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Derivations of W*-algebras
By Shoichiro Sakai*

1. Introduction

Let A be a C*-algebra, and let D be a derivation of 2, i.e., a linear map-
ping on A to A satisfying D(xy) = D(x)y + xD(y). D is said to be an inner
derivation if there is an element a in 2 such that D(x) = [a, 2] = ax — xa for
xe A. Otherwise, it is said to be an outer derivation.

The question of whether or not a W*-algebra can have an outer derivation
has been open for some time (cf. [10, ch. 1, p. 60]). Kaplansky [6] proved that
every derivation of a type I W*-algebra is inner. Establishing a conjecture of
Kaplansky, the author [9] proved that every derivation of a C*-algebra is
bounded. Miles [7] noted that every derivation of a C*-algebra is induced by
an operator in the weak closure of some faithful representation of the algebra
(a direct sum of irreducible representations). Recently, Kadison [4] showed that
every derivation of a C*-algebra on a Hilbert space © is spatial (i.e., it has the
form x — bx — xb for some bounded operator b on 9), and every derivation of
a hyper-finite factor is inner. Moreover, Kadison and Ringrose [5] show that
every derivation of the W*-algebra generated by the regular representation
of a diserete group is inner.

In this paper, we shall show the following: every derivation of a W*-
algebra is inner. This is the affirmative solution to Kadison’s conjecture.

2. Theorems
In this section, we shall show the following theorems.
THEOREM 1. Ewvery derivation of a W*-algebra s inner.
As a corollary of Theorem 1, we have:

THEOREM 2. Let U be a C*-algebra on a Hilbert space O, D a derivation
on A, A the weak closure of Aon D, then there is a bounded operator b belong-
ing to A such that D(x) = [b, x] for all xc A, where [b, x] = bx — xb.

To prove Theorem 1, we shall proceed as follows. Let M be a W*-algebra
on Hilbert space , D a derivation on M, M’ the commutant of M in O, and A
a maximal abelian x-subalgebra of M’.

LemMA 1 (Kadison [4]). There is a bounded operator b belonging to a
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W+-algebra (M, A) generated by M and A such that D(x) = [b, ] = bx — xb
forall xe M .

For the proof of Lemma 1, we refer to Kadison’s paper.

Put D*(x) = [b*, x], then D*(x) = — [b, 2*]*; hence D* is also a derivation
on Mand D = (D + D*)/2 + i (D — D*)/2i. Therefore it is enough to assume
that b is self-adjoint. Moreover, we can assume that ||b]| = 1. Let B(9) be
the W+-algebra of all bounded operators on 9, S the unit sphere of B(9), M,
the self-adjoint portion of M’, then b + M) is weakly closed in B(9), and so a
set K = (b + M)) N S is weakly compact. It is easily seen that a self-adjoint
element A with ||[2]|| = 1 in B(9) belongs to K, if and only if [k, x] = [b, ]
for all xe M.

Let M, be the self-adjoint portion of M and define

r=inf{|x —al|l|ve M, ac K}.

LEMMA 2. There are two elements x, and a, in B(D) such that x,€ M,,

a,cKand r = || %, — al|.
Proor. Let (#,) (resp. (@,)) be a sequence of M, (resp. K) such that
lim, ||, — @, || = 7, then they are bounded; hence by the weak compactness

of bounded spheres of B(9), there is an accumulate point x, (resp. a,) of (,)
(resp. (a,)) such that x,€ M, and a,€ K; moreover

r=% — @l = SuDieq. nen=1| < (@ — @0)§, & > |
= sup limee@, Hen=t | < (@, — @,)§, &> |
éhmn”xn_a’n” =7r.

This completes the proof.

Now let ¥ be a family of all elements (¢, | @€ I) in B(9) such that ¢, =
Lo — Ao, Ba € M,, ae€ K, and || e, || = r. For ¢,, cz€ ¥, we shall define a partial
ordering as follows: ¢, < ¢z if || c.2|| = || cgz || for all ze Z, (we do not require
that the order be proper), where Z, is the set of all central projections in M.
Let I, = (¢y|v € I) be a linearly ordered subset of &, and put Fy = {cs|cs > ¢y,
de I}, then Nye,, Fy # (@), where F) is the weak closure of F,, because F,is
weakly compact. Take ¢, € MNye;, Fy, then

[[e.]l =sup e < e E>| = Sch5>c7,nen=1| <t E> = Supcsnyllcsll =r.
Analogously, we have
lleall < sup. ezl = [l e

forallvye I, and ze Z,.
On the other hand, ||®,|| =<7 + |lay|| <7 + 1; hence c, belongs to
(r + 1)S N M, — K; ¢, belongs also to the set (r + 1)S N M, — K, because it is
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compact; hence ¢, belongs to ¥ and ¢, < ¢, for all v € I,. Theorefore F, has an
upper bound, and so by Zorn’s lemma there is a maximal element ¢,, = ¥, — @«
(%a, € M, aqy € K) in F.

0

LEMMA 3. ¢,, = 0, if M’ is a countably decomposable type 111 algebra.

Proor. Suppose that c,, # 0. Then, first of all, we shall show that there
is a projection ¢ in M’ such that ¢ ~1 — ¢ in M’ and €'c, (1 — ¢') # 0.
Suppose that e'c, (1 — ¢') = 0 for all ¢’ as above, then é'c, = c,¢’; hence
ze'c,, = cqze’ for all ze Z,, because c,, belongs to (M, A) = (M, M’), and so
D'Cq, = Cq,p" for all projection p’e M’, because p’ is equivalent to its central
support z(p') in M’ and so p’ can be written as a sum of two mutually orthogo-
nal, equivalent projections ¢'z(p'), f'2(p’) such that ¢’ ~ 1 — ¢ and f' ~ 1 — f’;
therefore ¢, € M" = M, and so ¢., = 0, a contradiction.

Take a projection ¢’ € M’ such that ¢’ ~ (1 —¢’) in M’, and é’c, (1 — ¢') # 0.
Let v’ be a partial isometry of M’ such that v"*v' = ¢’ and vv'* =1 — ¢/, then
B(9) can be considered the matrix algebra of all 2 X 2 matrices over a W*-
algebra A = {¢'xe’ + ve'xe'v'* | w e B(D)} and M’ is considered a #-subalgebra
of B(9) consisting of all 2 X 2 matrices over a W*-algebra

B = {exe + vexdv* |xe M'}

, 1 0 d 1 , 0 0
= n —_ = .
oo ® o1
_ [Cu Cn
Cay = et o)’
12 22

0 ¢
el — &) = (0 32);& 0.

(cf. [1]). Then,

Let

then

For he K and », y€ M,, we have
[e'(x — ) —¢), y] = — [¢A(1L — ¢), ¥]
= — (1l — )y + ye'h(l — ¢)
= — ¢[h, y] + €[k, yl¢
= — ¢'[b, y] + €'[b, yl¢’
=0;

therefore, ¢'(x — h)(1 — e')e M'. Let
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x — h, :(dll dlZ) ,
di’; d22
then by the above considerations, d, < L.
Now let K, be a weakly closed convex subset of K generated by
{u*a.u' |u' e M},
where M, is the set of all unitary elements of M’, then x,, — K, is a weakly
compact convex set and clearly ., — K, C . Therefore, a subset

dll d12
H = d12 . — k= , ke K1
{ [ (d dn) }
of B is also weakly compact in the W*-algebra B.

u 0
Now let u, v be two unitary elements of B, then (0 > is a unitary element
v

w' of M’ and
(u* 0 (cu Cy (u 0) B (u*cuu u*cmv) ]
0 v*/\es en/\0 v/  \v*citu v¥ew)’
therefore H contains all elements u*c,,v for %, v e B,, where B, is the set of
all unitary elements of B. Hence H contains T¢,, T, where T is the unit sphere
of B, because B is *-isomorphic to the W*-algebra ¢'M’e’, and so B, is weakly

dense in T(3). Therefore c¢,.cfic H, because ||c.|| =||c,, || =1. Take a non-
zero projection p in B such that c.cly = A\p for some positive number A, and

let z(p) be the central support of p in B, then p ~ 2(p) in B. Let v be a partial
isometry of B such that v*v = 2(p) and vv* = p, then v*¢,ciiv = M*pv = A2(p);
clearly v*c.cive H. Take ¢, € %o, — K, such that

( d, v*cmcl*zv)
Cou = .
! V*CpCHY ds,

Since @, — U *Ae W = U (Xoy — Go)u’ = w'*c,u’ for all u'e M.,
| (%ay, — u*aau)z|| = || Cagz |
for all ze Z,, and so for ke K,
| (@a, — B)2|| = || cag? ||

for all ze Z,, this implies ¢,, < 2., — k for all k¢ K.
On the other hand, let 2z, be a central projection of M’ such that

B (z(p) 0 )
2 = ,
0 2(p)
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then

oz | = (z(p) 0 )( 1 v*cmcl*w)
h 0 z(p) 1)*012012’0 do,

(z(p) 0 )( )( dy  v¥euciw
0 z(p)/)\0 0/\v*c.civ d,

v

Z(p)du z(p)v* chcmv)

0

I

0 0

(z(p)du Z(p)v*cmci';vx

2(p)vreciv 0
= |l2(p)diz(p) + 2(p)(v*cuciv)||"
= (lz(@)du | + M) > || 2(p)dy |
Analogously,

lenzl] = (z(p) O)(O 0)( dy v*cmc]";v)
DEEAN 0 20)/\0 1)\vteneiv  d

|

|

B ( 0 0 )
| \&(pyvrener  2(p)ds

= || 2(p)dzz(p) + 2(p)(v*cpciv) ||
> ||2(p)dy || .

Moreover,

d.,2(p) 0)

. ( 0 0 )(0 z(p)v*cmcl*w)
N\e@vrencin  2(p)dy/\0  duz(p)
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1/2

1/2

(du O)__l{( dy  v¥epciv +(1 O>< dy v*cmcﬁv)(l O)}
0 dy) 2 [\v*euctv do 0 —1)\v*eyetv dn O —1

. 1 0 . .
Since 0 L is a unitary element u, of M’,

du 0
= cx, — K, .
b (0 dm) Feo

The maximality of ¢,, and ¢., > ¢a,, Cay > Coy imply that ¢
maximal; hence || ¢.2: || = || €a2: |l
On the other hand,

o and c,, are also
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d.; 0
leaa =“( @) )l[

0 dzzz(p)
= max {|| 2(p)dy || , ||2(D)du|[}
<Nl dagill

a contradiction. Hence ¢,, = 0, and this completes the proof.

Now we shall prove Theorem 1.

PROOF OF THEOREM 1. First of all, we shall suppose that M’ is a countably
decomposable type III algebra, then by Lemma 3, ¢., = %, — @, = 0; hence
[, @] = [aa, @] = D(x) for © € M; therefore D is inner.

Next suppose that M is arbitrary type III algebra. Take a countably
decomposable projection p’ in M’ and put D(z p’) = D(x)p’ for € M, then D
is a derivation on a W*-algebra Mp’ on a Hilbert space p'9 and (Mp') = p'M'p’;
hence there is an element y € M such that [yp’, p’] = D(x p’) for € M; hence
[y, xp'] = [b, «]p’ for z€ M and so [y, ]z = [b, «]z for x € M, where z is the
central support of p’. This implies bz = yz + m'z (m' € M’); hence by the well
known theorem of W*-algebras, a uniformly closed convex subset C generated
by {u'*m’zw’ | w' € M,} has a non-void intersection with the center Z of M’.
Take aze CNZ(ac M), then yz + aze M and ||yz + az|| < ||bz|| =1 and
[yz + az, ] = [yz, «] for all xe M. Therefore we can choose a family of
orthogonal central projections (2, | @€ J) in M snch that for each a € J, there
is an element y, in Mz, such that || y. || = 1, [¢a, #] = D(x)z, for all xe M and
S aer2e = 1. Take ¥, = 3 4es Yar then y,€ M, and

[y(n x] = EueJ [ym x] = EweJ D(w)za = D(x)

for 2 € M; hence D is inner.

Finally suppose that M is arbitrary W*-algebra. Take a type III factor
N on a Hilbert space 9., and consider the tensor product M @ N, then M Q@ N
is of type III (8).

Then b @ 1y, is a bounded operator on 9 Q 9, where 1p, is the identity
operator on ,. Consider [b @ 1g, x] for 1€ M@ N, then it is a derivation on
M@ N, because [b @ 1s,, c @ d]e MQ N for ce M and de N, so that there
is an element 2 in M ® N such that [b Qlg,, 2] = [k, «] for all xe MQ N.
Hence [k, 19 @ N] =0, where 1lg is the identity operator on D; therefore
he g QNYN(MQN).

{Le@NYNMRN)Y D(1s@ N, M'Q N')
=M QWN', N)=M QB(9) ;

hence (1g @ NY N(MQN)c (M' Q B(D)) = MQ1p, andso he MQ 1g,,
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this implies that D is inner.

This completes the proof.

PROOF OF THEOREM 2. Let 2 be a C*-algebra on a Hilbert space 9, D a
derivation on 2, then by the result of Kadison (4), D can be extended to a
derivation D on the weak closure % of 2, then there is an element x,c A such
that [z,, ] = D(x) for x e 2A.

This completes the proof.

UNIVERSITY OF PENNSYLVANIA
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