Annals of Mathematics

Derivations of W^{*}-Algebras
Author(s): Shoichiro Sakai
Reviewed work(s):
Source: Annals of Mathematics, Second Series, Vol. 83, No. 2 (Mar., 1966), pp. 273-279
Published by: Annals of Mathematics
Stable URL: http://www.jstor.org/stable/1970432
Accessed: 11/10/2012 00:03

Your use of the JSTOR archive indicates your acceptance of the Terms \& Conditions of Use, available at http://www.jstor.org/page/info/about/policies/terms.jsp

JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact support@jstor.org.

Annals of Mathematics is collaborating with JSTOR to digitize, preserve and extend access to Annals of Mathematics.

Derivations of W^{*}-algebras

By Shôichirô Sakai*

1. Introduction

Let \mathfrak{N} be a C^{*}-algebra, and let D be a derivation of \mathfrak{X}, i.e., a linear mapping on \mathfrak{A} to \mathfrak{A} satisfying $D(x y)=D(x) y+x D(y) . \quad D$ is said to be an inner derivation if there is an element a in \mathfrak{A} such that $D(x)=[a, x]=a x-x a$ for $x \in \mathfrak{A}$. Otherwise, it is said to be an outer derivation.

The question of whether or not a W^{*}-algebra can have an outer derivation has been open for some time (cf. [10, ch.1, p. 60]). Kaplansky [6] proved that every derivation of a type I W^{*}-algebra is inner. Establishing a conjecture of Kaplansky, the author [9] proved that every derivation of a C^{*}-algebra is bounded. Miles [7] noted that every derivation of a C^{*}-algebra is induced by an operator in the weak closure of some faithful representation of the algebra (a direct sum of irreducible representations). Recently, Kadison [4] showed that every derivation of a C^{*}-algebra on a Hilbert space \mathfrak{S} is spatial (i.e., it has the form $x \rightarrow b x-x b$ for some bounded operator b on \mathfrak{F}), and every derivation of a hyper-finite factor is inner. Moreover, Kadison and Ringrose [5] show that every derivation of the W^{*}-algebra generated by the regular representation of a discrete group is inner.

In this paper, we shall show the following: every derivation of a W^{*} algebra is inner. This is the affirmative solution to Kadison's conjecture.

2. Theorems

In this section, we shall show the following theorems.
Theorem 1. Every derivation of a W^{*}-algebra is inner.
As a corollary of Theorem 1, we have:
Theorem 2. Let \mathfrak{A} be a C^{*}-algebra on a Hilbert space \mathfrak{W}, D a derivation on \mathfrak{X}, $\overline{\mathcal{U}}$ the weak closure of \mathfrak{N} on \mathfrak{S}, then there is a bounded operator b belonging to $\overline{\mathfrak{U}}$ such that $D(x)=[b, x]$ for all $x \in \mathfrak{N}$, where $[b, x]=b x-x b$.

To prove Theorem 1, we shall proceed as follows. Let M be a W^{*}-algebra on Hilbert space \mathfrak{F}, D a derivation on M, M^{\prime} the commutant of M in \mathfrak{F}, and A a maximal abelian $*$-subalgebra of M^{\prime}.

Lemma 1 (Kadison [4]). There is a bounded operator belonging to a

[^0]W^{*}-algebra (M, A) generated by M and A such that $D(x)=[b, x]=b x-x b$ for all $x \in M$.

For the proof of Lemma 1, we refer to Kadison's paper.
Put $D^{*}(x)=\left[b^{*}, x\right]$, then $D^{*}(x)=-\left[b, x^{*}\right]^{*}$; hence D^{*} is also a derivation on M and $D=\left(D+D^{*}\right) / 2+i\left(D-D^{*}\right) / 2 i$. Therefore it is enough to assume that b is self-adjoint. Moreover, we can assume that $\|b\|=1$. Let $B(\mathfrak{F})$ be the W^{*}-algebra of all bounded operators on \mathfrak{A}, S the unit sphere of $B(\mathfrak{S}), M_{s}^{\prime}$ the self-adjoint portion of M^{\prime}, then $b+M_{s}^{\prime}$ is weakly closed in $B(\mathfrak{j})$, and so a set $K=\left(b+M_{s}^{\prime}\right) \cap S$ is weakly compact. It is easily seen that a self-adjoint element h with $\|h\| \leqq 1$ in $B(\mathfrak{f})$ belongs to K, if and only if $[h, x]=[b, x]$ for all $x \in M$.

Let M_{s} be the self-adjoint portion of M and define

$$
r=\inf \left\{\|x-a\| \mid x \in M_{s}, a \in K\right\} .
$$

Lemma 2. There are two elements x_{0} and a_{0} in $B(\mathfrak{S})$ such that $x_{0} \in M_{s}$, $a_{0} \in K$ and $r=\left\|x_{0}-a_{0}\right\|$.

Proof. Let $\left(x_{n}\right)$ (resp. (a_{n})) be a sequence of M_{s} (resp. K) such that $\lim _{n}\left\|x_{n}-a_{n}\right\|=r$, then they are bounded; hence by the weak compactness of bounded spheres of $B(\mathfrak{g})$, there is an accumulate point $x_{0}\left(\operatorname{resp} . a_{0}\right)$ of $\left(x_{n}\right)$ (resp. $\left(a_{n}\right)$) such that $x_{0} \in M_{s}$ and $a_{0} \in K$; moreover

$$
\begin{aligned}
& r \leqq\left\|x_{0}-a_{0}\right\|=\sup _{\xi \in \in \sqrt{2},\|\xi\|=1}\left|<\left(x_{0}-a_{0}\right) \xi, \xi>\right| \\
& \quad \leqq \sup \varlimsup_{\lim _{\xi \in \mathfrak{g},}\|\xi\|=1, n}\left|<\left(x_{n}-a_{n}\right) \xi, \xi>\right| \\
& \quad \leqq \lim _{n}\left\|x_{n}-a_{n}\right\|=r .
\end{aligned}
$$

This completes the proof.
Now let \mathfrak{F} be a family of all elements $\left(c_{\alpha} \mid \alpha \in I\right)$ in $B(\mathfrak{F})$ such that $c_{\alpha}=$ $x_{\alpha}-a_{\alpha}, x_{\alpha} \in M_{s}, a_{\alpha} \in K$, and $\left\|c_{\alpha}\right\|=r$. For $c_{\alpha}, c_{\beta} \in \mathfrak{F}$, we shall define a partial ordering as follows: $c_{\alpha} \prec c_{\beta}$ if $\left\|c_{\alpha} z\right\| \geqq\left\|c_{\beta} z\right\|$ for all $z \in Z_{p}$ (we do not require that the order be proper), where Z_{p} is the set of all central projections in M. Let $\mathfrak{F}_{1}=\left(c_{\gamma} \mid \gamma \in I_{1}\right)$ be a linearly ordered subset of \mathfrak{F}, and put $F_{\gamma}=\left\{c_{\delta}\left|c_{\delta}\right\rangle c_{\gamma}\right.$, $\left.\delta \in I_{1}\right\}$, then $\bigcap_{\gamma \in I_{1}} \bar{F}_{\gamma} \neq(\varnothing)$, where \bar{F}_{γ} is the weak closure of F_{γ}, because \bar{F}_{γ} is weakly compact. Take $c_{1} \in \bigcap_{\gamma \in I_{1}} \bar{F}_{\gamma}$, then

$$
\left\|c_{1}\right\|=\sup _{\|\xi\|=1}\left|<c_{1} \xi, \xi>\left|\leqq \sup _{c_{\delta}>c_{\gamma},\|\xi\|=1}\right|<c_{i} \xi, \xi>\right| \leqq \sup _{c_{\delta}>c_{\gamma}}\left\|c_{\delta}\right\|=r .
$$

Analogously, we have

$$
\left\|c_{1} z\right\| \leqq \sup _{c_{8}>c_{\gamma}}\left\|c_{\delta} z\right\|=\left\|c_{\gamma} z\right\|
$$

for all $\gamma \in I_{1}$ and $z \in Z_{p}$.
On the other hand, $\left\|x_{\gamma}\right\| \leqq r+\left\|a_{\gamma}\right\| \leqq r+1$; hence c_{γ} belongs to $(r+1) S \cap M_{s}-K ; c_{1}$ belongs also to the set $(r+1) S \cap M_{s}-K$, because it is
compact; hence c_{1} belongs to \mathfrak{F} and $c_{\gamma}\left\langle c_{1}\right.$ for all $\gamma \in I_{1}$. Theorefore $\widetilde{\mathscr{F}}_{1}$ has an upper bound, and so by Zorn's lemma there is a maximal element $c_{\alpha_{0}}=x_{\alpha_{0}}-a_{\alpha_{0}}$ $\left(x_{\alpha_{0}} \in M_{s}, a_{\alpha_{0}} \in K\right)$ in \mathfrak{F}.

Lemma 3. $c_{\alpha_{0}}=0$, if M^{\prime} is a countably decomposable type III algebra.
Proof. Suppose that $c_{\alpha_{0}} \neq 0$. Then, first of all, we shall show that there is a projection e^{\prime} in M^{\prime} such that $e^{\prime} \sim 1-e^{\prime}$ in M^{\prime} and $e^{\prime} c_{\alpha_{0}}\left(1-e^{\prime}\right) \neq 0$. Suppose that $e^{\prime} c_{\alpha_{0}}\left(1-e^{\prime}\right)=0$ for all e^{\prime} as above, then $e^{\prime} c_{\alpha_{0}}=c_{\alpha_{0}} e^{\prime}$; hence $z e^{\prime} c_{\alpha_{0}}=c_{\alpha_{0}} z e^{\prime}$ for all $z \in Z_{p}$, because $c_{\alpha_{0}}$ belongs to (M, A) $\subseteq\left(M, M^{\prime}\right)$, and so $p^{\prime} c_{\alpha_{0}}=c_{\alpha_{0}} p^{\prime}$ for all projection $p^{\prime} \in M^{\prime}$, because p^{\prime} is equivalent to its central support $z\left(p^{\prime}\right)$ in M^{\prime} and so p^{\prime} can be written as a sum of two mutually orthogonal, equivalent projections $e^{\prime} z\left(p^{\prime}\right), f^{\prime} z\left(p^{\prime}\right)$ such that $e^{\prime} \sim 1-e^{\prime}$ and $f^{\prime} \sim 1-f^{\prime}$; therefore $c_{\alpha_{0}} \in M^{\prime \prime}=M$, and so $c_{\alpha_{0}}=0$, a contradiction.

Take a projection $e^{\prime} \in M^{\prime}$ such that $e^{\prime} \sim\left(1-e^{\prime}\right)$ in M^{\prime}, and $e^{\prime} c_{\alpha_{0}}\left(1-e^{\prime}\right) \neq 0$. Let v^{\prime} be a partial isometry of M^{\prime} such that $v^{*} v^{\prime}=e^{\prime}$ and $v^{\prime} v^{*}=1-e^{\prime}$, then $B(\mathfrak{F})$ can be considered the matrix algebra of all 2×2 matrices over a W^{*} algebra $\mathfrak{N}=\left\{e^{\prime} x e^{\prime}+v^{\prime} e^{\prime} x e^{\prime} v^{\prime *} \mid x \in B(\mathfrak{j})\right\}$ and M^{\prime} is considered a $*$-subalgebra of $B(\mathfrak{l})$ consisting of all 2×2 matrices over a W^{*}-algebra

$$
\mathfrak{B}=\left\{e^{\prime} x e^{\prime}+v^{\prime} e^{\prime} x e^{\prime} v^{\prime *} \mid x \in M^{\prime}\right\}
$$

(cf. [1]). Then,

$$
e^{\prime}=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right) \quad \text { and } \quad 1-e^{\prime}=\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right) .
$$

Let

$$
c_{\alpha_{0}}=\left(\begin{array}{ll}
c_{11} & c_{12} \\
c_{12}^{*} & c_{22}
\end{array}\right),
$$

then

$$
e^{\prime} c_{\alpha_{0}}\left(1-e^{\prime}\right)=\left(\begin{array}{cc}
0 & c_{12} \\
0 & 0
\end{array}\right) \neq 0 .
$$

For $h \in K$ and $x, y \in M_{s}$, we have

$$
\begin{aligned}
{\left[e^{\prime}(x-h)\left(1-e^{\prime}\right), y\right] } & =-\left[e^{\prime} h\left(1-e^{\prime}\right), y\right] \\
& =-e^{\prime} h\left(1-e^{\prime}\right) y+y e^{\prime} h\left(1-e^{\prime}\right) \\
& =-e^{\prime}[h, y]+e^{\prime}[h, y] e^{\prime} \\
& =-e^{\prime}[b, y]+e^{\prime}[b, y] e^{\prime} \\
& =0 ;
\end{aligned}
$$

therefore, $e^{\prime}(x-h)\left(1-e^{\prime}\right) \in M^{\prime}$. Let

$$
x-h=\left(\begin{array}{ll}
d_{11} & d_{12} \\
d_{12}^{*} & d_{22}
\end{array}\right),
$$

then by the above considerations, $d_{12} \in \mathfrak{R}$.
Now let K_{1} be a weakly closed convex subset of K generated by

$$
\left\{u^{\prime *} a_{\alpha_{0}} u^{\prime} \mid u^{\prime} \in M_{u}^{\prime}\right\},
$$

where M_{u}^{\prime} is the set of all unitary elements of M^{\prime}, then $x_{\alpha_{0}}-K_{1}$ is a weakly compact convex set and clearly $x_{x_{0}}-K_{1} \subset \mathfrak{F}$. Therefore, a subset

$$
H=\left\{d_{12} \left\lvert\, x_{\alpha_{0}}-k=\left(\begin{array}{ll}
d_{11} & d_{12} \\
d_{12}^{*} & d_{22}
\end{array}\right)\right., \quad k \in K_{1}\right\}
$$

of \mathfrak{B} is also weakly compact in the W^{*}-algebra \mathfrak{B}.
Now let u, v be two unitary elements of \mathfrak{B}, then $\left(\begin{array}{ll}u & 0 \\ 0 & v\end{array}\right)$ is a unitary element w^{\prime} of M^{\prime} and

$$
\left(\begin{array}{cc}
u^{*} & 0 \\
0 & v^{*}
\end{array}\right)\left(\begin{array}{cc}
c_{11} & c_{12} \\
c_{12}^{*} & c_{22}
\end{array}\right)\left(\begin{array}{ll}
u & 0 \\
0 & v
\end{array}\right)=\left(\begin{array}{cc}
u^{*} c_{11} u & u^{*} c_{12} v \\
v^{*} c_{12}^{*} u & v^{*} c_{22} v
\end{array}\right) ;
$$

therefore H contains all elements $u^{*} c_{12} v$ for $u, v \in \mathfrak{B}_{u}$, where \mathfrak{B}_{u} is the set of all unitary elements of \mathfrak{F}. Hence H contains $T c_{12} T$, where T is the unit sphere of \mathfrak{B}, because \mathfrak{B} is $*$-isomorphic to the W^{*}-algebra $e^{\prime} M^{\prime} e^{\prime}$, and so \mathfrak{B}_{u} is weakly dense in $T(3)$. Therefore $c_{12} c_{12}^{*} \in H$, because $\left\|c_{12}\right\| \leqq\left\|c_{\alpha_{0}}\right\| \leqq 1$. Take a nonzero projection p in \mathfrak{B} such that $c_{12} c_{12}^{*} \geqq \lambda p$ for some positive number λ, and let $z(p)$ be the central support of p in \mathfrak{B}, then $p \sim z(p)$ in \mathfrak{B}. Let v be a partial isometry of \mathfrak{B} such that $v^{*} v=z(p)$ and $v v^{*}=p$, then $v^{*} c_{12} c_{12}^{*} v \geqq \lambda v^{*} p v=\lambda z(p)$; clearly $v^{*} c_{12} c_{12}^{*} v \in H$. Take $c_{\alpha_{1}} \in x_{\alpha_{0}}-K_{1}$ such that

$$
\boldsymbol{c}_{\alpha_{1}}=\left(\begin{array}{cc}
d_{11} & v^{*} c_{12} c_{12}^{*} v \\
v^{*} c_{12} c_{12}^{*} v & d_{22}
\end{array}\right) .
$$

Since $x_{\alpha_{0}}-u^{\prime *} a_{\alpha_{0}} u^{\prime}=u^{\prime *}\left(x_{\alpha_{0}}-a_{\alpha_{0}}\right) u^{\prime}=u^{\prime *} c_{\alpha_{0}} u^{\prime}$ for all $u^{\prime} \in M_{u}^{\prime}$,

$$
\left\|\left(x_{\alpha_{0}}-u^{\prime *} a_{\alpha_{0}} u^{\prime}\right) z\right\|=\left\|c_{\alpha_{0}} z\right\|
$$

for all $z \in Z_{p}$, and so for $k \in K_{1}$,

$$
\left\|\left(x_{\alpha_{0}}-k\right) z\right\| \leqq\left\|c_{\alpha_{0}} z\right\|
$$

for all $z \in Z_{p}$, this implies $c_{\alpha_{0}} \prec x_{\alpha_{0}}-k$ for all $k \in K_{1}$.
On the other hand, let z_{1} be a central projection of M^{\prime} such that

$$
z_{1}=\left(\begin{array}{cc}
z(p) & 0 \\
0 & z(p)
\end{array}\right),
$$

then

$$
\begin{aligned}
\left\|c_{\alpha_{1}} z\right\| & =\left\|\left(\begin{array}{cc}
z(p) & 0 \\
0 & z(p)
\end{array}\right)\left(\begin{array}{cc}
d_{11} & v^{*} c_{12} c_{12}^{*} v \\
v^{*} c_{12} c_{12}^{*} v & d_{22}
\end{array}\right)\right\| \\
& \geqq\left\|\left(\begin{array}{cc}
z(p) & 0 \\
0 & z(p)
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
0 & 0
\end{array}\right)\left(\begin{array}{cc}
d_{11} & v^{*} c_{12} c_{12}^{*} v \\
v^{*} c_{12} c_{12}^{*} v & d_{22}
\end{array}\right)\right\| \\
& =\left\|\left(\begin{array}{cc}
z(p) d_{11} & z(p) v^{*} c_{12} c_{12}^{*} v \\
0 & 0
\end{array}\right)\right\| \\
& =\left\|\left(\begin{array}{cc}
z(p) d_{11} & z(p) v^{*} c_{12} c_{12}^{*} v \\
0 & 0
\end{array}\right)\left(\begin{array}{cc}
d_{11} z(p) & 0 \\
z(p) v^{*} c_{12} c_{12}^{*} v & 0
\end{array}\right)\right\|^{1 / 2} \\
& =\left\|z(p) d_{11}^{2} z(p)+z(p)\left(v^{*} c_{12} c_{12}^{*} v\right)^{2}\right\|^{1 / 2} \\
& \geqq\left(\left\|z(p) d_{11}\right\|^{2}+\lambda^{2}\right)^{1 / 2}>\left\|z(p) d_{11}\right\|
\end{aligned}
$$

Analogously,

$$
\begin{aligned}
\left\|c_{\alpha_{1}} z_{1}\right\| & \geqq\left\|\left(\begin{array}{cc}
z(p) & 0 \\
0 & z(p)
\end{array}\right)\left(\begin{array}{cc}
0 & 0 \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
d_{11} & v^{*} c_{12} c_{12}^{*} v \\
v^{*} c_{12} c_{12}^{*} v & d_{22}
\end{array}\right)\right\| \\
& =\left\|\left(\begin{array}{cc}
0 & 0 \\
z(p) v^{*} c_{12} c_{12} v & z(p) d_{22}
\end{array}\right)\right\| \\
& =\left\|\left(\begin{array}{cc}
0 & 0 \\
z(p) v^{*} c_{12} c_{12}^{*} v & z(p) d_{22}
\end{array}\right)\left(\begin{array}{cc}
0 & z(p) v^{*} c_{12} c_{12}^{*} v \\
0 & d_{22} z(p)
\end{array}\right)\right\|^{1 / 2} \\
& =\left\|z(p) d_{22}^{2} z(p)+z(p)\left(v^{*} c_{12} c_{12}^{*} v\right)^{2}\right\|^{1 / 2} \\
& >\left\|z(p) d_{22}\right\|
\end{aligned}
$$

Moreover,

$$
\left(\begin{array}{cc}
d_{11} & 0 \\
0 & d_{22}
\end{array}\right)=\frac{1}{2}\left\{\left(\begin{array}{cc}
d_{11} & v^{*} c_{12} c_{12}^{*} v \\
v^{*} c_{12} c_{12}^{*} v & d_{22}
\end{array}\right)+\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)\left(\begin{array}{cc}
d_{11} & v^{*} c_{12} c_{12}^{*} v \\
v^{*} c_{12} c_{12}^{*} v & d_{22}
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)\right\}
$$

Since $\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)$ is a unitary element u_{0}^{\prime} of M^{\prime},

$$
c_{\alpha_{2}}=\left(\begin{array}{cc}
d_{11} & 0 \\
0 & d_{22}
\end{array}\right) \in x_{\alpha_{0}}-K_{1}
$$

The maximality of $c_{\alpha_{0}}$ and $c_{\alpha_{1}}>c_{\alpha_{0}}, c_{\alpha_{2}}>c_{\alpha_{0}}$ imply that $c_{\alpha_{1}}$ and $c_{\alpha_{2}}$ are also maximal; hence $\left\|c_{\alpha_{1}} z_{1}\right\|=\left\|c_{\alpha_{2}} z_{1}\right\|$.

On the other hand,

$$
\begin{aligned}
\left\|c_{\alpha_{2}} z_{1}\right\| & =\left\|\left(\begin{array}{cc}
d_{11} z(p) & 0 \\
0 & d_{22} z(p)
\end{array}\right)\right\| \\
& =\max \left\{\left\|z(p) d_{11}\right\|,\left\|z(p) d_{22}\right\|\right\} \\
& <\left\|d_{\alpha_{1}} z_{1}\right\|
\end{aligned}
$$

a contradiction. Hence $c_{\alpha_{0}}=0$, and this completes the proof.
Now we shall prove Theorem 1.
Proof of theorem 1. First of all, we shall suppose that M^{\prime} is a countably decomposable type III algebra, then by Lemma 3 , $c_{\alpha_{0}}=x_{\alpha_{0}}-a_{\alpha_{0}}=0$; hence $\left[x_{\alpha_{0}}, x\right]=\left[a_{\alpha_{0}}, x\right]=D(x)$ for $x \in M$; therefore D is inner.

Next suppose that M is arbitrary type III algebra. Take a countably decomposable projection p^{\prime} in M^{\prime} and put $\bar{D}\left(x p^{\prime}\right)=D(x) p^{\prime}$ for $x \in M$, then \bar{D} is a derivation on a W^{*}-algebra $M p^{\prime}$ on a Hilbert space p^{\prime} § and $\left(M p^{\prime}\right)^{\prime}=p^{\prime} M^{\prime} p^{\prime}$; hence there is an element $y \in M$ such that $\left[y p^{\prime}, x p^{\prime}\right]=\bar{D}\left(x p^{\prime}\right)$ for $x \in M$; hence $\left[y, x p^{\prime}\right]=[b, x] p^{\prime}$ for $x \in M$ and so $[y, x] z=[b, x] z$ for $x \in M$, where z is the central support of p^{\prime}. This implies $b z=y z+m^{\prime} z\left(m^{\prime} \in M^{\prime}\right)$; hence by the well known theorem of W^{*}-algebras, a uniformly closed convex subset C generated by $\left\{u^{\prime *} m^{\prime} z u^{\prime} \mid u^{\prime} \in M_{u}^{\prime}\right\}$ has a non-void intersection with the center Z of M^{\prime}. Take $a z \in C \cap Z(a \in M)$, then $y z+a z \in M$ and $\|y z+a z\| \leqq\|b z\| \leqq 1$ and $[y z+a z, x]=[y z, x]$ for all $x \in M$. Therefore we can choose a family of orthogonal central projections ($z_{\alpha} \mid \alpha \in J$) in M snch that for each $\alpha \in J$, there is an element y_{α} in $M z_{\alpha}$ such that $\left\|y_{\alpha}\right\| \leqq 1,\left[y_{\alpha}, x\right]=D(x) z_{\alpha}$ for all $x \in M$ and $\sum_{a \in J} z_{\alpha}=1$. Take $y_{0}=\sum_{\alpha \in J} y_{\alpha}$, then $y_{0} \in M$, and

$$
\left[y_{0}, x\right]=\sum_{\alpha \in J}\left[y_{\alpha}, x\right]=\sum_{\alpha \in J} D(x) z_{\alpha}=D(x)
$$

for $x \in M$; hence D is inner.
Finally suppose that M is arbitrary W^{*}-algebra. Take a type III factor N on a Hilbert space \mathfrak{S}_{1}, and consider the tensor product $M \otimes N$, then $M \otimes N$ is of type III (8).

Then $b \otimes 1_{\mathfrak{F}_{1}}$ is a bounded operator on $\mathfrak{S} \otimes \mathfrak{F}_{1}$, where $1_{\mathfrak{F}_{1}}$ is the identity operator on \mathfrak{Q}_{1}. Consider $\left[b \otimes 1_{\mathfrak{F}_{1}}, x\right]$ for $x \in M \otimes N$, then it is a derivation on $M \otimes N$, because $\left[b \otimes 1_{\mathfrak{F}_{1}}, c \otimes d\right] \in M \otimes N$ for $c \in M$ and $d \in N$, so that there is an element h in $M \otimes N$ such that $\left[b \otimes 1_{\mathfrak{F}_{1}}, x\right]=[h, x]$ for all $x \in M \otimes N$. Hence $\left[h, 1_{\mathfrak{\xi}} \otimes N\right]=0$, where $1_{\mathfrak{5}}$ is the identity operator on \mathfrak{E}; therefore $h \in\left(1_{\mathfrak{g}} \otimes N\right)^{\prime} \cap(M \otimes N)$.

$$
\begin{gathered}
\left\{\left(1_{\mathfrak{S}} \otimes N\right)^{\prime} \cap(M \otimes N)\right\}^{\prime} \supset\left(1_{\mathfrak{W}} \otimes N, M^{\prime} \otimes N^{\prime}\right) \\
=M^{\prime} \otimes\left(N^{\prime}, N\right)=M^{\prime} \otimes B\left(\mathfrak{F}_{1}\right) ;
\end{gathered}
$$

hence $\left(1_{\mathfrak{g}} \otimes N\right)^{\prime} \cap(M \otimes N) \subset\left(M^{\prime} \otimes B\left(\mathfrak{F}_{1}\right)\right)^{\prime}=M \otimes 1_{\mathfrak{F}_{1}}$, and so $h \in M \otimes 1_{\mathfrak{1}_{1}}$,
this implies that D is inner.
This completes the proof.
Proof of theorem 2. Let \mathfrak{A} be a C^{*}-algebra on a Hilbert space \mathfrak{S}, D a derivation on \mathfrak{N}, then by the result of Kadison (4), D can be extended to a derivation D on the weak closure $\overline{\mathcal{Z}}$ of \mathfrak{X}, then there is an element $x_{0} \in \overline{\mathcal{Z}}$ such that $\left[x_{0}, x\right]=D(x)$ for $x \in \mathfrak{N}$.

This completes the proof.
University of Pennsylvania

References

1. J. Dixmier, Les algèbres d'opérateurs dans l'espace hilbertien, Gauthier-Villars, Paris, 1957.
2. ——_, Les C^{*}-algebres et leurs reprèsentations, Gauthier-Villars, Paris, 1964.
3. H. Dye, The unitary structure in finite rings of operators, Duke Math. J., 20 (1953), 55-69.
4. R. Kadison, Derivations of operator algebras, Ann. of Math., 83 (1966), 273-286.
5. -_ and J. Ringrose, Derivations of group operator algebras, to appear.
6. I. Kaplansky, Modules over operator algebras, Amer. J. Math., 75 (1953). 839-853.
7. P. Miles, Derivations on B^{*} algebras, Pacific J. Math., 14 (1964), 1359-1366.
8. S. Sakai, Topological properties of W^{*}-algebras, Proc. Jap. Acad., 33 (1957), 439-444.
9. _-, On a conjecture of Kaplansky, Tohoku Math. J., 12 (1960), 31-33.
10. - The theory of W^{*}-algebras, Lecture notes, Yale University, New Haven, Conn., 1962.
(Received April 5, 1965)

[^0]: * This research was partially supported by ONR Nonr-551 (57).

