AUTOMATIC CONTINUITY OF DERIVATIONS
OF OPERATOR ALGEBRAS

J. R. RINGROSE

1. Introduction

It was conjectured by Kaplansky [17], and proved by Sakai [19], that a derivation
6 of a C*-algebra U is automatically norm continuous. From this, Kadison [16:
Lemma 3] deduced that & is continuous also in the ultraweak topology, when 2 is
represented as an algebra of operators acting on a Hilbert space. Subsequently,
Johnson and Sinclair [11} proved the automatic norm continuity of derivations of a
semi-simple Banach algebra. For earlier related results, we refer to [20, 3, 5, 9].

In this paper, we generalize the above results of Sakai and Kadison, by considering
derivations from a C*-algebra 2 into a Banach 2-module .# (definitions are given in
the next section). The questions we answer arise naturally from recent work on the
cohomology of operator algebras [13, 14, 15]. Although we express our results in
cohomological notation, the present paper does not assume any knowledge of the
articles just cited. It turns out that the optimal situation obtains: our derivations are
automatically norm continuous (Theorem 2) and, for an appropriate class of dual
A-modules 4, they are continuous also relative to the ultraweak topology on U and
the weak » topology on .# (Theorem 4). Our proof of norm continuity is a develop-
ment of an argument used by Johnson and Parrott [12] in a particular case, and is
perhaps a little simpler than the treatment used by Sakai [19] when # = U.
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2. Notation and terminology

Except when the context indicates the contrary, it is assumed that our Banach
algebras and Banach spaces have complex scalars. With s# a Hilbert space, we
denote by Z (o) the * algebra of all bounded linear operators acting on 5. In the
context of C*-algebras, the term homomorphism is reserved for *+ homomorphisms.
By a representation of a C*-algebra U, we always mean a * representation ¢ on a
Hilbert space 5 ; and we assume that the linear span of the set {¢(4) x: A€ U, xe #}
is everywhere dense in ##. This last condition implies that the ultraweak (equivalently,
weak, or strong) closure ¢(2)~ of ¢(A) contains the identity operator I on 5. The
set of all positive elements of A is denoted by U™,

If 2 is a Banach algebra (with unit I), and .# is a Banach space, we describe .#
as a Banach WU-module if there are bounded bilinear mappings (4, m) — Am,
(4, m) > mA: W x M — A such that (Im = mI = m for each m in .#) and the usual
associative law holds for each type of triple product, A, A,m, A,mA,,mA, A,.
By a dual A-module we mean a Banach U-module .# with the following property: .# is
(isometrically isomorphic to) the dual space of a Banach space .#, and, for each A
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in A, the mappings m — Am, m - mA: M — M are weak * continuous. In these
circumstances, we refer to 4, as the predual of #, and write {m, ) in place of
m(w) when me # and we A ,. If A is a C*-algebra acting on a Hilbert space 5,
and ./ is a dual A-module, we describe .# as a dual normal A-module if, for each
min ., the mappings 4 - Am, A > mA : A - A are ultraweak—weak  continuous.

Banach modules and dual modules provide the natural setting in which to study
norm continuous cohomology of Banach algebras, while ultraweakly continuous
cohomology of operator algebras is developed in the context of dual normal modules
[10, 13, 14, 15). The simplest example of a Banach module for a Banach algebra U is
U itself, with Am and mA interpeted as products in W. When U is a C*-algebra
acting on a Hilbert space s, we obtain a dual normal W-module by taking any
ultraweakly closed subspace .# of #(s#) which contains the operator products Am,
mA whenever Ae U, me /. For the predual ./ ,, we can take the Banach space of
all ultraweakly continuous linear functionals on .# [7; Théoréme 1 (iii), p. 38], and
the weak * topology on .# is then the ultraweak topology. Examples of interest
arise with /# = U™, or A4 = B(H).

By a derivation, from a Banach algebra U into a Banach U-module .#, we mean
a linear mapping 6 : A — . such that

0(AB) = Ad(B)+6(A)B (4,BeW).
We denote by Z!(U,.#) the set of all derivations from U into .#, and write
Z.1 (U, A) for the set of all norm continuous derivations from 2 into .#. When U isa
C*-algebra acting on a Hilbert space # and .# is a dual normal W-module, Z,* (A, .#)

denotes the set of all derivations, from U into .#, which are ultraweak—weak=*
continuous. An easy application of the principle of uniform boundedness shows that

2 U, M) = Z (U, A).

The notation just introduced is taken from the cohomology theory of Banach algebras,
in which derivations are the 1 —cocycles.

When X and Y are Banach spaces in duality, we denote by ¢(X, Y) the weak
topology induced on X by Y.

3. Automatic continuity theorems

Before proving the norm continuity of all derivations from a C*-algebra U into
a Banach U-module .#, we require the following simple lemma.

LemMA 1. If J is a closed two-sided ideal in a C*-algebra N, AeJ, BeJ™,
[IBll <1 and AA* < B*, then A = BC for some C in J with ||C|| < 1.

Proof. We may assume that 2 has an identity I, and define C, in J, for each
positive real number ¢, by C, = (B+t)"* A. Then

C,C* = (B+tI)~' AA* (B+:tD)~?!
< (B+tD) 'B*B+t)"' < I;

the last inequality results easily from consideration of the functional representation
of the commutative C*-algebra generated by B. Hence

ICH = lIC, CHiI* < 1.
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Moreover,
C,—C,=(t—s)(B+sD)™' (B+1)~' 4,
and
(C,—C) (C,—C)H*
= |t—si* (B+sI)~! (B+tI)"* AA*(B+tI)~' (B+s)™!
< |t=s> (B+sl)™ (B+t)"* B* B+t)™* (B+sD)™!
< |t—s)1;

$0||C,—C,|| < |t—s| whenever s, t > 0.
From the preceding discussion it follows that C, converges in norm, as ¢ — 0,
to some C in A. Since

Cel, lIGll <1, (B+)C, =4,
we have Ce J,||C|| < 1 and BC = 4.

THEOREM 2. If Wis a C*-algebra and # is a Banach W-module, then
U, M) =2, (U, M)

Proof. With p in Z(U, .#), let J be the set of all elements 4 in U for which the
mapping
T - p(AT): U > A

is norm continuous. It is clear that J is a right ideal in 2 : and the relation
p(BAT) = Bp(AT)+p(B)AT (AeJ:B,Te¥)
shows that J is also a left ideal. Since
PAT) = Ap (T)+p(AD T (4, Te),
it follows that J is the set of all 4 in U for which the mapping
S,:T— Ap(T): A >

is norm continuous. If 4, 4,,...€J, AeW and ||4—4,|| - 0, then each S, is a
bounded linear operator, and

S«(T)=1lim S, (T) (TeA).

By the principle of uniform boundedness, S, is norm continuous, so AeJ. We
have now shown that J is a closed two-sided ideal in .

We assert that the restriction p|J is norm continuous. For suppose the contrary.
Then, we can choose A4,, 4, ... in J such that

P 441> <1, lp(4)ll - co.

With B in J defined by B = (2 4, 4,*)%, it follows from Lemma 1 that 4, = BC,
for some C, in J with ||C,]] < 1. The conditions

Gl < L |lp(BCHIl = lp(4)| = 0
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show that the mapping T — p(BT) is unbounded—a contradiction, since Be J.
This proves our assertion that p|J is bounded.

We claim next that the C*-algebra U/J is finite-dimensional. For suppose the
contrary, so that €/J has an infinite-dimensional closed commutative * subalgebra
&/ [18). Since the carrier space X of & is infinite, it results easily from the iso-
morphism between & and Cy(X) that there is a positive operator H in o/ whose
spectrum sp (H) is infinite. Hence there exist non-negative continuous functions
fisf2, -.., defined on the positive real axis, such that

fife=0ifj£k fHEH)#00=12,..).

With p the natural mapping from U onto A/J, there is a positive element K in A
such that p(K) = H. If §; = f;(K) (j = 1,2, ...), then S; € A and

p(S;?) = p(f;(K))* = [f(p(K)]* = [f;(H)]* # 0.
Thus
S, €U, S2¢J,  S,S,=0( k).

If we now replace S; by an appropriate scalar multiple, we may suppose also that
NSl < 1.

Since sz ¢ J, the mapping T — p(S,2 T) is unbounded. Hence there is a T} in
A such that

NTl <279, lp(S;* THIl = Mllp(Spll+J,

where M is the bound of the bilinear mapping (4,m) > mA : A x # - #. With
C in U defined to be = S; T;, we have ||C|| < 1 and §;C = S,z T;. Hence

11S; p(O)I = lIp(S; C)—p(S)) ClI
= llp (S Tl — MilpSHILIICI
2 J;
a contradiction, since ||S;|| <1 and the mapping T — Tp(C) is bounded. This
proves our assertion that 2/J is finite-dimensional.

Since p|J is norm continuous and J has finite codimension in ¥, it follows that p
is norm continuous.

Remark 3. The above proof of Theorem 2 can be abbreviated a little if, in place
of Lemma 1, we appeal to the much more sophisticated factorization theorem of
Johnson [8] and Varopoulos [21: Lemma 2]. However, it is perhaps desirable to give
a simpler proof, within the framework of elementary C*-algebra theory. The idea
of proving and exploiting the cofiniteness of the ideal J can be traced back, through
[12, 9], to its origins in the work of Bade and Curtis [3].

THEOREM 4. If ¢ is a faithful representation of a C*-algebra W and A is a dual
normal ¢ ()~ -module, then Z*(¢(W), #) = Z," (¢(N), ).

Proof. With n the universal representation of 2, there is an ultraweakly con-
tinuous homomorphism ¢ from n(A)~ onto G(A)~ such that ¢(rn(4)) = $(4) for
each 4 in U [6: 12.1.5, p. 237]. The kernel of ¢ is an ultraweakly closed two-sided
ideal in n(A)~, and so has the form =(AW)~ (I — P) for some projection P in the centre
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of m(A)~ [7; Corollaire 3, p.42]. The restriction a of ¢ to n(A)~ P is thus an iso-
morphism from z(A)~ P onto ¢(A)~ and, as such, is both isometric and ultraweakly
bicontinuous [7; Corollaire 1, p. 54]. Moreover «(n(4)P) = ¢(4) for each 4 in A:
so a carries () P onto ¢(A).

We can define a left and a right action of n(2)~ on .# by

A.m=a(AP)m, m.A=mx(AP) (med,Aen(U)"). (1)

In this way, 4 becomes a dual normal n (%)~ -module and, since a(P) is the identity
element of ¢(A)~,

Pm=mP=m (me ). (2

Suppose that 6 € Z' (¢(%), #4). By Theorem 2, & is norm continuous, so we can
define a bounded linear mapping 6,: n(A) - 4 by

5p(4) = 8(a(AP))  (Aen(W)). 3)
From (3) and (1),
0p(AB)— A.5p(B)—6p(A4).B

= &(x(AP) a(BP))—a(AP) S («(BP))—(a(AP)) a(BP)

=0 (4,Ben(W);

so 8peZ.! (n(A), A). For each w in the predual ., of ., the linear functional
w odp on w(W) is norm continuous and therefore [6; 12.1.3, p.236] ultraweakly
continuous. It follows that the mapping Jp: n(A) - A is ultraweak—weak =
continuous. From the Kaplansky density theorem, and the weak = completeness of
closed balls in ., it follows that , extends without increase in norm to an ultraweak
—weak * continuous linear mapping d, from n(A)~ into .#. A simple continuity
argument shows that 8, is a derivation, so 8, Z,! (n(2)~, 4).
By (2),
8p(P) = §p(P?) = P.5p(P)+8p(P). P = 25,(P),
$0 8p(P) = 0. Thus, for each 4 in n(),
8p(AP) = 6,(A). P+ A.5,(P)
= 5p(A) = 5p(A4) = 6(a(AP)).
It follows that
(T) =6t (T)) (T ep(W).

-1

The ultraweak continuity of «™! and the ultraweak—weak , continuity of 6, now

imply that 6 € Z,,* (¢(20), 4).

We outline a second proof of Theorem 4, which is similar in its main ideas to the
one given by Kadison ([16; Lemma 3]: see also [7; Lemme 4, p. 309)) in the case
A = ¢(A). Suppose A is a C*-algebra acting on a Hilbert space s, and ./ is a dual
normal A~ -module. For each 4 in A~ and w in .#,, the linear functionals

m— (Am, ), m— {mA, )
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on ./ are weak » continuous. Hence we can define elements wA and Aw of #, by
{m, wA) = (Am, w), {m, Aw) = {mA, w), 4)

forallmin A, win A4 and A in A~

With § in Z* (¥, ), 6 is norm continuous by Theorem 2. We have to show that,
for each w in ./, the linear functional f: 4 — (6(4), ) on U is ultraweakly con-
tinuous. With 2, * the set of positive operators in the unit ball of U, it suffices to
show that the restriction f|2, * is continuous at 0 in the strong topology (equivalently,
the strong * topology, since the operators are self-adjoint) [7; Corollaire, p. 45].
For Tin¥,",

J(T) = (T), )
= (T*§(TH+6(T?) T?, w)
= (6(TH), 0T+ Tt w);
whence
£ (T < 118l QloT*HI+ 11T wll). )
If T converges to 0 in the strong topology, the same is true of T?, since
NT*x||? = <Tx, x) < || Tx|l|x]]

for each x in . Moreover, strong continuity of f|,* at 0 follows from (5) if we
prove that ||wT?|| and || T* w|] both tend to 0. Accordingly, it suffices to prove the
following result, which may be of independent interest.

LeMMA 5. If R is a von Neumann algebra acting on a Hilbert space #, M is a dual
normal R-module and w € M , then the mappings

A->wA, A> Aw: R - M, (6)

defined by (4) are continuous from the unit ball of & (with strong = topology) into M ,
(with norm topology).

Proof. From (4), and the ultraweak—weak =+ continuity of the mappings
A— Am, A - mA from £ into #, it follows that the mappings (6) are continuous
from # (with the ultraweak topology, o(%, %)) to #, (with the weak topology
o(M 4, A)). Accordingly, these mappings are continuous also with respect to the
Mackey topologies [4: p. 70] of Z (in duality with £,) and of ., (in duality with
). The Mackey topology of .# , is the norm topology, and the Mackey topology
on Z coincides, on the unit ball, with the strong * topology ([2; Theorem 11.7; 1;
Corollary 1]).

I am indebted to J. Dixmier, who drew my attention (in another context) to the
results in [1, 2] concerning the Mackey topology on a von Neumann algebra.
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