
14. Einige Satze uber Matrizen.

Von Kenjiro SHODA

(Eingegangen am 21, April, 1936).

Es sei K ein kommutativer Korper. Wir betrachten die Matrizen mit

 den Elementen aus K Sind A, B regulare Matrizen, d. h. sind die Deter

minanten von A B von Null verschieden, so heisst die Matrix ABA-1B-1
 den multiplikativen Kommutator oder kurz m-Kommutator von A und

 B. Die Determinante jedes m-Kommutators ist gleich 1. Umgekehrt wird

 bekanntlich jede Matrix von der Determinante 1 als das Produkt von m-
Kommutatoren dargestellt. Anders gesagt, stimmt die Gruppe aller Matrizen 

von der Determinante 1 mit der Kommutatorgruppe der Gruppe aller

 regularen Matrizen uberein (1). Diesen Umkehrungssatz kann man fol

gendermassen verscharfen, wenn K algebraisch-abgeschlossen oder reell
abgeschlossen ist.

Satz 1. In einem algebraisch-abgeschlossenen Korper K lasst sich jede 

Matrix von der Determinante 1 als das m-Kommutator zweier Matrizen

 darstellen.

Satz 2. In einem reell-abgeschlossenen Korper K lasst sich jede Matrix

 von der Determinante 1 als das Produkt zweier m-Kommntatoren darstel

len (2).

Unter den additiven Kommutator oder kurz a-Kommutator von A und

 B verstehen wir die Matrix AB-BA, deren Spur bekanntlich gleich Null

 ist. Man kann auch ohne Muhe den Umkehrungssatz beweisen. Es gilt

 namlich

Satz 3. In einem beliebigen Korper K von der Charakteristik Null

 lasst sich jede Matrix von der Spur Null als das a-Kommutator zweier
 Matrizen darstellen.

In der vorliegenden Note werden wir die elementaren Beweis dieser

 Satze angeben.

(1) Den einzigen Ausnahmenfall bilden die Matrizen des Grades 2 im Korper mit 2 

Elementen. Zum Beweis hat man etwa die erzeugenden Matrizen zu betrachten und zu

 zeigen, dass solche Matrizen in der Tat m-Kommutator sind. Vgl. hierzu etwa B. L van der

 Waerden, Gruppen von linearen Transformationen, Ergebnisse der Math. (1935) 6.

(2) K. Schroder, Einige Satze aus der Theorie der kontinuierichen Gruppen linearer 

Transformationen, Dissertation Berlin (1934).

O. Normalformen einer Matrix. Bei der ahnlichen Transformation

 bleibt die Gultigkeit den oben erwahnten Satze erhalten. Daher werden wir



362 K. SHODA

zunachst einige bekannte Normalformen einer Matrix angeben, die nacher

 gebraucht werden.

Ⅰ. Eine Matrix A mit den Elementen aus K ist bekanntlich einer

 Matrix von der Gestalt 

ahnlich, wo die charakteristische Determinante |xEi-Ai| Potenz eines ir
reduziblen Polynoms ist(3). Dabei bedeutet Ei wie ublich die Einheits
matrix.

Ⅱ. Man erhalt auch eine Normalform, wenn man verlangt, dass

 |xEi-Ai| durch |xEi+1-Ai+1| teilbar ist.

Ⅲ. Enthalt K die samtlichen Eigenwerte von A, so lasst sich A in

 der Form

 darstellen.

Ⅳ. Diese Normalform wird so verbessert, falls die Determinante von

 Null verschieden ist(4),

(3) Es handelt sich um die Elementarteiler-Normalform.

(4) Dies ist die klassische Normalform. In der Literatur ist die Matrix von der Form

 ublich. Ist die Determinante von Null verschieden, so erweist sich aber die hier angegebene
 mnanchmal als bequemer.

Ⅴ. Ist K reell-abgeschlossen und ist |xEi-Ai| in I Potenz eines ir

reduziblen quadratischen Polynoms φi(x), so ist
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1. Beweis des Satzes 1. Wir beweisen Satz 1 in der folgenden ver

scharften Form:

Satz 1'. Es sei K ein Korper mit unendlich vielen Elementen. Sind 

die samtlichen Eigenwerte einer Matrix A in K enthalten und ist die De

terminante von A gleich 1, so gibt es zwei Matrizen C, D, so dass A=CDC-1

 D-1 wird. Dabei kann man D so annehmen, dass die Eigenwerte von D

 lauter verschieden sind.

Wir nehmen an, dass A schon die Normalform Ⅲ hat. Nach der

 Voraussetzung ist dann

 n

П
i=1

ai=1.  Daher kann man diese n Elemente ai in

 Klassen so einteilen, dass das Produkt der Elemnente einer Klasse gleich 1

 

wird. Es sei  {aj1,…,  ajkj}, j=1,2,… , r, eine solche moglichst verfeinerte

 Klasseneinteilung, d. h. das Produkt der  Elemente jedes Teilsystems einer

 Klasse sei von 1 verschieden. Wir nehmen zunachst ein beliebiges Ele

ment dj1, an und wir bestimmen  dj
2,…, djk

j

 durch ajadj
ａ=dja+1. Dann ist

 ajkdjk=dj1, da

 jkj

П
i=j1

 ai=1 ist.  Ferner sind die kj Elemente dja lauter verschied

en, da unsere Klasseneinteilung moglichst verfeinert ist. Nun nehmen wir

 die r Element dj1 so an, dass unsere n Elemente di verschieden sind. Dics 

ist stets moglich, da der Korper K unendlich viele Elemente enthalt.

Bezeichnet man die Diagonalmatrix mit den Elementen di mit D, so 

haben AD und D dieselben Eigenwerte, die lauter verschieden sind. Daher

 sind AD und D ahnlich und folglich gibt es eine Matrix C mit AD=CDC-1,

 also A=CDC-1D-1.

2. Beweis des Satzes 2. Wir betrachten zunachst die Normalform I

 im reell-abgeschlossonen Korper K. Die Determinante |xEi-Ai| ist Potenz

 eines irreduziblen Polynoms φi(x). Da K reell-abgeschlossen ist, so ist

 φi(x) linear oder quadratisch. Jedenfalls gibt es ein Element αi aus K

 derart, dass Ai=aiA*i, |A*i|=1 ist. Ist namlich φi(x) linear, so hat man

 nur die Normalform Ⅳ zu betrachten. Ist φi(x) quadratisch, so sind die
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Wurzeln ρ, ρ koniugiertimagimar. Da |Ai|=(ρ ρ)ni/2 ist, so hat man nur

 αi=√ ρρ zu setzen, wobei ni den Grad von Ai bedeutet Nun crhalt man

 wo |A*i|=1 fur jedes i ist. Da |A*|=1 ist, so ist auch |G|=1. Nach

 Satz 1' lasst sich G als m-Kommnutator darstellen. Zum Beweis des Satzes 

genugt es also zu zeigen, dass A*i fur jedes i als m-Kommutator dargestellt

 wird. Ist φi(x) linear, so ist dies wieder nach Satz 1' klar. Ist φi(x)

 quadratisch, so betrachten wir die Normalform V. Da jetzt αα=1 ist, so

 ist, wenn man α+α=α setzt,

.

 Es ist aber

 und F lasst sich nach Satz 1' als m-Kommutator darstellen. Daraus folgt

 unmittelbar, dass A1*i fur jedes i als m-kommutator dargestcllt wird.

3. Beweis des Satzes 3. Zunachst beweisen wir

 Hilfssatz. Ist die Spur einer Matrix A gleich Null, so ist A eincr

 Matrix ahnlich, deren Diagonalelemente samtlich Null sind.

Wir nehmen an, dass A die Gestalt

 hat, wo die Diagonalelemente von A11 alles von Null verschicden und die

 von A22 alles gleich Null sind. Zum Beweis des Hilfssatzes genugt es zu

 zeigen, dass man stets die Anzahl der Nullen im Diagonalen von A verme

hren kann. Wir bostimmen nun eine Matrix P1, die A11 in die Normalform 

II transformiert. Dann wird die Anzahl der Nullen im Diagonalen von 

A vermehrt, wenn man A durch transformiert. Denn sonst ware

 die Normalform II fur A11 Diagonalmatrix und zwar von der Gestalt αE. 

Da aber die Spur von A und folglich die von A11 gleich Null ist, so musste

 gegen der Voraussetzung  A11=O sein.

Man beweist nun leicht Satz 3. Wir nehmen nach dem Hilfssatz an,

 dass die Diagonalelemente aii von A=(aii) gleich Null sind. Man bilde eine
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Diagonalmatrix B mit lauter verschiedenen Elementen bi. Bestimmt man

 die Matrix C=(cij) durch (bi-bj)cij=aij, so ist ersichtlich A=BC-CB.
 Dass diese linearen Gleichungen Losung haben, folgt daraus, dass aii=0

 und bi-bj_??_0 fur i_??_j ist.
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