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Derivations on Commutative Normed Algebras.
By
L. M. Sinakr and J. WERMER in New York City and Providence, Rhode Island.

A derivation D on an algebra is a transformation on the algebra such that

(1) D{a + b) = D(a) + D(b)
(ii) D(Aa)= A D(a), A any scalar
(iid) D(ab) = D{a)b + a D(b).

We are concerned with derivations on commutative Banach algebras over
the complex field, where by a Banach algebra we mean a normed algebra 2
which is complete in its norm. The radical of U is the intersection of all maxi-
mal ideals M in A which are such that 2/M has a unit. If the radical reduces
to the zero element, U is called semi-simple.

A derivation on ¥ is said to be bounded if

(iv) sup 1IID(ﬂt)II = |Df < oo
jlajl=

Theorem 1'): Let A be a commutative Banach algebra and D a bounded
derivation on A. Then D maps A into its radical. In particular, if A is semi-
stmple, D = 0.

Proof of Theorem 1: A non-zero linear functional f on ¥ is called multi-
plicative if f(a b) = f(a) f(b) for all a, b in A. We need the following result,
due to GELFAND:

(1) If f is multiplicative, |f(a)| < ||a|| for each a. Since D is bounded,

X n n

P t—l%l < oo if t< oo, and so for any complex number A the series
=0

oo "D"
X i converges to a bounded operator on 2 which we call ¢*?_ For finite-
n=0
dimensional algebras it is well-known?) that e*? (a b) = e*? (a) e*? (b)for @, bin 2.

Guided by the formal process, we proceed as follows:

1} Smov showed in his paper “On a property of rings of functions”, Doklady Akad.
Nauk SSSR. (N.8.) 58, 985—988 (1947), that the algebra of all infinitely differentiable
functions on an interval cannot be normed so as to be a Banach algebra. Prof. I. Ka-
PLANSKY conjectured that the ‘‘reason’ for this was that non-zero derivations could not
exist on & commutative semisimple Banach algebra. Theorem 1 proves this conjecture
for bounded derivations. It seems probable that hypothesis (iv) is superfluous.

) See Crxvarrey: “Theory of Lie Groups™, p. 137. Princeton Univ. Press. (1946).
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Fix a multiplicative functional f and a complex number A and set ,(a)
= f(e*? (a)), @ in Y. Then ¢, is a linear functional and we claim ¢, is multi-
plicative. For by (i) and (iii),

Drab) Dita) DIh)

I N R
Hence
y A1 D" (ab ol Di (@) - (D' (b
n=0 n=0 itj=n
Also
00 p) i o . i
72(0) - g (0) = ( R mg_.xzn.)( s Mgm)
i= ’ j=0 ;

Since the series in the preceding line converge absolutely, it follows that
¢i(a b) = @,(a) @,;(b). Hence by (1), we have
. o A" (D" ()
(2) |@1(a@)} < ||la] for each @ in A and each 4. But ¢,(a) = Eo B
ne
is an entire function of 4 for a fixed ¢. By (2) this entire function is bounded
in the whole plane. Hence it is a constant. Hence f(D"(a)) =0, n2 1. In
particular f(D(a)) = 0. But f was an arbitrary multiplicative functional and
so D(a) is annihilated by every multiplicative functional. Hence D(a) lies
in the radical, which is the assertion of the theorem.

Applications of Theorem 1:

WieLanpT has shown [Uber die Unbeschrinktheit der Operatoren der
Quantenmechanik‘‘, Math. Ann. 121, 21 (1949—50)] that if @, b are bounded
operators on a normed vector space, thena b — b a &= 1. We can use Theorem 1
to strengthen this result as follows:

Corollary 1.1: Let a,b be bounded operators on a Banach space and
assume that a b — b a lies in the uniformly closed algebra generated by @ and 1.
Then a b—b a is a generalized nilpotent, i. e. has a spectrum which consists
only of zero.

Proof: Let A be the uniformly closed algebra generated by 1 and a. For
any bounded operator ¢, let D(¢c) = ¢ b—b¢. Then D is a derivation on the
algebra of all bounded operators. We assert that D maps 2 into itself. For
D(a) €A by hypothesis. If P is a polynomial, D(P(a)) = P’(a) - D(a) and
80 D(P(a))isin Y. Finally, if ¢ is any element of Y, ¢ is a limit of polynomials
in a and so D{c) is in Y. Thus D ig a derivation of . Finally D is bounded,
since |D(c)] < 2 |b] fl¢]. By Theorem 1, then, D maps ¥ into its radical.
Thus D(a) is in the radical of 2. Hence by well-known results,

1
lim |(D(@))"|" = 0 and so D(@) =ab—ba
e OO

is a generalized nilpotent; Q.E.D.

For other extensions of Wizraxp™’s Theorem, see P. R. Hitmos, “Commu-
tators of operators I1”’, Amer. J. of Math. 76, 191—198 (1954).
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Corollary 1.2%): Let ™ denote the algebra of all infinitely differentiable
complex-valued functions on an interval. Then there exists no norm under
which C* is a Banach algebra.

Proof: Suppose there is such a norm. For each f in C* set Df ={.
Then D is a derivation on C®. We can show that D is bounded.

For consider any point 4, in the interval, and let @, be the functional

which maps f into f'(§). For n=1,2,... set L,(f)=

Nowthe maps: f— f(¢,) and f — f (to + -1!5) are multiplicative and hence bounded

linear functionals. It follows that L, is a bounded linear functional for each n.
Now lim L, (f) = {' () = @, (f). Hence by a well-known result the functional

> 0O
@, is bounded.

To show D bounded it suffices, by a theorem of BanacH, to show that if
fo—f and Df,—~g then Df=g. But if f,—f, f, () - (t) for each ¢ by the
preceding, and so

g(t) =lm f, (1) = f'(t) = Df ()
n-—> o
for each . Hence D f = g. Thus D is bounded.

Now C* is semi-simple since f(f) = 0 for all ¢ implies f = 0. Hence by
Theorem 1, D = 0. But this is false. Hence the assertion of the theorem
must hold.

Derivations inte Larger Algebras.

Let A be a commutative Banach algebra which is embedded in some
larger algebra B as closed subalgebra. Let .D be a (bounded) linear trans-
formation of A into B. Sinee A ¢ B, the product of @ and D (b) is defined in B
if @,b are in A. D is called a (bounded) derivation of A into B if, when a,, a,
are in Y,

D (a,a5) = D(ay) ay+ a, D (as).

What algebras 2 admit derivations into some commutative extension B?
We need the following notion:

A (bounded) point derivation of 2 is a (bounded) linear functional d ¢
associated with a multiplicative linear functional ¢ such that

deo(alaz) = dqz(al) c@lag) + play) dq) (ay)-

Theorem 2: If there exists a non-zero (bounded) point derivation d, of U,
then there exists a commulative extension B of U and a non-zero (bounded) deri-
vation D of A into B." If A is semi-simple, B can be taken to be semi-simple.

If A< B and if D is a non-zero (bounded) dersvation of A into B but not
into the radical of B, then there exists a non-zero (bounded) point derivation of AU.

Prool: Let B consist of all pairs (a, 4), @ in ¥, 4 a complex number, i.e. B
is the direct sum of Y with the complex numbers. Multiplication is defined by:

N %) Originally proved by SiLov, of. footnote 1),
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(a3, &) * (@9, A3) = (@1 @y, Ay 45). The norm in B is given by ||(a, 4)] = max (|, |4]).
It is easy to check that B is a commutative Banach algebra and is semi-simple
if U is.

Let now @ be a multiplicative functional on % and d an aszociated point
derivation. Let 2, be the set of all (&, ) with 1 = ¢@(a). The map: a— (a,¢(a)
is an algebraic isomorphism of A onto 2, which preserves norm since
lp(a)] < |al|. We identify 2 with 2/, so that 2 is embedded in B, as closed
subalgebra of B.

D is defined by D((a, @(a))) = (0, d(a)). Then D is linear.

D ((an ZCHRRC ‘P(“z))) = D(a,0,, 9(21,))
== (O’ d(%%)) = (O: d(ay) play) + @lay) d(“z))
=== (O: d(“l)) (az, ‘P(az)) + (“1: (P(al)) (0, d(az))-

Hence D is a derivation. It is bounded if 4 is bounded.

To prove the partial converse, we note that since D () is not in the radical
of B, (where D is the given derivation of 9 into B), there exists some multi-
plicative functional @ on B whose restriction to D(Q!) is not zero. Define d
on 2 by d(a) = p(D(a)). Then d is not zero and

d(aya,) = ‘P(D(a1a2)) = (P(D(al) T Oyt alp(az))
@ (D(ay) plaz) + gla;) p(D(ay))
= d(ay) plas) + @la;) d(a,)

i.e. d is a point derivation on 2. d is bounded if D is.

Note: In the construction in the preceding proof, the maximal ideal
space of B was disconnected. One can however, give an example of a bounded
derivation from an algebra U into a larger algebra B, where the space of
maximal ideals of B is connected.

Suppose 1¢2. Then point derivations can be interpreted in terms of
ideals as follows. Let M, = {a| ¢(a) =0}, where ¢ is a multiplicative
linear functional. Then M, is a maximal ideal in . Let M? be the set of
linear combinations of squares of elements of M, and let M2 be the closure
of M2. Then non-zero (bounded) point derivations associated with ¢ exist if
and only if M3+ M (M%< M,). For if so, we can find a linear non-zero
(bounded) functional ! annihilating M2 and 1. Then [ is a (bounded) point
derivation associated with ¢. For any element @ in A can be written as:
a=a+ @)+ 1,4 in M, Then

Uaya,) = U((ag + @(a,) * 1) (a5 + @lag) - 1))
= l(ay ag + @(ay) a; + af @ (as) + @lay) @(ay)* 1)
= @(ay) Hag) + Ua) plas).

Conversely, if d is a non-zero (bounded) point derivation associated with the
multiplicative functional @, then d(M,) +0 and d(M2) =0, (d(M2)=0),
whence M2 & M (M3 + M,); consequently we have the:

i
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Corollary 2.1. Assume U i3 semi-simple with unit. A has no non-zero
(bounded) derivations into a semi-simple commulative extension B if and only
if M% = M, (M3 = M,) for all multiplicative @.

Corollary 2.2. The algebra C(X) of all continuous functions on a compact
Hausdorff space X has no non-zero derivations into any semi-simple commu-
tative extension B.

Proof: It suffices to show that M7 = M, for all ¢. Now M, consists of
all functions f vanishing at a point z. If f € M, the real and imaginary parts
of f vanish at . Suppose f is real; then we can write f = f*— f~ where f*, f~
are nonnegative, continuous and vanish at x. They have continuous square
roots. Hence f ¢ M2 and all is proved.

Added in Proof: In a paper “On the Spectra of Commutators” (Proc. Amer. Math.
Soc. §, No. 6. Dec. 1954, pp. 929—931) C. R. Purnvam has proved the following result:
“If 4, B are bounded operators on a Hilbert space and C = 4 B— B A4, and if
AC=0CA4 and BC = C B, then the spectrum of C consists of 0 alone.” By considering

the derivation D with D{a) = a B — Ba on the algebra generated by 4 and C, PurNam’s
theorem is readily seen to be a consequence of our Theorem 1.

U.C.L.A. and Columbia Univ. and Brown Univ.

( Eingegangen am 20. Dezember 1954.)



