Annals of Mathematics

Derivations of W^{*}-Algebras Author(s): Shoichiro Sakai Reviewed work(s): Source: Annals of Mathematics, Second Series, Vol. 83, No. 2 (Mar., 1966), pp. 273-279 Published by: Annals of Mathematics Stable URL: <u>http://www.jstor.org/stable/1970432</u> Accessed: 11/10/2012 00:03

Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at http://www.jstor.org/page/info/about/policies/terms.jsp

JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact support@jstor.org.

Annals of Mathematics is collaborating with JSTOR to digitize, preserve and extend access to Annals of Mathematics.

Derivations of W^* -algebras

By Shôichirô Sakai*

1. Introduction

Let \mathfrak{A} be a C^* -algebra, and let D be a derivation of \mathfrak{A} , i.e., a linear mapping on \mathfrak{A} to \mathfrak{A} satisfying D(xy) = D(x)y + xD(y). D is said to be an inner derivation if there is an element a in \mathfrak{A} such that D(x) = [a, x] = ax - xa for $x \in \mathfrak{A}$. Otherwise, it is said to be an outer derivation.

The question of whether or not a W^* -algebra can have an outer derivation has been open for some time (cf. [10, ch. 1, p. 60]). Kaplansky [6] proved that every derivation of a type I W^* -algebra is inner. Establishing a conjecture of Kaplansky, the author [9] proved that every derivation of a C^* -algebra is bounded. Miles [7] noted that every derivation of a C^* -algebra is induced by an operator in the weak closure of some faithful representation of the algebra (a direct sum of irreducible representations). Recently, Kadison [4] showed that every derivation of a C^* -algebra on a Hilbert space \mathfrak{D} is spatial (i.e., it has the form $x \to bx - xb$ for some bounded operator b on \mathfrak{D}), and every derivation of a hyper-finite factor is inner. Moreover, Kadison and Ringrose [5] show that every derivation of the W^* -algebra generated by the regular representation of a discrete group is inner.

In this paper, we shall show the following: every derivation of a W^* -algebra is inner. This is the affirmative solution to Kadison's conjecture.

2. Theorems

In this section, we shall show the following theorems.

THEOREM 1. Every derivation of a W*-algebra is inner.

As a corollary of Theorem 1, we have:

THEOREM 2. Let \mathfrak{A} be a C*-algebra on a Hilbert space \mathfrak{H} , D a derivation on \mathfrak{A} , $\overline{\mathfrak{A}}$ the weak closure of \mathfrak{A} on \mathfrak{H} , then there is a bounded operator b belonging to $\overline{\mathfrak{A}}$ such that D(x) = [b, x] for all $x \in \mathfrak{A}$, where [b, x] = bx - xb.

To prove Theorem 1, we shall proceed as follows. Let M be a W^* -algebra on Hilbert space \mathfrak{H} , D a derivation on M, M' the commutant of M in \mathfrak{H} , and Aa maximal abelian *-subalgebra of M'.

LEMMA 1 (Kadison [4]). There is a bounded operator b belonging to a

^{*} This research was partially supported by ONR Nonr-551 (57).

W*-algebra (M, A) generated by M and A such that D(x) = [b, x] = bx - xb for all $x \in M$.

For the proof of Lemma 1, we refer to Kadison's paper.

Put $D^*(x) = [b^*, x]$, then $D^*(x) = -[b, x^*]^*$; hence D^* is also a derivation on M and $D = (D + D^*)/2 + i (D - D^*)/2i$. Therefore it is enough to assume that b is self-adjoint. Moreover, we can assume that ||b|| = 1. Let $B(\mathfrak{H})$ be the W^* -algebra of all bounded operators on \mathfrak{H} , S the unit sphere of $B(\mathfrak{H})$, M'_s the self-adjoint portion of M', then $b + M'_s$ is weakly closed in $B(\mathfrak{H})$, and so a set $K = (b + M'_s) \cap S$ is weakly compact. It is easily seen that a self-adjoint element h with $||h|| \leq 1$ in $B(\mathfrak{H})$ belongs to K, if and only if [h, x] = [b, x]for all $x \in M$.

Let M_s be the self-adjoint portion of M and define

$$r=\inf\left\{ \left|\left|\left.x-a\left.
ight|
ight|
ight| x\in M_{s} ext{, }a\in K
ight\}
ight.$$

LEMMA 2. There are two elements x_0 and a_0 in $B(\mathfrak{Y})$ such that $x_0 \in M_s$, $a_0 \in K$ and $r = || x_0 - a_0 ||$.

PROOF. Let (x_n) (resp. (a_n)) be a sequence of M_s (resp. K) such that $\lim_n || x_n - a_n || = r$, then they are bounded; hence by the weak compactness of bounded spheres of $B(\mathfrak{H})$, there is an accumulate point x_0 (resp. a_0) of (x_n) (resp. (a_n)) such that $x_0 \in M_s$ and $a_0 \in K$; moreover

$$egin{aligned} r &\leq || \, x_{\scriptscriptstyle 0} - a_{\scriptscriptstyle 0} \, || = \quad \sup_{arepsilon \in \mathfrak{H}^{\circ}, \,\, ||arepsilon||=1}| < (x_{\scriptscriptstyle 0} - a_{\scriptscriptstyle 0}) \xi, \, \xi > | \ &\leq \sup \overline{\lim}_{arepsilon \in \mathfrak{G}^{\circ}, \,\, ||arepsilon||=1,n}| < (x_{\scriptscriptstyle n} - a_{\scriptscriptstyle n}) \xi, \, \xi > | \ &\leq \lim_{n} || \, x_{\scriptscriptstyle n} - a_{\scriptscriptstyle n} \, || = r \,\,. \end{aligned}$$

This completes the proof.

Now let \mathfrak{F} be a family of all elements $(c_{\alpha} \mid \alpha \in I)$ in $B(\mathfrak{F})$ such that $c_{\alpha} = x_{\alpha} - a_{\alpha}, x_{\alpha} \in M_s, a_{\alpha} \in K$, and $||c_{\alpha}|| = r$. For $c_{\alpha}, c_{\beta} \in \mathfrak{F}$, we shall define a partial ordering as follows: $c_{\alpha} \prec c_{\beta}$ if $||c_{\alpha}z|| \ge ||c_{\beta}z||$ for all $z \in Z_{p}$ (we do not require that the order be proper), where Z_{p} is the set of all central projections in M. Let $\mathfrak{F}_{1} = (c_{\gamma} \mid \gamma \in I_{1})$ be a linearly ordered subset of \mathfrak{F} , and put $F_{\gamma} = \{c_{\delta} \mid c_{\delta} > c_{\gamma}, \delta \in I_{1}\}$, then $\bigcap_{\gamma \in I_{1}} \overline{F}_{\gamma} \neq (\emptyset)$, where \overline{F}_{γ} is the weak closure of F_{γ} , because \overline{F}_{γ} is weakly compact. Take $c_{1} \in \bigcap_{\gamma \in I_{1}} \overline{F}_{\gamma}$, then

 $||c_1|| = \sup_{||\xi||=1} | < c_i \xi, \xi > | \le \sup_{c_\delta > c_\gamma, ||\xi||=1} | < c_\delta \xi, \xi > | \le \sup_{c_\delta > c_\gamma} ||c_\delta|| = r \text{ .}$ Analogously, we have

$$||c_1 z|| \leq \sup_{c_\delta > c_\gamma} ||c_\delta z|| = ||c_\gamma z||$$

for all $\gamma \in I_1$ and $z \in Z_p$.

On the other hand, $||x_{\gamma}|| \leq r + ||a_{\gamma}|| \leq r + 1$; hence c_{γ} belongs to $(r+1)S \cap M_s - K$; c_1 belongs also to the set $(r+1)S \cap M_s - K$, because it is

compact; hence c_1 belongs to \mathfrak{F} and $c_{\gamma} < c_1$ for all $\gamma \in I_1$. Theorefore \mathfrak{F}_1 has an upper bound, and so by Zorn's lemma there is a maximal element $c_{\alpha_0} = x_{\alpha_0} - a_{\alpha_0}$ $(x_{\alpha_0} \in M_s, a_{\alpha_0} \in K)$ in \mathfrak{F} .

LEMMA 3. $c_{\alpha_0} = 0$, if M' is a countably decomposable type III algebra.

PROOF. Suppose that $c_{\alpha_0} \neq 0$. Then, first of all, we shall show that there is a projection e' in M' such that $e' \sim 1 - e'$ in M' and $e'c_{\alpha_0}(1 - e') \neq 0$. Suppose that $e'c_{\alpha_0}(1 - e') = 0$ for all e' as above, then $e'c_{\alpha_0} = c_{\alpha_0}e'$; hence $ze'c_{\alpha_0} = c_{\alpha_0}ze'$ for all $z \in Z_p$, because c_{α_0} belongs to $(M, A) \subseteq (M, M')$, and so $p'c_{\alpha_0} = c_{\alpha_0}p'$ for all projection $p' \in M'$, because p' is equivalent to its central support z(p') in M' and so p' can be written as a sum of two mutually orthogonal, equivalent projections e'z(p'), f'z(p') such that $e' \sim 1 - e'$ and $f' \sim 1 - f'$; therefore $c_{\alpha_0} \in M'' = M$, and so $c_{\alpha_0} = 0$, a contradiction.

Take a projection $e' \in M'$ such that $e' \sim (1-e')$ in M', and $e'c_{\alpha_0}(1-e') \neq 0$. Let v' be a partial isometry of M' such that $v'^*v' = e'$ and $v'v'^* = 1 - e'$, then $B(\mathfrak{Y})$ can be considered the matrix algebra of all 2×2 matrices over a W^* -algebra $\mathfrak{A} = \{e'xe' + v'e'xe'v'^* \mid x \in B(\mathfrak{Y})\}$ and M' is considered a *-subalgebra of $B(\mathfrak{Y})$ consisting of all 2×2 matrices over a W^* -algebra

$$\mathfrak{B} = \{e'xe' + v'e'xe'v'^* \mid x \in M'\}$$

(cf. [1]). Then,

$$e' = egin{pmatrix} \mathbf{1} & \mathbf{0} \ \mathbf{0} & \mathbf{0} \end{pmatrix} \qquad ext{and} \qquad \mathbf{1} - e' = egin{pmatrix} \mathbf{0} & \mathbf{0} \ \mathbf{0} & \mathbf{1} \end{pmatrix}.$$

Let

$$c_{lpha_0} = egin{pmatrix} c_{\scriptscriptstyle 11} & c_{\scriptscriptstyle 12} \ c_{\scriptscriptstyle 12}^st & c_{\scriptscriptstyle 22} \end{pmatrix}$$
 ,

then

$$e' c_{lpha_0}(1-e') = egin{pmatrix} 0 & c_{{\scriptscriptstyle 12}} \ 0 & 0 \end{pmatrix}
e 0 \; .$$

For $h \in K$ and $x, y \in M_s$, we have

$$egin{aligned} [e'(x-h)(1-e'),\,y]&=-\,[e'h(1-e'),\,y]\ &=-\,e'h(1-e')y+ye'h(1-e')\ &=-\,e'[h,\,y]+e'[h,\,y]e'\ &=-\,e'[b,\,y]+e'[b,\,y]e'\ &=0\ ; \end{aligned}$$

therefore, $e'(x-h)(1-e') \in M'$. Let

$$x-h=egin{pmatrix} d_{_{11}}&d_{_{12}}\ d_{_{12}}^{*}&d_{_{22}} \end{pmatrix}$$
 ,

then by the above considerations, $d_{12} \in \mathfrak{B}$.

Now let K_1 be a weakly closed convex subset of K generated by

$$\{u^{\prime st}a_{\scriptscriptstyle lpha_{\scriptscriptstyle 0}}u^{\prime}\mid u^{\prime}\in M_{\scriptscriptstyle u}^{\prime}\}$$
 ,

where M'_u is the set of all unitary elements of M', then $x_{\alpha_0} - K_1$ is a weakly compact convex set and clearly $x_{\alpha_0} - K_1 \subset \mathfrak{F}$. Therefore, a subset

$$H = egin{cases} d_{_{12}} \, | \, x_{_{lpha_0}} - k = egin{pmatrix} d_{_{11}} & d_{_{12}} \ d_{_{12}} & d_{_{22}} \end{pmatrix}$$
 , $k \in K_{_1} iggrnedown_{_{12}}$

of \mathfrak{B} is also weakly compact in the W^* -algebra \mathfrak{B} .

Now let u, v be two unitary elements of \mathfrak{B} , then $\begin{pmatrix} u & 0 \\ 0 & v \end{pmatrix}$ is a unitary element w' of M' and

$$egin{pmatrix} u^* & 0 \ 0 & v^* \end{pmatrix} \! egin{pmatrix} c_{\scriptscriptstyle 11} & c_{\scriptscriptstyle 12} \ c_{\scriptscriptstyle 12}^* & c_{\scriptscriptstyle 22} \end{pmatrix} \! egin{pmatrix} u & 0 \ 0 & v \end{pmatrix} = egin{pmatrix} u^*c_{\scriptscriptstyle 11}u & u^*c_{\scriptscriptstyle 12}v \ v^*c_{\scriptscriptstyle 12}^*u & v^*c_{\scriptscriptstyle 22}v \end{pmatrix}$$
 ;

therefore H contains all elements $u^*c_{12}v$ for $u, v \in \mathfrak{B}_u$, where \mathfrak{B}_u is the set of all unitary elements of \mathfrak{B} . Hence H contains $Tc_{12}T$, where T is the unit sphere of \mathfrak{B} , because \mathfrak{B} is *-isomorphic to the W^* -algebra e'M'e', and so \mathfrak{B}_u is weakly dense in T(3). Therefore $c_{12}c_{12}^* \in H$, because $||c_{12}|| \leq ||c_{\alpha_0}|| \leq 1$. Take a nonzero projection p in \mathfrak{B} such that $c_{12}c_{12}^* \geq \lambda p$ for some positive number λ , and let z(p) be the central support of p in \mathfrak{B} , then $p \sim z(p)$ in \mathfrak{B} . Let v be a partial isometry of \mathfrak{B} such that $v^*v = z(p)$ and $vv^* = p$, then $v^*c_{12}c_{12}^*v \geq \lambda v^*pv = \lambda z(p)$; clearly $v^*c_{12}c_{12}^*v \in H$. Take $c_{\alpha_1} \in x_{\alpha_0} - K_1$ such that

$$c_{lpha_1} = egin{pmatrix} d_{\scriptscriptstyle 11} & v^* c_{\scriptscriptstyle 12} c_{\scriptscriptstyle 12}^* v \ v^* c_{\scriptscriptstyle 12} c_{\scriptscriptstyle 12}^* v & d_{\scriptscriptstyle 22} \end{pmatrix}$$
 .

Since $x_{\alpha_0}-u'^*a_{\alpha_0}u'=u'^*(x_{\alpha_0}-a_{\alpha_0})u'=u'^*c_{\alpha_0}u'$ for all $u'\in M'_u$,

 $||(x_{\alpha_0} - u'^*a_{\alpha_0}u')z|| = ||c_{\alpha_0}z||$

for all $z \in Z_p$, and so for $k \in K_1$,

 $||(x_{\alpha_0}-k)z|| \leq ||c_{\alpha_0}z||$

for all $z \in Z_p$, this implies $c_{\alpha_0} \prec x_{\alpha_0} - k$ for all $k \in K_1$.

On the other hand, let z_1 be a central projection of M' such that

$$z_{\scriptscriptstyle 1} = egin{pmatrix} z(p) & 0 \ 0 & z(p) \end{pmatrix}$$
 ,

276

then

$$egin{aligned} & ||\, c_{lpha_1} z_1^{}|| = \left| ig| igg(egin{aligned} z(p) & 0 \ 0 & z(p) igg) igg(egin{aligned} d_{11} & v^* c_{12} c_{12}^* v & d_{22} \ v^* c_{12} c_{12}^* v & d_{22} \ \end{array} igg) igg| \ & \geq \left| igg| igg(egin{aligned} z(p) & 0 \ 0 & z(p) igg) igg(egin{aligned} 1 & 0 \ 0 & 0 \ \end{array} igg) igg(egin{aligned} d_{11} & v^* c_{12} c_{12}^* v & d_{22} \ \end{array} igg) igg| \ & = \left| igg| igg(egin{aligned} z(p) d_{11} & z(p) v^* c_{12} c_{12}^* v & d_{22} \ \end{array} igg) igg| \ & = \left| igg| igg(egin{aligned} z(p) d_{11} & z(p) v^* c_{12} c_{12}^* v & d_{22} \ \end{array} igg) igg| \ & = \left| \left| igg(egin{aligned} z(p) d_{11} & z(p) v^* c_{12} c_{12}^* v & d_{22} \ \end{array} igg) igg(egin{aligned} d_{11} z(p) & 0 \ 0 & 0 \ \end{array} igg) igg| \ & = \left| \left| igg(egin{aligned} z(p) d_{11} & z(p) v^* c_{12} c_{12}^* v \ \end{array} igg) igg(egin{aligned} d_{11} z(p) & 0 \ z(p) v^* c_{12} c_{12}^* v & 0 \ \end{array} igg) igg|
ight|^{1/2} \ & = \left| \left| z(p) d_{11}^* z(p) + z(p) (v^* c_{12} c_{12}^* v)^2
ight|
ight|^{1/2} \ & \ge \left(\left| \left| z(p) d_{11} \right| \right|^2 + \lambda^2
ight)^{1/2} > \left| \left| z(p) d_{11}
ight| \ . \end{aligned}$$

Analogously,

$$egin{aligned} &\| c_{lpha_1} z_1 \| & \geq \left| ig| igg(egin{aligned} z(p) & 0 \ 0 & z(p) \end{pmatrix} igg(egin{aligned} 0 & 0 \ 0 & 1 \end{pmatrix} igg(egin{aligned} d_{11} & v^* c_{12} c_{12}^* v \ d_{22} \end{pmatrix} igg| \ & = \left| igg| igg(egin{aligned} 0 & 0 \ z(p) v^* c_{12} c_{12} v & z(p) d_{22} \end{pmatrix} igg| \ & = \left| igg| igg(egin{aligned} 0 & 0 \ z(p) v^* c_{12} c_{12}^* v & z(p) d_{22} \end{pmatrix} igg(egin{aligned} 0 & z(p) v^* c_{12} c_{12}^* v \ 0 & d_{22} z(p) \end{pmatrix} igg| \ & = \left| igg| z(p) v^* c_{12} c_{12}^* v & z(p) d_{22} \end{pmatrix} igg(egin{aligned} 0 & z(p) v^* c_{12} c_{12}^* v \ 0 & d_{22} z(p) \end{pmatrix} igg| \ & = \left| igg| z(p) d_{22}^* z(p) + z(p) (v^* c_{12} c_{12}^* v)^2
ight|^{1/2} \ & > \left| \| z(p) d_{22} \| \end{array}
ight| . \end{aligned}$$

Moreover,

$$egin{aligned} & \begin{pmatrix} d_{_{11}} & 0 \ 0 & d_{_{22}} \end{pmatrix} = rac{1}{2} \left\{ egin{pmatrix} d_{_{11}} & v^*c_{_{12}}c_{_{12}}^*v \ d_{_{22}} & d_{_{22}} \end{pmatrix} + egin{pmatrix} 1 & 0 \ 0 & -1 \end{pmatrix} egin{pmatrix} d_{_{11}} & v^*c_{_{12}}c_{_{12}}^*v \ d_{_{22}} \end{pmatrix} egin{pmatrix} 1 & 0 \ 0 & -1 \end{pmatrix}
ight\} \; \cdot \ & ext{Since} \; egin{pmatrix} 1 & 0 \ 0 & -1 \end{pmatrix} \; ext{is a unitary element} \; u_0' \; ext{of} \; M', \\ & ext{$c_{\alpha_2} = \begin{pmatrix} d_{_{11}} & 0 \ 0 & d_{_{22}} \end{pmatrix} \in x_{\alpha_0} - K_1 \; . \end{aligned}$$

The maximality of c_{α_0} and $c_{\alpha_1} > c_{\alpha_0}$, $c_{\alpha_2} > c_{\alpha_0}$ imply that c_{α_1} and c_{α_2} are also maximal; hence $||c_{\alpha_1}z_1|| = ||c_{\alpha_2}z_1||$.

On the other hand,

$$egin{aligned} &||\, c_{lpha_2} z_1\,|| = \left| \left| egin{pmatrix} d_{{}_{11}} z(p) & 0 \ 0 & d_{{}_{22}} z(p) \end{pmatrix}
ight|
ight| \ &= \max \left\{ ||\, z(p) d_{{}_{11}}\,|| ext{ , } ||\, z(p) d_{{}_{22}}\,||
ight\} \ &< ||\, d_{lpha_1} z_1\,|| ext{ , } \end{aligned}$$

a contradiction. Hence $c_{\alpha_0} = 0$, and this completes the proof.

Now we shall prove Theorem 1.

PROOF OF THEOREM 1. First of all, we shall suppose that M' is a countably decomposable type III algebra, then by Lemma 3, $c_{\alpha_0} = x_{\alpha_0} - a_{\alpha_0} = 0$; hence $[x_{\alpha_0}, x] = [a_{\alpha_0}, x] = D(x)$ for $x \in M$; therefore D is inner.

Next suppose that M is arbitrary type III algebra. Take a countably decomposable projection p' in M' and put $\overline{D}(x p') = D(x)p'$ for $x \in M$, then \overline{D} is a derivation on a W^* -algebra Mp' on a Hilbert space $p'\mathfrak{F}$ and (Mp')' = p'M'p'; hence there is an element $y \in M$ such that $[yp', xp'] = \overline{D}(x p')$ for $x \in M$; hence [y, xp'] = [b, x]p' for $x \in M$ and so [y, x]z = [b, x]z for $x \in M$, where z is the central support of p'. This implies bz = yz + m'z ($m' \in M'$); hence by the well known theorem of W^* -algebras, a uniformly closed convex subset C generated by $\{u'^*m'zu' \mid u' \in M'_u\}$ has a non-void intersection with the center Z of M'. Take $az \in C \cap Z (a \in M)$, then $yz + az \in M$ and $||yz + az|| \leq ||bz|| \leq 1$ and [yz + az, x] = [yz, x] for all $x \in M$. Therefore we can choose a family of orthogonal central projections ($z_{\alpha} \mid \alpha \in J$) in M such that for each $\alpha \in J$, there is an element y_{α} in Mz_{α} such that $||y_{\alpha}|| \leq 1$, $[y_{\alpha}, x] = D(x)z_{\alpha}$ for all $x \in M$ and $\sum_{\alpha \in J} z_{\alpha} = 1$. Take $y_0 = \sum_{\alpha \in J} y_{\alpha}$, then $y_0 \in M$, and

$$[y_{\mathfrak{d}}, x] = \sum_{lpha \in J} [y_{lpha}, x] = \sum_{lpha \in J} D(x) z_{lpha} = D(x)$$

for $x \in M$; hence D is inner.

Finally suppose that M is arbitrary W^* -algebra. Take a type III factor N on a Hilbert space \mathfrak{H}_1 , and consider the tensor product $M \otimes N$, then $M \otimes N$ is of type III (8).

Then $b \otimes 1_{\mathfrak{H}_1}$ is a bounded operator on $\mathfrak{H} \otimes \mathfrak{H}_1$, where $1_{\mathfrak{H}_1}$ is the identity operator on \mathfrak{H}_1 . Consider $[b \otimes 1_{\mathfrak{H}_1}, x]$ for $x \in M \otimes N$, then it is a derivation on $M \otimes N$, because $[b \otimes 1_{\mathfrak{H}_1}, c \otimes d] \in M \otimes N$ for $c \in M$ and $d \in N$, so that there is an element h in $M \otimes N$ such that $[b \otimes 1_{\mathfrak{H}_1}, x] = [h, x]$ for all $x \in M \otimes N$. Hence $[h, 1_{\mathfrak{H}} \otimes N] = 0$, where $1_{\mathfrak{H}}$ is the identity operator on \mathfrak{H} ; therefore $h \in (1_{\mathfrak{H}} \otimes N)' \cap (M \otimes N)$.

$$egin{aligned} &\{(\mathbf{1}_{\mathfrak{H}}\otimes N)'\cap (M\otimes N)\}'\supset (\mathbf{1}_{\mathfrak{H}}\otimes N,\ M'\otimes N')\ &=M'\otimes (N',\ N)=M'\otimes B(\mathfrak{H}_{\mathfrak{i}})\ ; \end{aligned}$$

hence $(\mathbf{1}_{\mathfrak{H}} \otimes N)' \cap (M \otimes N) \subset (M' \otimes B(\mathfrak{H}_{i}))' = M \otimes \mathbf{1}_{\mathfrak{H}_{i}}$, and so $h \in M \otimes \mathbf{1}_{\mathfrak{H}_{i}}$,

this implies that D is inner.

This completes the proof.

PROOF OF THEOREM 2. Let \mathfrak{A} be a C^* -algebra on a Hilbert space \mathfrak{H} , D a derivation on \mathfrak{A} , then by the result of Kadison (4), D can be extended to a derivation D on the weak closure $\overline{\mathfrak{A}}$ of \mathfrak{A} , then there is an element $x_0 \in \overline{\mathfrak{A}}$ such that $[x_0, x] = D(x)$ for $x \in \mathfrak{A}$.

This completes the proof.

UNIVERSITY OF PENNSYLVANIA

References

- 1. J. DIXMIER, Les algèbres d'opérateurs dans l'espace hilbertien, Gauthier-Villars, Paris, 1957.
- 2. ____, Les C*-algebres et leurs reprèsentations, Gauthier-Villars, Paris, 1964.
- 3. H. DYE, The unitary structure in finite rings of operators, Duke Math. J., 20 (1953), 55-69.
- 4. R. KADISON, Derivations of operator algebras, Ann. of Math., 83 (1966), 273-286.
- 5. _____ and J. RINGROSE, Derivations of group operator algebras, to appear.
- 6. I. KAPLANSKY, Modules over operator algebras, Amer. J. Math., 75 (1953). 839-853.
- 7. P. MILES, Derivations on B* algebras, Pacific J. Math., 14 (1964), 1359-1366.
- 8. S. SAKAI, Topological properties of W*-algebras, Proc. Jap. Acad., 33 (1957), 439-444.
- 9. ____, On a conjecture of Kaplansky, Tohoku Math. J., 12 (1960), 31-33.
- The theory of W*-algebras, Lecture notes, Yale University, New Haven, Conn., 1962.

(Received April 5, 1965)