Prof. Kaplansky stated a conjecture that any derivation of a C*-algebra would be automatically continuous [1]. In this note, we shall show that this conjecture is in fact true.

Theorem. Any derivation of a C*-algebra is automatically continuous.

Proof. Let \(A \) be a C*-algebra, \(\alpha \) a derivation of \(A \). It is enough to show that the derivation is continuous on the self-adjoint portion \(A_s \) of \(A \). Therefore if it is not continuous, by the closed graph theorem there is a sequence \(x_n = 0 \) in \(A_s \) such that \(x_n \to 0 \) and \(x_n' \to a + ib \), where \(a \) and \(b \) are self-adjoint. First, suppose that \(a \neq 0 \) and there exists a positive number \(\lambda(> 0) \) in the spectrum of \(a \) (otherwise consider \(\{-x_n\} \)). It is enough to assume that \(\lambda = 1 \).

Then there is a positive element \(h(\|h\| = 1) \) of \(A \) such that \(hah \geq \frac{1}{2} h^2 \).

Put \(y_n = x_n + 3 \cdot \|x_n\| \cdot I \), then \(y_n \to 0 \), \(y_n' = x_n' \) and \((h y_n h)' = h y_n h + h y_n h' \); hence \((h y_n h)' \to h(a + ib)h \).

Therefore
\[
\| (h y_n h) - h(a + ib)h \| < \frac{1}{8} \text{ for some } n_0 \text{(1)}.\]

On the other hand
\[
h y_n h \leq 4 \|x_n\| h^2 \text{ and } \frac{1}{2} \cdot \frac{h y_n h}{4 \|x_n\|} \leq hah \text{(2)}\]

Since \(\|x_n\| \cdot I + x_n \geq 0 \), \(\frac{h y_n h}{4 \|x_n\|} \geq \frac{1}{2} h^2 \).

Hence
\[
\left\| \frac{h y_n h}{4 \|x_n\|} \right\| \geq \frac{1}{2} \|h\|^2 = \frac{1}{2} \text{(3)}\]

Let \(C \) be a C*-subalgebra of \(A \) generated by \(h y_n h \) and \(I \), then by the (3) there is a character \(\varphi \) of \(C \) such that \(\varphi \left(\frac{h y_n h}{4 \|x_n\|} \right) \geq \frac{1}{2} \).
Let \(\varphi \) be an extended state of \(\varphi \) on \(A \), and \(\mathfrak{m} = \{ x \mid \varphi(x^*x) = 0, \ x \in A \} \), then \(C \cap \mathfrak{m} \) is a maximal ideal of \(C \); it can be written \(h_{y_n}h - \varphi(h_{y_n}h) \cdot 1 = u^2 - v^2 \) with \(u, v \in C \cap \mathfrak{m} (u, v \geq 0) \); hence \((h_{y_n}h)' = u'u + uu' - vv' - vv' \), so that by the Schwartz's inequality
\[
\varphi((h_{y_n}h)') = 0 \quad \text{............................(4)}
\]

Then by the (1) and (4)
\[
|\varphi(h(a + ib)h)| < \frac{1}{8} \quad \text{.............................(5)}
\]

On the other hand by the (2)
\[
|\varphi(h(a + ib)h)| \geq \varphi(hah)
\]
\[
= \frac{1}{2} \varphi(\frac{h_{y_n}h}{4 \|x_n\|}) \geq \frac{1}{2} \cdot \frac{1}{2} = \frac{1}{4}
\]

; hence \(|\varphi(h(a + ib)h)| \geq \frac{1}{4} \).

This contradicts the above inequality (5), so that \(a = 0 \).

Next suppose that \(b \neq 0 \) and there exists a positive number \(\mu(>0) \) in the spectrum of \(b \) (otherwise consider \(\{-x_n\} \)). It is enough to assume that \(\mu = 1 \). Then there is a positive element \(k (\|k\| = 1) \) of \(A \) such that \(kbbk \geq \frac{1}{2} k^3 \); moreover \(\|(k_{y_n}k)' - k(a + ib)k\| < \frac{1}{8} \) for some \(n_1 \).

Let \(C_1 \) be a \(C^* \)-subalgebra of \(A \) generated by \(k_{y_n}k \) and \(I \), then there is a character \(\varphi_1 \) of \(C_1 \) such that \(\varphi_1(\frac{k_{y_n}k}{4 \|x_n\|}) \geq \frac{1}{2} \). Let \(\varphi_1 \) be an extended state of \(\varphi_1 \) on \(A \), then \(\varphi_1((k_{y_n}k)') = 0 \); hence \(|\varphi_1(k(a + ib)k)| < \frac{1}{8} \).

On the other hand
\[
|\varphi_1(k(a + ib)k)| \geq \varphi_1(kbbk) \geq \varphi_1(\frac{1}{2} k^3)
\]
\[
\geq \frac{1}{2} \varphi_1(\frac{k_{y_n}k}{4 \|x_n\|}) \geq \frac{1}{4}
\]

; hence \(|\varphi_1(k(a + ib)k)| \geq \frac{1}{4} \).

This contradicts the above inequality; hence \(b = 0 \), so that \(a + ib = 0 \).

Now we obtain a contradiction and this completes the proof.
REFERENCES

MATHEMATICAL INSTITUTE, TÔHOKU UNIVERSITY.