14. FEinige Satze iber Matrizen.

Von Kenjiro Snopa
(Eingegangen am 21, April, 1936).

Es gei K ein kommutativer Kérper. Wir betrachten die Matrizen mit
den Elementen aus A, Sind A4, B regulire Matrizen, d. h. sind die Deter-
minanten von A B von Null verschieden, so heisst die Matrix ABA™'B™!
den multiplikativen Kommutator oder kurz m-Kommutator von A und
L. Die Determinante jedes m-Kommutators ist gleich 1. Umgekehrt wird
bekanntlich jede Matrix von der Determinante 1 als das Produkt von m-
Kommutatoren dargestellt. Anders gesagt, stimmt die Gruppe aller Matrizen
von der Determinante 1 mit der Kommutatorgruppe der Gruppe aller
reguliiven Matrizen tberein®. Diesen Umkehrungssatz kann man fol-
gendermassen verschiirfen, wenn K algebraigch-abgeschlossen oder reell-
abgeschlossen ist.

Satz 1. In einem algebraisch-abgeschlossenen Kérper K ldsst sich jede
Matriz- von der Determinante 1 als das m-Kommutator zweier Matrizen
darstellen.

Satz 2. In einem reell-abgeschlossenen Korper K lisst sich jede Matriz
von der Determinante 1 als das Produkt zweier m-Kommutatoren darstel-
len®.

Unter den additiven Kommutator oder kurz a¢-Kommutator von 4 und
B verstehen wir die Matrix 48— B4, deren Spur bekanntlich gleich Null
ist. Man kann auch ohne Mithe den Umkehrungssatz beweisen. Es gilt
némlich

Satz 3. In einem beliebigen Kiorper KN wvon der Charakteristik Null
lisst sich jede Matriz von der Spur Null als das a-Kommutator zweier
Matrizen darstellen.

In der vorliegenden Note werden wir die elementaren Beweis dieser
Sétze angeben.

0. Normalformen einer Matrix. Bei der #dhnlichen Transformation
bleibt die Gultigkeit der oben erwihnten Sitze erhalten. Daher werden wir

(1) Decn einzigen Ausnahmenfall bilden die Matrizen des Grades 2 im K&rper mit 2
Elementen. Zum Beweis hat man etwa die erzeugenden Matrizen zu betrachten und zu
zeigen, dass solche Matrizen in der Tat m-Kommutator sind. Vgl hierzu etwa B. L. van der
Waerden, Gruppen von linearen Transformationen, Ergebnisse der Math. (1935) 6.

(%) K. Schroder, Einige £dtze aus der Theorie der kontinuierichen Gruppen linearcr
Transformationen, Dissertation Berlin (1934).
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zundchst einige bekannte Normalformen einer Matrix angeben, die nachher
gebraucht werden.

I. Fine Matrix 4 mit den Elementen aus K ist bekanntlich einer
Matrix von der Gestalt

A 0O 6 1 0....0

A, 0 0

A’\‘ ! . 5 I/lL: ' : .
0 T A .

. A, NN 1

Ay Az oo oo Uy

dhnlich, wo die charakteristische Determinante [2F;— 4;] Potenz eines ir-
reduziblen Polynoms ist™. Dabei bedeutet FE; wie tiblich die Einheits-
matrix.

1I. Man erhilt auch eine Normalform, wenn man verlangt, dass
leE,—A4;| durch. |zE;.1— 41| teilbar ist.

II1. Enthalt K die siamtlichen Eigenwerte von 4, so ldsst sich A4 in

der Form
[P TERR T

darstellen.
IV. Diese Normalform wird so verbessert, falls die Determinante von

Null verschieden ist™,

/o Iy 0 - 11 O....O\
ot lly 01 1....0

_A_N . , Fg: . . .
o ; L1
O a'/)lv-/z;fll \\O O O/ . ’1

V. Ist K reell-abgeschlossen und ist |@ff;—4;| in I Potenz eines ir-
reduziblen quadratischen Polynoms ¢ (z), so ist

(3) Es handelt sich um die Elementarteiler-Normalform.
(#) Dies ist die klassische Normalform. In der Literatur ist die Matrix von der Form

ce 1.....0
0 ¢......0
D 1
0 0...... o

iiblich. Ist die Determinante von Null verschieden, so erweist sich aber die hier angegebene
manchmal alg bequemer.
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A;;N _

0 al’
im algebraisch-abgeschlossenen Erweiterungskorper, wo o das zu o kon-
jugiertimaginire Element bedcutet. Daher ist 4; zum Kroneckerschen
Produkt

(O‘ 0) x F, algo zu <U’+a ~oca> XK

0 o 1 0

ghnlich, da
|
L0z | 0

1. Beweis des Satzes 1. Wir beweisen Satz 1 in der folgenden ver-
schirften Form:

Satz 1. Es sei K ein Korper mit unendlich vielen Elementen. Sind
die simtlichen Eigenwerte einer Matriz A in K centhalten und ist die De-
terminante von A gleich 1, so gibt es zwei Matrizen C, D, so dass A=CDC™
D' wird. Dabei kann man D so annehmen, dass die Figemwerte von D
lawter verschieden sind.

Wir nehmen an, das;_? 4 schon die Normalform III hat. Nach der

R ‘(31:‘06-}"06 —ao&!.:%(x).
—a .

Voraussetzung ist dann [ Ja;=1. Daher kann man diese n Flemente a; in

Klassen so einteilen, dasé 1das Produkt der Elemente einer Klasse gleich 1
wird. Es sei {a;, ... ">“-’k,} ,j=1,2, ....,r, eine golche moglichst verfeinerte
Klasseneinteilung, d. h. dag Produkt der Elemente jedes Teilsystems einer
Klagse sei von 1 verschieden. Wir nehmen zunichst cin beliebiges Ele-

ment Cljl, an und wir bestimmen d;, ..., d, duarch ajadfa:djw Dann ist
2 i

-
J
kj

cr/,kdhc:cljl, da I ] a;=1 ist. IFerner sind die £, Elemente d; lauter verschied-
i=

en, da unsere Klasseneinteilung moglichst verfeinert ist. Nun nehmen wir
dic ¢ Element d; so an, dass unsere n Elemente d; verschieden sind.  Dics
ist stets moglich, da der Korper K unendlich vicle Elemente enthilt.

Bezeichnet man die Diagonalmatrix mit den Elementen d; mit D, so
haben AD und D dieselben Eigenwerte, die lauter verschieden sind.  Daher
gind LD und D dhnlich und folglich gibt es eine Matrix ¢ mit AD=CDC™,
also A=CDC™'D™".

2. Beweis des Satzes 2. Wir betrachten zundchst die Normalform I
im reell-abgeschlossenen Kérper K. Die Determinante |z£,— .| ist Potenz
eines irreduziblen Polynoms ¢ (z). Da K vcell-abgeschlogsen ist, =o ist
@i(z) linear oder quadratisch. Jedenfalls gibt es ein Element o aus K
derart, dass 4;—oud¥, | A7 =1 ist. Ist ndmlich ¢,(2) lincar, so hat man
nur die Normalform IV zu betrachten. Ist (2} quadratisch, zo sind die
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.
— . . . = .
Wurzeln p, p konjugiertimaginir. Da |4;{ =(pp): ist, so hat man nur

e;=YVpp zu setzen, wobei n; den Grad von 4, bedeutet. Nun crhalt man

o iy 0 AfF 0
A G = oL A
0 . 0 ,
OéynE nt 44;:1:;

wo |Af|=1 fir jedes 4 ist. Da 4% =1 ist, so ist auch [(/|=1. Nach
Satz 1’ ldsst sich G als m-Klommutator darstellen. Zum Beweis des Satzes
geniigh es also zu zeigen, dass A7 fiir jedes ¢ als m-Kommutator dargestellt
wird. Ist gfz) linear, so ist dies wieder nach Satz 1’ klar. Ist ¢,(x)
quadratisch, so betrachten wir die Normalform V. Da jetat ce=1 ist, ro
ist, wenn man o-t-a=q setzt,

A~ <Cll ---- (1)) x I

(¢ —1'>:<a, O‘>(O 1> <a O)"(O 1>“‘

ST YARAS B AN TS TS VAR B
und [ lisst sich nach Satz 17 als m-Kommutator darstellen. Daraus folgt
unmittelbar, dass A7 fir jedes ¢ als m-kommutator dargestellt wird.

Es ist aber

3. Beweis des Satzes 3. Zuniichst bewecisen wir

Hilfssatz. Isi die Spur einer Matria A gleich Null, so ist A einer
Matriz dhnlich, deven Diagonalelemente similich Null sind.

Wir nehmen an, dass 4 die Gestalt

1~_<Au Am)
T An Ase

hat, wo die Diagonalelemente von .y alles von Null verschicden und die
von As alles gleich Null sind. Zum Bewecis des Hilfssatzes gentigh es zu
zeigen, dags man stets die Anzahl der Nullen im Diagonalen von A verme-
hren kann. Wir bestimmen nun eine Matrix Py, die 4y in die Normalform
IT transformiert. Dann wird die Anzahl der Nullen im Diagonalen von

PO . .
( h ) transformiert. Denn sonst wére

O B

A vermehrt, wenn man A durch

die Normalform II fiir- 4y Diagonalmatrix und zwar von der Gestalt ol
Da aber die Spur von 4 und folglich die von 4, gleich Null ist, o musste
gegen der Voraussetzung dy=0 sein.

Man bewecist nun leicht Satz 3. Wir nehmen nach dem Ililfssatz an,
dass die Diagonalelemente a, von A=(ay) gleich Null sind. Man bilde eine
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Diagonalmatrix B mit lauter verschiedenen Elementen 0, Bestimmt man
die Matrix C=(¢;) durch (b;—b)cy=ay, so ist ersichtlich 4=BC—-CB.
Dass diese linearen Gleichungen Léosung haben, folgt daraus, dass a;=0
und b —b;=:0 fir i=Fj ist.

Mathematisches Institut

Kaiserliche Universitit zu Osaka.



