

8(AB) = A5(B)+8(A) B (A, Be 31).

We denote by Z1(3I, Ji} the set of all derivations from 31 into Jt, and write
Zc* (31, Jt) for the set of all norm continuous derivations from 31 into Jt. When 3T is a
C*-algebra acting on a Hilbert space «?f and Ji is a dual normal 3l-module, Zw

1 (31, Jt)
denotes the set of all derivations, from 31 into Ji, which are ultraweak—weak*
continuous. An easy application of the principle of uniform boundedness shows that

The notation just introduced is taken from the cohomology theory of Banach algebras,
in which derivations are the 1 — cocycles.

When X and Y are Banach spaces in duality, we denote by o(X, Y) the weak
topology induced on X by Y.

3. Automatic continuity theorems

Before proving the norm continuity of all derivations from a C*-algebra 31 into
a Banach 3t-module Ji, we require the following simple lemma.

LEMMA 1. If J is a closed two-sided ideal in a C*-algebra 31, AeJ, BeJ+,
\\B\\ ̂  1 and AA* < B4, then A = BC for some C in J with ||C|| < 1.

Proof. We may assume that 31 has an identity /, and define Ct in J, for each
positive real number t, by Ct = (B + tl)'1 A. Then

CtC* = (B + tl)-1 AA*

the last inequality results easily from consideration of the functional representation
of the commutative C*-algebra generated by B. Hence
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Moreover,

cs-ct = (t-
and

(cs-ct)(cs-cty
= \t-s\2 (B+sr)-1 (B + tiy1 AA*(B + tI)~i

^ \t-s\2 (B + sI)-1 (B + tiy1 B* (B + tiy1

so | |Cs-Cr| | < \t-s\ whenever s, t > 0.
From the preceding discussion it follows that C, converges in norm, as t -* 0,

to some C in 91. Since

CteJ, HCIK1, (B + tI)Ct = A,

we have Ce J, \\C\\ < 1 and BC = A.

THEOREM 2. IfSSi is a C*-algebra and M is a Banach M-module, then

Proof. With p in Z 1 ^ , Jt\ let J be the set of all elements A in SH for which the
mapping

T -> p(AT):VL-+Jl

is norm continuous. It is clear that J is a right ideal in SH: and the relation

p(BAT) = Bp(AT) + p(B)AT (AeJ:B,TeM)

shows that J is also a left ideal. Since

it follows that J is the set of all A in 91 for which the mapping

SA : T-> Ap(T) : S&-+J(

is norm continuous. If Au A2,... € J, Ae$t and \\A — An\\ -+ 0, then each SAn is a
bounded linear operator, and

SA(T) = Km SAn(T) (Te«) .

By the principle of uniform boundedness, SA is norm continuous, so A e J. We
have now shown that J is a closed two-sided ideal in 91.

We assert that the restriction p\ J is norm continuous. For suppose the contrary.
Then, we can choose Au A2 ... in J such that

With 5 in J defined by £ = (l,An An*)*, it follows from Lemma 1 that An = BCn

for some Cn in J with ||CJ| ^ 1. The conditions
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show that the mapping T -*• p(BT) is unbounded—a contradiction, since BeJ.
This proves our assertion that p\ J is bounded.

We claim next that the C*-algebra 21/J is finite-dimensional. For suppose the
contrary, so that 21/ J has an infinite-dimensional closed commutative * subalgebra
j / [18]. Since the carrier space X of J / is infinite, it results easily from the iso-
morphism between $0 and C0(X) that there is a positive operator H in sf whose
spectrum sp (H) is infinite. Hence there exist non-negative continuous functions
/i>/2> •••» defined on the positive real axis, such that

0 0 = 1,2,...).

With p the natural mapping from 21 onto 21/ J, there is a positive element K in 2t
such that p(K) = H. If Sj = fj(K) (j = 1,2,...), then S, e 21 and

pis/) = K/,-(K))2 = U-(P(*0)]2 = urn? * o.
Thus

If we now replace Sj by an appropriate scalar multiple, we may suppose also that
\\Sj\\ < 1.

Since Sj2 £ J, the mapping T -»• p(Sy
2 T) is unbounded. Hence there is a 7} in

2t such that
\\Tj\\ < 2-J, \\p(Sj2 Tj)\\ > M\\p(Sj)\\+j,

where M is the bound of the bilinear mapping (A, m) -*• mA : 21 x M -* M. With
C in 21 defined to be 2 Sj Tp we have ||C|| < 1 and S, C = 5 / T}. Hence

= \\p(SJC)-p(SJ)C\\

a contradiction, since 115,11 ^ 1 and the mapping T -> Tp(C) is bounded. This
proves our assertion that 2I/J is finite-dimensional.

Since p\ J is norm continuous and J has finite codimension in % it follows that p
is norm continuous.

Remark 3. The above proof of Theorem 2 can be abbreviated a little if, in place
of Lemma 1, we appeal to the much more sophisticated factorization theorem of
Johnson [8] and Varopoulos [21: Lemma 2]. However, it is perhaps desirable to give
a simpler proof, within the framework of elementary C*-algebra theory. The idea
of proving and exploiting the cofiniteness of the ideal J can be traced back, through
[12,9], to its origins in the work of Bade and Curtis [3].

THEOREM 4. / / 0 is a faithful representation of a C*'-algebra 21 and M is a dual
normal <j)(^)~-module, then Z1(0(2I), M) = Zw" (0(21), Jt\

Proof. With n the universal representation of 21, there is an ultraweakly con-
tinuous homomorphism $ from 7i(2l)~ onto 0(21)~ such that $(n(A)) = $(A) for
each A in 21 [6: 12.1.5, p. 237], The kernel of $ is an ultraweakly closed two-sided
ideal in 7r(2t)~, and so has the form 7r(2T)~ (/—P) for some projection P in the centre
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of 7r(2l)~ [7; Corollaire 3, p. 42]. The restriction a of $ to ;r(2t)~ P is thus an iso-
morphism from 7r(2T)~ P onto 0(2t)~ a n d , as such, is both isometric and ultraweakly
bicontinuous [7; Corollaire 1, p. 54]. Moreover u(n(A)P) = (j)(A) for each A in 2T:
so a carries ;r(2t) P onto 0(31).

We can define a left and a right action of 7r(2T)~ on Jl by

A.m = <x(AP)m, m.A = mot(AP) (m e Jt, A e n(W). (1)

In this way, Jl becomes a dual normal 7i(2T)~ -module and, since a(P) is the identity
element of 0(20" ,

P.m = m.P = m (me Jit). (2)

Suppose that 3 eZ 1 (0(21),.//). By Theorem 2, <5 is norm continuous, so we can
define a bounded linear mapping 5P: 7r(2l) ->• Jl by

SP(A) = 3(<x(AP)) (Aenm). (3)

From (3) and (1),

dP(AB)-A.5P(B)-5P(A).B

= S(a(AP)oL(BP))-oL(AP)d(oi(BP))-5((x(AP))a(BP)

= 0 (A, B e 7r(2T));

so 5PeZc
l (7r(2T), Jl). For each a> in the predual Jl* of .//, the linear functional

coo dP on 7i(2T) is norm continuous and therefore [6; 12.1.3, p. 236] ultraweakly
continuous. It follows that the mapping 5P: 7i(2t) -> Jt is ultraweak—weak *
continuous. From the Kaplansky density theorem, and the weak * completeness of
closed balls in Jl, it follows that bP extends without increase in norm to an ultraweak
—weak * continuous linear mapping 5P from TT(21)" into Jl. A simple continuity
argument shows that SP is a derivation, so 5i>eZw

1 (n(SH)~, Jl).
By (2),

5P(P) = lP{P2)

so SP(P) = 0. Thus, for each A in 7c

5P(AP) = 5P

= 5P(A) = 5P(A) = 5(a(AP)).

It follows that

The ultraweak continuity of a"1 and the ultraweak—weak * continuity of BP now
imply that SeZj (0(21), Jt).

We outline a second proof of Theorem 4, which is similar in its main ideas to the
one given by Kadison ([16; Lemma 3]: see also [7; Lemme 4, p. 309]) in the case
Jl = 0(21). Suppose 21 is a C*-algebra acting on a Hilbert space tf, and Jl is a dual
normal 2t~"-module. For each A in 2l~ and co in Jt*, the linear functionals

m -> (Am, coy, m -*• (jnA, co)
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on Ji are weak * continuous. Hence we can define elements coA and Aw of Jt * by

(m, coA} = (Am, <»>, (m, A(o)> = (mA, co), (4)

for all m in Jt, co in Ji * and A in 9l~.
With 8 in Zl(%, Ji), b is norm continuous by Theorem 2. We have to show that,

for each co in Ji%, the linear functional / : A -*• (5(A), co} on 91 is ultraweakly con-
tinuous. With 91 x

 + the set of positive operators in the unit ball of 91, it suffices to
show that the restriction f\ 911

 + is continuous at 0 in the strong topology (equivalently,
the strong * topology, since the operators are self-adjoint) [7; Corollaire, p. 45].
For Tin 9 1 / ,

whence

l /(T) |< | |5 | | ( | |a)T*| | + ||T*G)||). (5)

If T converges to 0 in the strong topology, the same is true of T*, since

for each x in J^. Moreover, strong continuity of / | 9 I 1
+ at 0 follows from (5) if we

prove that ||coT*|| and ||T*co|| both tend to 0. Accordingly, it suffices to prove the
following result, which may be of independent interest.

LEMMA 5. If 01 is a von Neumann algebra acting on a Hilbert space #?, Jt is a dual
normal ^-module and CQEJ/*, then the mappings

A -»coA, A -+ Aco: M -+ Ji'.* (6)

defined by (4) are continuous from the unit ball of 01 (with strong * topology) into Jt\
(with norm topology).

Proof. From (4), and the ultraweak—weak * continuity of the mappings
A -> Am, A -+ mA from 5? into M, it follows that the mappings (6) are continuous
from 01 (with the ultraweak topology, o(8&, 0!*)) to Jt* (with the weak topology
o(Ji*, Jf)). Accordingly, these mappings are continuous also with respect to the
Mackey topologies [4: p. 70] of M (in duality with ^2*) and of Ji * (in duality with
Jf). The Mackey topology of Ji * is the norm topology, and the Mackey topology
on!% coincides, on the unit ball, with the strong * topology ([2; Theorem 11.7; 1;
Corollary 1]).

I am indebted to J. Dixmier, who drew my attention (in another context) to the
results in [1,2] concerning the Mackey topology on a von Neumann algebra.
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