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History of these lectures

• PART I FEBRUARY 8, 2011 ALGEBRAS; DERIVATIONS

• PART II JULY 21, 2011 TRIPLE SYSTEMS; DERIVATIONS

• PART III FEBRUARY 28, 2012 MODULES; DERIVATIONS

• PART IV JULY 26, 2012 COHOMOLOGY (ASSOCIATIVE ALGEBRAS)

• PART V OCTOBER 25, 2012 THE SECOND COHOMOLOGY GROUP

• PART VI MARCH 7, 2013 COHOMOLOGY (LIE ALGEBRAS)

• PART VII JULY 25, 2013 COHOMOLOGY (JORDAN ALGEBRAS)

• PART VIII SEPTEMBER 17, 2013 VANISHING THEOREMS IN
DIMENSIONS 1 AND 2 (ASSOCIATIVE ALGEBRAS)

• PART IX FEBRUARY 18, 2014 (today) VANISHING THEOREMS IN
DIMENSIONS 1 AND 2 (JORDAN ALGEBRAS)
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Outline

• Review of Algebras

• Review of Derivations on matrix algebras

• Review of Cohomology (Associative algebras)

• Cohomology of Jordan algebras; H2
J (M2,M2) = 01

• Appendix 1—Equivalence Relations and Quotient Groups
(from pp. 23-32 of part 6 of this lecture series)

• Appendix 2—What is a module?
(from pp. 65-85 of part 3 of this lecture series)

1Postponed to part 10 (SUMMER 2014). The material included here will be revised
in preparation for part 10
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Introduction

I will present an outline of the proof of vanishing of the second (Jordan)
cohomology group of a Jordan algebra, illustrating with the algebra of two by two
matrices with circle multiplication.

The relevant definitions and examples from earlier talks in the series will be
reviewed beforehand.
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Review of Algebras—Axiomatic approach

AN ALGEBRA IS DEFINED TO BE A SET (ACTUALLY A VECTOR SPACE)
WITH TWO BINARY OPERATIONS, CALLED ADDITION AND
MULTIPLICATION

ADDITION IS DENOTED BY a + b AND IS REQUIRED TO BE
COMMUTATIVE a + b = b + a
AND ASSOCIATIVE (a + b) + c = a + (b + c)

MULTIPLICATION IS DENOTED BY ab AND IS REQUIRED TO BE
DISTRIBUTIVE WITH RESPECT TO ADDITION
(a + b)c = ac + bc, a(b + c) = ab + ac

AN ALGEBRA IS SAID TO BE ASSOCIATIVE (RESP. COMMUTATIVE) IF THE
MULTIPLICATION IS ASSOCIATIVE (RESP. COMMUTATIVE)
(RECALL THAT ADDITION IS ALWAYS COMMUTATIVE AND ASSOCIATIVE)
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Table 1 (FASHIONABLE) ALGEBRAS

commutative algebras ab = ba

associative algebras a(bc) = (ab)c

Lie algebras a2 = 0 , (ab)c + (bc)a + (ca)b = 0

Jordan algebras ab = ba, a(a2b) = a2(ab)

We shall primarily be concerned with Jordan algebras in this talk, in fact,
only the algebra of two by two matrices under circle multiplication.
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DERIVATIONS ON MATRIX ALGEBRAS

THE SET Mn(R) of n by n MATRICES IS AN ALGEBRA UNDER
MATRIX ADDITION A + B

AND MATRIX MULTIPLICATION A× B
WHICH IS ASSOCIATIVE BUT NOT COMMUTATIVE.

For the Record:

[aij ] + [bij ] = [aij + bij ] [aij ]× [bij ] = [
∑n

k=1 aikbkj ]

DEFINITION

A DERIVATION ON Mn(R) WITH RESPECT TO MATRIX MULTIPLICATION
IS A LINEAR PROCESS δ: δ(A + B) = δ(A) + δ(B)
WHICH SATISFIES THE PRODUCT RULE

δ(A× B) = δ(A)× B + A× δ(B)

.
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PROPOSITION

FIX A MATRIX A in Mn(R) AND DEFINE

δA(X ) = A× X − X × A.

THEN δA IS A DERIVATION WITH RESPECT TO MATRIX MULTIPLICATION
(WHICH ARE CALLED INNER DERIVATIONS)

THEOREM (Noether,Wedderburn,Hochschild,Jacobson,
Kaplansky,Kadison,Sakai)

EVERY DERIVATION ON Mn(R) WITH RESPECT TO MATRIX
MULTIPLICATION IS INNER, THAT IS, OF THE FORM δA FOR SOME A IN
Mn(R).

We gave a proof of this theorem for n = 2 in the previous talk in this series.
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THE BRACKET PRODUCT ON THE SET OF
MATRICES

DEFINITION

THE BRACKET PRODUCT ON THE SET Mn(R) OF MATRICES IS
DEFINED BY

[X ,Y ] = X × Y − Y × X

THE SET Mn(R) of n by n MATRICES IS AN ALGEBRA UNDER MATRIX
ADDITION AND BRACKET MULTIPLICATION, WHICH IS NOT
ASSOCIATIVE AND NOT COMMUTATIVE.

DEFINITION

A DERIVATION ON Mn(R) WITH
RESPECT TO BRACKET MULTIPLICATION IS A LINEAR PROCESS δ

WHICH SATISFIES THE PRODUCT RULE

δ([A,B]) = [δ(A),B] + [A, δ(B)].
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PROPOSITION

FIX A MATRIX A in Mn(R) AND DEFINE

δA(X ) = [A,X ] = A× X − X × A.

THEN δA IS A DERIVATION WITH RESPECT TO BRACKET
MULTIPLICATION (STILL CALLED INNER DERIVATION).

THEOREM

EVERY DERIVATION ON Mn(R) WITH RESPECT TO BRACKET
MULTIPLICATION IS INNER, THAT IS, OF THE FORM δA FOR SOME A IN
Mn(R). a

aFull disclosure: this is actually not true. Check that the map X 7→ (trace of X )I is
a derivation which is not inner (I is the identity matrix). The correct statement is that
every derivation of a semisimple finite dimensional Lie algebra is inner. Mn(R) is a
semisimple associative algebra under matrix multiplication, a semisimple Jordan
algebra under circle multiplication, but not a semisimple Lie algebra under bracket
multiplication. Please ignore this footnote until you find out what semisimple means in
each context
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THE CIRCLE PRODUCT ON THE SET OF MATRICES

DEFINITION

THE CIRCLE PRODUCT ON THE SET Mn(R) OF MATRICES IS DEFINED
BY

X ◦ Y = (X × Y + Y × X )/2

THE SET Mn(R) of n by n MATRICES IS AN ALGEBRA UNDER MATRIX
ADDITION AND CIRCLE MULTIPLICATION, WHICH IS COMMUTATIVE BUT
NOT ASSOCIATIVE.

DEFINITION

A DERIVATION ON Mn(R) WITH RESPECT TO CIRCLE MULTIPLICATION
IS A LINEAR PROCESS δ WHICH SATISFIES THE PRODUCT RULE

δ(A ◦ B) = δ(A) ◦ B + A ◦ δ(B)
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PROPOSITION

FIX A MATRIX A in Mn(R) AND DEFINE

δA(X ) = A× X − X × A.

THEN δA IS A DERIVATION WITH RESPECT TO CIRCLE MULTIPLICATION
(ALSO CALLED AN INNER DERIVATION IN THIS CONTEXTa)

aHowever, see the following remark. Also see some of the exercises (Dr. Gradus Ad
Parnassum) in part 1 of these lectures

THEOREM (1972-Sinclair)

EVERY DERIVATION ON Mn(R) WITH RESPECT TO CIRCLE
MULTIPLICATION IS INNER, THAT IS, OF THE FORM δA FOR SOME A IN
Mn(R).

REMARK (1937-Jacobson)
THE ABOVE PROPOSITION AND THEOREM NEED TO BE MODIFIED FOR
THE SUBALGEBRA (WITH RESPECT TO CIRCLE MULTIPLICATION) OF
SYMMETRIC MATRICES, FOR EXAMPLE.
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Table 2 Mn(R) (ALGEBRAS)

matrix bracket circle
ab = a× b [a, b] = ab − ba a ◦ b = ab + ba
Associative Lie Jordan
δa(x) δa(x) δa(x)

= = =
ax − xa ax − xa ax − xa

or trace(x)I
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Review of Cohomology (Associative algebras)

NOTATION
n is a positive integer, n = 1, 2, · · ·
f is a function of n variables
F is a function of n + 1 variables (n + 2 variables?)
x1, x2, · · · , xn+1 belong to an algebra A
f (y1, . . . , yn) and F (y1, · · · , yn+1) also belong to A

The basic formula of homological algebra

F (x1, . . . , xn, xn+1) =
x1f (x2, . . . , xn+1)
−f (x1x2, x3, . . . , xn+1)
+f (x1, x2x3, x4, . . . , xn+1)
− · · ·
±f (x1, x2, . . . , xnxn+1)
∓f (x1, . . . , xn)xn+1
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HIERARCHY

x1, x2, . . . , xn are points (or vectors)
f and F are functions—they take points to points
T , defined by T (f ) = F is a transformation—takes functions to functions
points x1, . . . , xn+1 and f (y1, . . . , yn) will belong to an algebra A
functions f will be either constant, linear or multilinear (hence so will F )
transformation T is linear

SHORT FORM OF THE FORMULA

(Tf )(x1, . . . , xn, xn+1)

= x1f (x2, . . . , xn+1)

+
n∑

j=1

(−1)j f (x1, . . . , xjxj+1, . . . , xn+1)

+(−1)n+1f (x1, . . . , xn)xn+1
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FIRST CASES
n = 0
If f is any constant function from A to A, say, f (x) = b for all x in A, where b is
a fixed element of A, we have, consistent with the basic formula, a linear function
T0(f ):

T0(f )(x1) = x1b − bx1

n = 1
If f is a linear function from A to A, then T1(f ) is a bilinear function

T1(f )(x1, x2) = x1f (x2)− f (x1x2) + f (x1)x2

n = 2
If f is a bilinear function from A× A to A, then T2(f ) is a trilinear function

T2(f )(x1, x2, x3) =

x1f (x2, x3)− f (x1x2, x3) + f (x1, x2x3)− f (x1, x2)x3
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FIRST COHOMOLOGY GROUP

Kernel and Image of a linear transformation

G : X → Y
Since X and Y are vector spaces, they are in particular, commutative groups.
Kernel of G (also called nullspace of G ) is
ker G = {x ∈ X : G (x) = 0}
This is a subgroup of X
Image of G is
im G = {G (x) : x ∈ X}
This is a subgroup of Y

G = T0

X = A (the algebra) Y = L(A) (all linear transformations on A)
T0(f )(x1) = x1b − bx1

ker T0 = {b ∈ A : xb − bx = 0 for all x ∈ A} (center of A)
im T0 = the set of all linear maps of A of the form x 7→ xb − bx ,
in other words, the set of all inner derivations of A
ker T0 is a subgroup of A
im T0 is a subgroup of L(A)
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G = T1

X = L(A) (linear transformations on A)
Y = L2(A) (bilinear transformations on A× A)
T1(f )(x1, x2) = x1f (x2)− f (x1x2) + f (x1)x2

ker T1 = {f ∈ L(A) : T1f (x1, x2) = 0 for all x1, x2 ∈ A} = the set of all
derivations of A
im T1 = the set of all bilinear maps of A× A of the form

(x1, x2) 7→ x1f (x2)− f (x1x2) + f (x1)x2,

for some linear function f ∈ L(A).
ker T1 is a subgroup of L(A)
im T1 is a subgroup of L2(A)
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G = T2

X = L2(A) (bilinear transformations on A× A)
Y = L3(A) (trilinear transformations on A× A× A)
T2(f )(x1, x2, x3) = x1f (x2, x3))− f (x1x2, x3) + f (x1x2, x3)− f (x1, x2)x3

ker T2 = {f ∈ L2(A) : T2f (x1, x2, x3) = 0 for all x1, x2, x3 ∈ A}
im T2 = the set of all trilinear maps of A× A× A of the form

(x1, x2, x3) 7→ x1f (x2, x3))− f (x1x2, x3) + f (x1x2, x3)− f (x1, x2)x3

for some bilinear function f ∈ L(A).
ker T2 is a subgroup of L2(A)
im T2 is a subgroup of L3(A)
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A
T0−→ L(A)

T1−→ L2(A)
T2−→ L3(A) · · ·

FACTS: T1 ◦ T0 = 0
T2 ◦ T1 = 0
· · ·
Tn+1 ◦ Tn = 0
· · ·

Therefore

im Tn ⊂ ker Tn+1 ⊂ Ln(A)
and therefore
im Tn is a subgroup of ker Tn+1

TERMINOLOGY
im Tn−1 = the set of n-coboundaries
ker Tn = the set of n-cocycles
and therefore
every n-coboundary is an n-cocycle.
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im T0 ⊂ ker T1

says
Every inner derivation (1-coboundary) is a derivation (1-cocycle).

im T1 ⊂ ker T2

says
for every linear map f , the bilinear map F defined by

F (x1, x2) = x1f (x2)− f (x1x2) + f (x1)x2

(2-coboundary) satisfies the equation

x1F (x2, x3)− F (x1x2, x3) + F (x1, x2x3)− F (x1, x2)x3 = 0

for every x1, x2, x3 ∈ A (2-cocycle).

(Simple verification)
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The cohomology groups of A are defined as the quotient groups

Hn(A) =
ker Tn

im Tn−1
=

n-cocycles

n-coboundaries
(n = 1, 2, . . .)

Thus

H1(A) =
ker T1

im T0
=

1-cocycles

1-coboundaries
=

derivations

inner derivations

H2(A) =
ker T2

im T1
=

2-cocycles

2-coboundaries
=

null extensionsa

split null extensions

aThis will be explained in what follows (associative and Jordan cases)

The theorem that every derivation of Mn(R) is inner (that is, of the form δa for
some a ∈ Mn(R), Theorem 1 below for n = 2) can now be restated as:
”the cohomology group H1(Mn(R)) is the trivial one element group”

The theorem that every null extension of Mn(R) is a split null extension
(Corollary 2 of Theorem 2 below for n = 2) can be stated as:
”the cohomology group H2(Mn(R)) is the trivial one element group”
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H1(M2,M2) = 0

Matrix units

Let E11 =

[
1 0
0 0

]
, E12 =

[
0 1
0 0

]
, E21 =

[
0 0
1 0

]
, E22 =

[
0 0
0 1

]

LEMMA
I E11 + E22 = I

I E t
ij = Eji

I EijEkl = δjkEil

THEOREM 1

Let δ : M2 → M2 be a derivation: δ is linear and δ(AB) = Aδ(B) + δ(A)B. Then
there exists a matrix K such that δ(X ) = XK − KX for X in M2.

COROLLARY

H1(M2,M2) = 0
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H2(M2,M2) = 0

THEOREM 2
Let f be a 2-cocycle: f is bilinear and

T2f (A,B,C ) = Af (B,C )− f (AB,C ) + f (A,BC )− f (A,B)C = 0

for all A,B,C in M2. Then there exists a linear transformation ξ on M2 such that
T1ξ = f , that is, f is a 2-coboundary.

COROLLARY 1

H2(M2,M2) = 0

COROLLARY 2

It E is any associative algebra containing an ideal J such that E/J is isomorphic
to M2 (E is then said to be an extension of M2), then there is a subalgebra B of
E such that E = B ⊕M2 (E is a split extension) a

aThere is always a subspace B such that E = B ⊕M2
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Interpretation of the second cohomology group (associative
algebras)

Homomorphisms of groups

f : G1 → G2 is a homomorphism if

f (x + y) = f (x) + f (y)

I f (G1) is a subgroup of G2

I ker f is a subgroup of G1

I G1/ ker f is isomorphic to f (G1)

(isomorphism =
one to one and onto homomorphism)
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Homomorphisms of algebras

h : A1 → A2 is a homomorphism if

h(x + y) = h(x) + h(y)

and

h(xy) = h(x)h(y)

I h(A1) is a subalgebra of A2

I ker h is a subalgebra of A1

(actually, an ideala in A1)

I A1/ ker h is isomorphic to h(A1)

(isomorphism =
one to one and onto homomorphism)

aAn ideal in an algebra A is a subalgebra I with the property that AI ∪ IA ⊂ I , that
is, xa, ax ∈ I whenever x ∈ I and a ∈ A
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Extensions (Associative algebras)

Let A be an algebra. Let M be another algebra which contains an ideal I and let
g : M → A be a homomorphism.

In symbols,

I
⊂→ M

g→ A This is called an extension of A by I if

I ker g = I

I im g = A

It follows that M/I is isomorphic to A
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EXAMPLE 1

Let A be an algebra.

Define an algebra M = A⊕ A to be the set A× A with addition

(a, x) + (b, y) = (a + b, x + y)

and product

(a, x)(b, y) = (ab, xy)

I {0} × A is an ideal in M

I ({0} × A)2 6= 0

I g : M → A defined by g(a, x) = a is a homomorphism

I M is an extension of {0} × A by A.
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EXAMPLE 2

Let A be an algebra and let h ∈ ker T2 ⊂ L2(A).

Recall that this means that for all x1, x2, x3 ∈ A,

x1f (x2, x3)− f (x1x2, x3)

+f (x1, x2x3)− f (x1, x2)x3 = 0

Define an algebra Mh to be the set A× A with addition

(a, x) + (b, y) = (a + b, x + y)

and the product

(a, x)(b, y) = (ab, ay + xb + h(a, b))

Because h ∈ ker T2, this algebra is ASSOCIATIVE! whenever A is associative.

THE PLOT THICKENS (do these differ from Example 1?)

I {0} × A is an ideal in Mh

I ({0} × A)2 = 0

I g : Mh → A defined by g(a, x) = a is a homomorphism

I Mh is an extension of {0} × A by A.
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EQUIVALENCE OF EXTENSIONS

Extensions

I
⊂→ M

g→ A and

I
⊂→ M ′

g ′→ A are said to be equivalent if

there is an isomorphism ψ : M → M ′

such that

I ψ(x) = x for all x ∈ I

I g = g ′ ◦ ψ

(Is this an equivalence relation?)
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EXAMPLE 2—continued

Let h1, h2 ∈ ker T2.

We then have two extensions of A by {0} × A, namely

{0} × A
⊂→ Mh1

g1→ A

and

{0} × A
⊂→ Mh2

g2→ A

Now suppose that h1 is equivalenta to h2,
h1 − h2 = T1f for some f ∈ L(A)

I The above two extensions are equivalent.

I We thus have a mapping from H2(A,A) into the set of equivalence classes of
extensions of A by the ideal {0} × A

aThis is the same as saying that [h1] = [h2] as elements of H2(A,A) = ker T2/imT1
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GRADUS AD PARNASSUM (COHOMOLOGY)

1. Verify that there is a one to one correspondence between partitions of a set X
and equivalence relations on that set. Precisely, show that

I If X = ∪Xi is a partition of X , then
R := {(x , y) ∈ X ×X : x , y ∈ Xi for some i} is an equivalence relation whose
equivalence classes are the subsets Xi .

I If R is an equivalence relation on X with equivalence classes Xi , then
X = ∪Xi is a partition of X .

2. Verify that Tn+1 ◦ Tn = 0 for n = 0, 1, 2. Then prove it for all n ≥ 3.

3. Show that if f : G1 → G2 is a homomorphism of groups, then G1/ ker f is
isomorphic to f (G1)
Hint: Show that the map [x ] 7→ f (x) is an isomorphism of G1/ ker f onto f (G1)

4. Show that if h : A1 → A2 is a homomorphism of algebras, then A1/ ker h is
isomorphic to h(A1)
Hint: Show that the map [x ] 7→ h(x) is an isomorphism of A1/ ker h onto h(A1)
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5. Show that the algebra Mh in Example 2 is associative.
Hint: You use the fact that A is associative AND the fact that, since h ∈ ker T2,
h(a, b)c + h(ab.c) = ah(b, c) + h(a, bc)

6. Show that equivalence of extensions is actually an equivalence relation.
Hint:

I reflexive: ψ : M → M is the identity map

I symmetric: replace ψ : M → M ′ by its inverse ψ−1 : M ′ → M

I transitive: given ψ : M → M ′ and ψ′ : M ′ → M ′′ let ψ′′ = ψ′ ◦ ψ : M → M ′′

7. Show that in example 2, if h1 and h2 are equivalent bilinear maps, that is,
h1 − h2 = T1f for some linear map f , then Mh1 and Mh2 are equivalent extensions
of {0} × A by A. Hint: ψ : Mh1 → Mh2 is defined by

ψ(a, x) = (a, x + f (a))
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Modules (See Appendix 2 for way too much information)
Let A be an associative algebra. Let us recall that an A-bimodule is a vector
space X , equipped with two bilinear products (a, x) 7→ ax and (a, x) 7→ xa from
A× X to X satisfying, for every a, b ∈ A and x ∈ X , the following axioms:

a(bx) = (ab)x , a(xb) = (ax)b, and, (xa)b = x(ab).

The space A⊕ X is an associative algebra with respect to the product

(a, x)(b, y) := (ab, ay + bx).

Let A be a Jordan algebra. A Jordan A-module is a vector space X , equipped
with two bilinear products (a, x) 7→ a ◦ x and (x , a) 7→ x ◦ a from A× X to X
satisfying, for every a, b ∈ A and x ∈ X , :

a ◦ x = x ◦ a, a2 ◦ (x ◦ a) = (a2 ◦ x) ◦ a, and,

2((x ◦ a) ◦ b) ◦ a + x ◦ (a2 ◦ b) = 2(x ◦ a) ◦ (a ◦ b) + (x ◦ b) ◦ a2.

The space A⊕ X is a Jordan algebra with respect to the product

(a, x) ◦ (b, y) := (a ◦ b, a ◦ y + b ◦ x).
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Derivations (into a module)

Let X be a A-bimodule over an (associative) Banach algebra A. A linear mapping
D : A→ X is said to be a derivation if D(ab) = D(a)b + aD(b), for every a, b in
A. For emphasis we call this a binary (or associative) derivation.

We denote the set of all binary derivations from A to X by Db(A,X ) .

When X is a Jordan module over a Jordan algebra A, a linear mapping
D : A→ X is said to be a derivation if D(a ◦ b) = D(a) ◦ b + a ◦ D(b), for every
a, b in A. For emphasis we call this a Jordan derivation.

We denote the set of Jordan derivations from A to X by DJ(A,X ).

(What is a Lie-module and a Lie-derivation?)
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Inner derivations

Let X be an A-bimodule over an associative algebra A. Given x0 in X , the
mapping Dx

0
: A→ X , Dx

0
(a) = x0 a− ax0 is a (associative or binary) derivation.

Derivations of this form are called inner.

The set of all inner derivations from A to X will be denoted by Innb(A,X ).

When x0 is an element in a Jordan A-module, X , over a Jordan algebra A, for
each b ∈ A, the mapping δx

0
,b : A→ X ,

δx
0
,b(a) := (x0 ◦ a) ◦ b − (b ◦ a) ◦ x0 , (a ∈ A),

is a derivation. Finite sums of derivations of this form are called inner.

The set of all inner Jordan derivations from A to X is denoted by InnJ(A,X )

(What is an inner Lie-derivation?)
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COHOMOLOGY OF JORDAN ALGEBRAS2

(Comparisons) n = 0

ASSOCIATIVE

f : A→ A is a constant function, say f (x) = b for all x
T0(f ) : A→ A is a linear function
T0(f )(x1) = x1b − bx1

LIE

f : A→ A is a constant function, say f (x) = b for all x
T0(f ) : A→ A is a linear function
T0(f )(x1) = [b, x1]

JORDAN

f ∈ A× A is an ordered pair, say f = (a, b)
T0(f ) : A→ A is a linear function
T0(f )(x1) = a ◦ (b ◦ x1)− b ◦ (a ◦ x1)

2For cohomology of ssociative algebras, see pp. 14-22 of this lecture; for
cohomology of Lie algebras, see part 6 (pp. 57-74) of this series of lectures

Bernard Russo (UCI) DERIVATIONS An introduction to non associative algebra (or, Playing havoc with the product rule)37 / 82



n = 1

ASSOCIATIVE
f : A→ A is a linear function
T1(f ) : A× A→ A is a bilinear function
T1(f )(x1, x2) = x1f (x2)− f (x1x2) + f (x1)x2

LIE
f : A→ A is a linear function
T1(f ) : A× A→ A is a skew-symmetric bilinear function
T1(f )(x1, x2) = −[f (x2), x1] + [f (x1), x2]− f ([x1, x2])

JORDAN
f : A→ A is a linear function
T1(f ) : A× A→ A is a symmetric bilinear function
T1(f )(x1, x2) = x1 ◦ f (x2)− f (x1 ◦ x2) + f (x1) ◦ x2
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n = 2

ASSOCIATIVE
f : A× A→ A is a bilinear function
T2(f ) : A× A× A→ A is a trilinear function
T2(f )(x1, x2, x3) = x1f (x2, x3)− f (x1x2, x3)− f (x1, x2x3) + f (x1, x2)x3

LIE
f : A× A→ A is a skew-symmetric bilinear function
T2(f ) : A× A× A→ A is a skew-symmetric trilinear function

T2(f )(x1, x2, x3) = [f (x2, x3), x1]− [f (x1, x3), x2] + [f (x1, x2), x3]

− f (x3, [x1, x2]) + f (x2, [x1, x3])− f (x1, [x2, x3])

JORDAN

Postponed from part 7 (SUMMER 2013) to part 8 (FALL 2013) and again
from part 8 to part 9 (today SPRING 2014) and again to part 10
(SUMMER 2014)

Bernard Russo (UCI) DERIVATIONS An introduction to non associative algebra (or, Playing havoc with the product rule)39 / 82



THE BIG PICTURE

INTERPRETATION OF COHOMOLOGY GROUPS
FIRST COHOMOLOGY GROUP
DERIVATIONS ( AND INNER DERIVATIONS)

SECOND COHOMOLOGY GROUP
EXTENSIONS ( AND SPLIT EXTENSIONS)

VANISHING THEOREMS

FOR EACH CLASS OF ALGEBRAS (ASSOCIATIVE, LIE, JORDAN), UNDER
WHAT CONDITIONS IS Hn(A) = 0, ESPECIALLY FOR n = 1, 2
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Extensions of Jordan algebras3 4 (pp.91-92)5

Let A and M be Jordan algebras. We shall denote Jordan products by
juxtaposition. An extension of A by M is a short exact sequence

0→ M
α→ E

β→ A→ 0.

Thus α is an injective homomorphism and β is a surjective homorphism.

Extensions

0→ M
α→ E

β→ A→ 0 and 0→ M
α′→ E ′

β′→ A→ 0

are equivalent if there exists a homomorphism γ : E → E ′ such that α′ = γ ◦ α
and β = β′ ◦ γ. Thus γ is an isomorphism of E onto E ′.

3The material which follows (not including Appendices 1 and 2) will be revised and
presented in part 10 (SUMMER 2014)

4For extensions of associative algebras, see pp. 27-33 of this lecture
5Page numbers refer to the masterpiece “Structure and Representation of Jordan

Algebras”, by Nathan Jacobson 1968
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An extension

0→ M
α→ E

β→ A→ 0.

is split (or inessential) is there exists a homomorphism δ : A→ E with
β ◦ δ = 1A. Thus E = δ(A)⊕ α(M) as vector spaces and δ(A) is a subalgebra of
E isomorphic to A.

Exercise 1
Prove the last statement.

An extension

0→ M
α→ E

β→ A→ 0.

is null if M2 = 0, that is, all products in M are zero.
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Let

0→ M
α→ E

β→ A→ 0.

be any extension and identify M with α(M) ⊂ E . Then we may write
E = M ⊕ δ(A), a vector space direct sum, for some linear map δ : A→ E such
that β ◦ δ = 1A.

Exercise 2
Prove the last statement.
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For a, b ∈ A, h(a, b) := δ(a)δ(b)− δ(ab) ∈ ker β = M so h : A× A→ M is a
bilinear map.

Exercise 3

M is a Jordan A-module under the module actions a · u = δ(a)u, u · a = uδ(a) for
a ∈ A and u ∈ M ⊂ E . (Multiplication in E )

Outline of proof: E is an E -module and since M is an ideal in E , it is a submodule.
If M2 = 0 thena M is an E/M-module via (e + M) · u = eu, u · (e + M) = ue.
Now use the isomorphism β(e)→ e + M of A with E/M.

aWhy is the assumption M2 = 0 needed?
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DEFINITION

Let M be a Jordan A-module. A bilinear map h : A× A→ M is a (Jordan)
2-cocycle if it is symmetric and satisfies

(h(a, a) · b) · a + h(a2, b) · a + h(a2b, a) = a2 · h(b, a) + h(a, a) · (ba) + h(a2, ba).

A map h : A× A→ M is a (Jordan) 2-coboundary if it is of the form

h(a, b) = µ(ab)− a · µ(b)− µ(a) · b

for some linear map µ : A→ M.

Exercise 4
Every Jordan 2-coboundary in a Jordan 2-cocycle.

DEFINITION

The vector space of all 2-cocycles modulo 2-coboundaries is denoted H2(A,M).
(For emphasis, we can write H2

J (A,M))
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THEOREM 12, p.94 of Jacobson’s book

Let M be a Jordan A-module. Then there is a bijection of H2(A,M) and the set
of equivalence classes of null extensions of A by M such that the associated
bimodule structure on M given by Exercise 3 is the given one. In this
correspondence the equivalence class of 0 in H2(A,M) corresponds to the
isomorphism class of inessential extensions.

Outline of proof: Given a 2-cocycle h, M × A becomes a Jordan algebra with the
product

(u1, a1)(u2, a2) = (u1 · a2 + u2 · a1 + h(a1, a2), a1a2).

giving rise to the bijection.

Exercise 5
Fill in the calculations in the above outlined proof.
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Jordan Matrix Algebras (pp.125-131)

Let D be a unital algebra with involution j(d) = d . Then Dn denotes the algebra

of n by n matrices with entries from D, with involution X 7→ X J = X
t
, and

H(Dn) ⊂ D+
n denotes the subalgebra of symmetric elements.

Let eij be the usual matrix units in Dn and if x ∈ D, we identify x with the
diagonal matrix in Dn all of whose diagonal entries are x . Then xeij is the matrix
with x in the (i , j)-position and zeros elsewhere. We set x [ij ] = xeij + (xeij)

J .

Definition

Algebras of the form H(Dn) which are Jordan algebras are called Jordan matrix
algebras.

Theorem (THEOREM 1, p.127)

For n ≥ 3, H(Dn) is a Jordan algebra if and only if D is associative, or n = 3 and
D is alternative with symmetric elements in the nucleusa.

aAt this time we shall not define alternative algebra or nucleus of an algebra
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Solvable ideals and the radical (pp.192-196)

The powers J2k

of a Jordan algebra J are J20

= J and J2k

= (J2k−1

)2. J2 is an

ideal and J2k

is a subalgebra. J is solvable if there exists an integer N with

J2N

= 0.

J2 = 0, J2J2 = 0, (J2J2)(J2J2) = 0, ((J2J2)(J2J2))((J2J2)(J2J2)) = 0, . . .

Lemma (Lemma 1, p.192)

For a Jordan algebra J,

I If J contains a solvable ideal B such that J/B is solvable, then J is solvable.

I If B1 and B2 are solvable ideals, then B1 + B2 is a solvable ideal.

If J is finite dimensional (more generally, if J satisfies the maximum condition for
ideals), then it contains a solvable ideal R, the radical (= rad J), such that R
contains every solvable ideal of J. J is semisimple if R = 0 (J has no nonzero
solvable ideals). Note that J/rad J is semisimple. (Proof: If S1 is the radical of
J/R, then S1 = S/R for some ideal S in J. Since S/R and R are solvable, so is
S , so S ⊂ R and S1 = 0.)
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The next two theorems are included for their intrinsic interest.

An algebra is nilpotent if there exists an integer N such that every product (in
any association) of N elements is zero. A nilpotent Jordan algebra is solvable.

J2 = 0, J2J = 0. (J2J)J = J2J2 = 0, . . .

ab = 0, (ab)c = 0, ((ab)c)d = (ab)(cd) = 0, . . .

Theorem (COROLLARY 1, p.195, Albert)

Any finite dimensional solvable Jordan algebra is nilpotent.

An algebra is nil if every element a in the algebra is nilpotent (an = 0 for some n
depending on a)a. A solvable Jordan algebra is nil.

aA Jordan algebra is power associative, ak (aman) = (akam)an

Theorem (THEOREM 3, p.196, Albert)

Any finite dimensional nil algebra is solvable.
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H2
J (H(Cn),M) = 0

Theorem (Theorem 13, p. 292 (Albert-Penico-Taft))

Let E be a finite dimensional Jordan algebra, M an ideal in E such that
E/M ∼ H(Cn). Then there is a subalgebra R of E such that E = R ⊕M as
vector spaces. (Actually, you can replace H(Cn) by any semisimple algebra.)

Corollary (Corollary, p 292)

If M is a finite dimensional bimodule for H(Cn), then H2
J (H(Cn),M) = 0.

In particular, H2
J (H(Cn),H(Cn)) = 0.

Theorem (THEOREM 10, p.151)

Let J be a Jordan algebra with 1, N a nil ideal such that J/N is isomorphic to a
Jordan matrix algebra H(Fn) of order n ≥ 3. Then J is isomorphic to a Jordan
matrix algebra H(Dn) where the ideal in H(Dn) corresponding to N has the form
Mn ∩ H(Dn) where M is an ideal in D and D/M is isomorphic to F as algebras
with involution.
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Lemma (Lemma 1, p 287)

Let J be a finite dimensional Jordan algebra with radical (= maximal solvable
ideal) rad J. Then

1. If B is an ideal in J, then rad B = rad J ∩ B

2. If B is an ideal in J such that J/B is semisimple, then rad B = rad J

Proof.

(1) (rad J) ∩ B is a solvable ideal in B, so (rad J) ∩ B ⊂ rad B. Also,

B/(rad J ∩ B) ∼ (B + rad J)/rad J

is an ideal in the semisimple algebra J/rad J and is therefore a direct summand
and hence semisimplea. Then B/(rad J ∩ B) is semisimple and since
rad J ∩ B ⊂ rad B, rad J ∩ B = rad B.
(2) Since (B + rad J)/B ∼ rad J/(B ∩ rad J), (B + rad J)/B is a solvable ideal in
J/B, hence it is zero. Thus B ⊃ rad J.

aSee Kevin McCrimmon’s book “A Taste of Jordan algebras” 2004, p. 502
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Lemma (Reduction I, p.288)

If Theorem 13, page 292 is true for solvable M, then it is true for arbitrary M.

Proof.
Let E be a finite dimensional Jordan algebra, M an ideal in E such that
E/M ∼ H(Cn). If R1 is the radical of M, then by (2) of Lemma 1 page 287 (see
the previous page), R1 is the radical of E and E/R1 is semisimple. Now M/R1 is
an ideal in E/R1 and so E/R1 = M/R1 ⊕ F/R1, where F/R1 is an ideal
isomorphic to (E/R1)/(M/R1) ∼ E/M, which is semisimple, so R1 is solvable. By
assumption, there is a subalgebra R2 of F with F = R1 ⊕ R2 as vector spaces.
Then R2 ∼ F/R1 ∼ E/M and R2 ∩M ⊂ F ∩M ⊂ R1 since M/R1 ∩ F/R1 = 0. So
R2 ∩M ⊂ R2 ∩ R1 = 0 and by counting dimensions, E = R2 ⊕M as vector
spaces.
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Lemma (Reduction II, p.288)

If Theorem 13, page 292 is true for solvable M with M2 = 0, then it is true for
arbitrary solvable M.

Proof.

Suppose that M2 6= 0. Then by Lemma 2, page 192 (see below), there is a
nonzero solvable ideal N ⊂ M with N 6= M. Then E/N has the solvable ideal
M/N and (E/N)/(M/N) ∼ E/M ∼ H(Cn). By induction on the dimension, there
is a subalgebra F/N of E/N with E/N = (F/N)⊕ (M/N), where F is a
subalgebra E containing N and F/N ∼ (E/N)/(M/N) ∼ E/M ∼ H(Cn). Since
dim F = dim(E/M) + dim N < dim E , by induction on the dimension there is a
subalgebra R ⊂ F with F = R ⊕ N and R ∼ F/N ∼ H(Cn) is semisimple. Since
M is solvable we have E = M ⊕ R.

Lemma (Lemma 2, p.192, Penico)

For a finite dimensional Jordan algebra J with a solvable ideal B, define B(k) by
B(0) = B, B(k) = B(k−1)B(k−1) + (B(k−1)B(k−1))J. Then the B(k) are ideals,
(B(k))2 ⊂ B(k+1) ⊂ B(k), and there exists an integer M such that B(M) = 0.
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Lemma (Reduction III, p.288)

If Theorem 13, page 292 is true for algebras E with a unit, then it is true for
arbitrary E .

Proof.

Let E contain an ideal M such that M2 = 0 and E/M ∼ H(Cn). Let E ′ = Φ1⊕E
be the algebra obtained by adjoining a unit to E . (Φ is the underlying field.)
Then M is a solvable ideal in E ′ and E ′/M ∼ Φ1⊕ (E/M) is semisimple. By our
assumption, there is a subalgebra R ′ of E ′ such that E ′ = R ′ ⊕M. Since M ⊂ E ,
E = E ′ ∩ E = (E ∩ R ′)⊕M and R := E ∩ R ′ is a subalgebra.
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Lemma (Reduction IV, p.288-289)

If Theorem 13, page 292 is true for algebras E over an algebraically closed fielda,
then it is true for arbitrary E

aR is not algebraically closed, C is algebraically closed (fundamental theorem of
algebra!)

Proof:
Theorem 13, page 292 is a statement about algebras over the real field. We shall
show that if we complexify the short exact sequence

0→ M → E → H(Cn)→ 0, (1)

and this complexified sequence splits, then so does the original one. For this we
shall use the equivalence given by Theorem 12, page 94. Accordingly, let
h : H(Cn)× H(Cn)→ M be a Jordan 2-cocycle (over the real field). We need to
show that there is a linear map µ : H(Cn)→ M such that

h(a, b) = µ(ab)− µ(a) · b − µ(b) · a. (2)
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Let u1, . . . , un be a basis for H(Cn) over R and v1, . . . , vr a basis for M over R.
Then (2) holds if and only if it holds for a, b ∈ {u1, . . . , un}. With µ provisionally
defined by µ(ui ) =

∑
p µipvp, define the quantities ηijq, γijk , δpiq by the formulas

h(ui , uj) =
∑
q

ηijqvq, uiuj =
∑
k

γijkuk ; vp · ui =
∑
q

δpiqvq.

Then (2) for a = ui and b = uj is equivalent to the set of linear equations

ηijk =
∑
k

γijkµkq −
∑
p

µipδpjq −
∑
p

µjpδpiq. (3)

for the µ’s in R.
The solvability of (3) for the µ’s in R is a necessary and sufficient condition that
the extension splits. If we complexity the sequence (1), and extend the maps α, β,
and h, we still have (MC)2 = 0, H(Cn)C = Mn(C) is semisimple, and hC is a
Jordan 2-cocycle. The bases {ui} and {vj} remain bases over the complex field.
Assuming the theorem holds in the algebraically closed case, the equations (3)
have a solution {µip} in C. Since these are linear equations with coefficients in R,
it follows that they have a solution in R. Q.E.D.

Bernard Russo (UCI) DERIVATIONS An introduction to non associative algebra (or, Playing havoc with the product rule)56 / 82



We shall skip the proof of the following lemma, since H(Cn) is simple.

Lemma (Reduction V, p.289-290)

If Theorem 13, page 292 is true for algebras E with E/M simple, then it is true
for arbitrary E (with E/M semisimple, that is).

The proof of Theorem 13, page 292, is now reduced to the following lemma!!

Lemma (Lemma 4, p 291)

Let E be a finite dimensional Jordan algebra with unit over an algebraically closed
field and let M be an ideal in E such that M2 = 0 and E/M is isomorphic to
H(Cn). Then E contains a subalgebra isomorphic to H(Cn).

Proof.
Put F = C in Theorem 10, page 151. Thus E is isomorphic to a Jordan matrix
algebra H(Dn) where D has a unit and contains an ideal N with D/N ∼ C.
Further, D contains a subalgebra L = C1 isomorphic to C. Thus E ∼ H(Dn)
contains a subalgebra H(Ln) isomorphic to H(Cn).

THE END
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Appendix 1–Equivalence classes and quotient groups

A partition of a set X is a disjoint class {Xi} of non-empty subsets of X whose
union is X

I {1, 2, 3, 4, 5} = {1, 3, 5} ∪ {2, 4}
I {1, 2, 3, 4, 5} = {1} ∪ {2} ∪ {3, 5} ∪ {4}
I R = Q ∪ (R−Q)

I R = · · · ∪ [−2,−1) ∪ [−1, 0) ∪ [0, 1) ∪ · · ·
A binary relation on the set X is a subset R of X × X . For each ordered pair
(x , y) ∈ X × X ,
x is said to be related to y if (x , y) ∈ R.

I R = {(x , y) ∈ R× R : x < y}
I R = {(x , y) ∈ R× R : y = sin x}
I For a partition X = ∪iXi of a set X , let

R = {(x , y) ∈ X × X : x , y ∈ Xi for some i}
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An equivalence relation on a set X is a relation R ⊂ X × X satisfying

reflexive (x , x) ∈ R

symmetric (x , y) ∈ R ⇒ (y , x) ∈ R

transitive (x , y), (y , z) ∈ R ⇒ (x , z) ∈ R

There is a one to one correspondence between equivalence relations on a set X
and partitions of that set.

NOTATION

I If R is an equivalence relation we denote (x , y) ∈ R by x ∼ y .

I The equivalence class containing x is denoted by [x ]. Thus

[x ] = {y ∈ X : x ∼ y}.
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EXAMPLES

I equality: R = {(x , x) : x ∈ X}
I equivalence class of fractions

= rational number:

R = {( a

b
,

c

d
) : a, b, c , d ∈ Z, b 6= 0, d 6= 0, ad = bc}

I equipotent sets: X and Y are equivalent if there exists a function f : X → Y
which is one to one and onto.

I half open interval of length one:
R = {(x , y) ∈ R× R : x − y is an integer}

I integers modulo n:
R = {(x , y) ∈ N× N : x − y is divisible by n}

Bernard Russo (UCI) DERIVATIONS An introduction to non associative algebra (or, Playing havoc with the product rule)60 / 82



A group is a set G together with an operation (called multiplication) which
associates with each ordered pair x , y of elements of G a third element in G
(called their product and written xy) in such a manner that

I multiplication is associative: (xy)z = x(yz)

I there exists an element e in G , called the identity element with the property
that

xe = ex = x for all x

I to each element x , there corresponds another element in G , called the inverse
of x and written x−1, with the property that

xx−1 = x−1x = e

TYPES OF GROUPS

I commutative groups: xy = yx

I finite groups {g1, g2, · · · , gn}
I infinite groups {g1, g2, · · · , gn, · · · }
I cyclic groups {e, a, a2, a3, . . .}

Bernard Russo (UCI) DERIVATIONS An introduction to non associative algebra (or, Playing havoc with the product rule)61 / 82



EXAMPLES

1. R,+, 0, x−1 = −x

2. positive real numbers, ×, 1, x−1 = 1/x

3. Rn,vector addition,(0, · · · , 0),
(x1, · · · , xn)−1 = (−x1, · · · ,−xn)

4. C,+, 0, f −1 = −f

5. {0, 1, 2, · · · ,m − 1}, addition modulo m, 0, k−1 = m − k

6. permutations (=one to one onto functions), composition, identity
permutation, inverse permutation

7. Mn(R),+, 0,A−1 = [−aij ]

8. non-singular matrices, matrix multiplication, identity matrix, matrix inverse

Which of these are commutative, finite, infinite?
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We shall consider only commutative groups and we shall denote the multiplication
by +, the identity by 0, and inverse by -.
No confusion should result.

ALERT

Counterintuitively, a very important (commutative) group is a group with one
element
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Let H be a subgroup of a commutative group G . That is, H is a subset of G and
is a group under the same +,0,- as G .

Define an equivalence relations on G as follows: x ∼ y if x − y ∈ H.

The set of equivalence classes is a group under the definition of addition given by

[x ] + [y ] = [x + y ].

This group is denoted by G/H and is called the quotient group of G by H.

Special cases:

H = {e}; G/H = G (isomorphic)

H = G ; G/H = {e} (isomorphic)
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EXAMPLES

1. G = R,+, 0, x−1 = −x ;

H = Z or H = Q

2. Rn,vector addition,(0, · · · , 0),
(x1, · · · , xn)−1 = (−x1, · · · ,−xn);

H = Zn or H = Qn

3. C,+, 0, f −1 = −f ;

H = D or H = polynomials

4. Mn(R),+, 0,A−1 = [−aij ];

H =symmetric matrices, or
H =anti-symmetric matrices
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Appendix 2—What is a module?

The American Heritage Dictionary of the English Language, Fourth Edition 2009.

1. A standard or unit of measurement.

2. Architecture The dimensions of a structural component, such as the base of a
column, used as a unit of measurement or standard for determining the
proportions of the rest of the construction.

3. Visual Arts/Furniture A standardized, often interchangeable component of a
system or construction that is designed for easy assembly or flexible use: a sofa
consisting of two end modules.

4. Electronics A self-contained assembly of electronic components and circuitry,
such as a stage in a computer, that is installed as a unit.

Bernard Russo (UCI) DERIVATIONS An introduction to non associative algebra (or, Playing havoc with the product rule)66 / 82



5. Computer Science A portion of a program that carries out a specific function
and may be used alone or combined with other modules of the same program.

6. Astronautics A self-contained unit of a spacecraft that performs a specific
task or class of tasks in support of the major function of the craft.

7. Education A unit of education or instruction with a relatively low
student-to-teacher ratio, in which a single topic or a small section of a broad topic
is studied for a given period of time.

8. Mathematics A system with scalars coming from a ring.
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A field is a commutative ring with identity element 1 such that for every nonzero
element x , there is an element called x−1 such that

xx−1 = 1

A vector space over a field F (called the field of scalars) is a set V with an
addition + which is commutative and associative and has a zero element and for
which there is a “scalar” product ax in V for each a in F and x in V , satisfying
the following properties for arbitrary elements a, b in F and x , y in V :

1. (a + b)x = ax + bx

2. a(x + y) = ax + ay

3. a(bx) = (ab)x

4. 1x = x
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In abstract algebra, the concept of a module over a ring is a generalization of the
notion of vector space, wherein the corresponding scalars are allowed to lie in an
arbitrary ring.

Modules also generalize the notion of abelian groups, which are modules over the
ring of integers.

Thus, a module, like a vector space, is an additive abelian group; a product is
defined between elements of the ring and elements of the module, and this
multiplication is associative (when used with the multiplication in the ring) and
distributive.
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Modules are very closely related to the representation theory of groups and of
other algebraic structures.

They are also one of the central notions of
commutative algebra and homological algebra,

and are used widely in

algebraic geometry and algebraic topology.
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MOTIVATION

In a vector space, the set of scalars forms a field and acts on the vectors by scalar
multiplication, subject to certain axioms such as the distributive law. In a module,
the scalars need only be a ring, so the module concept represents a significant
generalization.

In commutative algebra, it is important that both ideals and quotient rings are
modules, so that many arguments about ideals or quotient rings can be combined
into a single argument about modules.

In non-commutative algebra the distinction between left ideals, ideals, and
modules becomes more pronounced, though some important ring theoretic
conditions can be expressed either about left ideals or left modules.
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Much of the theory of modules consists of extending as many as possible of the
desirable properties of vector spaces to the realm of modules over a
”well-behaved” ring, such as a principal ideal domain.

However, modules can be quite a bit more complicated than vector spaces; for
instance, not all modules have a basis, and even those that do, free modules,
need not have a unique rank if the underlying ring does not satisfy the invariant
basis number condition.

Vector spaces always have a basis whose cardinality is unique (assuming the axiom
of choice).
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FORMAL DEFINITION

A left R-module M over the ring R consists of an abelian group (M, +) and an
operation R ×M → M such that for all r,s in R, x,y in M, we have:

r(x + y) = rx + ry

(r + s)x = rx + sx

(rs)x = r(sx)

1x = x

if R has multiplicative identity 1.

The operation of the ring on M is called scalar multiplication, and is usually
written by juxtaposition, i.e. as rx for r in R and x in M.
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If one writes the scalar action as fr so that fr (x) = rx , and f for the map which
takes each r to its corresponding map fr , then the first axiom states that every fr
is a group homomorphism of M, and the other three axioms assert that the map
f:R → End(M) given by r 7→ fr is a ring homomorphism from R to the
endomorphism ring End(M).

In this sense, module theory generalizes representation theory, which deals with
group actions on vector spaces.

A bimodule is a module which is a left module and a right module such that the
two multiplications are compatible.
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EXAMPLES

1. If K is a field, then the concepts ”K-vector space” (a vector space over K) and
K-module are identical.

2. The concept of a Z-module agrees with the notion of an abelian group. That
is, every abelian group is a module over the ring of integers Z in a unique way. For
n ≥ 0, let nx = x + x + ... + x (n summands), 0x = 0, and (-n)x = -(nx). Such
a module need not have a basis

3. If R is any ring and n a natural number, then the cartesian product Rn is both
a left and a right module over R if we use the component-wise operations. Hence
when n = 1, R is an R-module, where the scalar multiplication is just ring
multiplication. The case n = 0 yields the trivial R-module 0 consisting only of its
identity element. Modules of this type are called free
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4. If S is a nonempty set, M is a left R-module, and MS is the collection of all
functions f : S → M, then with addition and scalar multiplication in MS defined
by (f + g)(s) = f(s) + g(s) and (rf)(s) = rf(s), MS is a left R-module. The right
R-module case is analogous. In particular, if R is commutative then the collection
of R-module homomorphisms h : M → N (see below) is an R-module (and in fact
a submodule of NM).

5. The square n-by-n matrices with real entries form a ring R, and the Euclidean
space Rn is a left module over this ring if we define the module operation via
matrix multiplication. If R is any ring and I is any left ideal in R, then I is a left
module over R. Analogously of course, right ideals are right modules.

6. There are modules of a Lie algebra as well.
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SUBMODULES AND HOMOMORPHISMS
Suppose M is a left R-module and N is a subgroup of M. Then N is a submodule
(or R-submodule, to be more explicit) if, for any n in N and any r in R, the
product r n is in N (or nr for a right module).

If M and N are left R-modules, then a map f : M → N is a homomorphism of
R-modules if, for any m, n in M and r, s in R, f(rm + sn) = rf(m) + sf(n).

This, like any homomorphism of mathematical objects, is just a mapping which
preserves the structure of the objects. Another name for a homomorphism of
modules over R is an R-linear map.
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A bijective module homomorphism is an isomorphism of modules, and the two
modules are called isomorphic.

Two isomorphic modules are identical for all practical purposes, differing solely in
the notation for their elements.

The kernel of a module homomorphism f : M → N is the submodule of M
consisting of all elements that are sent to zero by f.

The isomorphism theorems familiar from groups and vector spaces are also valid
for R-modules.
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TYPES OF MODULES

1. Finitely generated A module M is finitely generated if there exist finitely
many elements x1, . . . xn in M such that every element of M is a linear
combination of those elements with coefficients from the scalar ring R.

2. Cyclic module A module is called a cyclic module if it is generated by one
element.

3. Free A free module is a module that has a basis, or equivalently, one that is
isomorphic to a direct sum of copies of the scalar ring R. These are the modules
that behave very much like vector spaces.

4.Projective Projective modules are direct summands of free modules and share
many of their desirable properties.

5. Injective Injective modules are defined dually to projective modules.

6. Flat A module is called flat if taking the tensor product of it with any short
exact sequence of R modules preserves exactness.
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7. Simple A simple module S is a module that is not 0 and whose only
submodules are 0 and S. Simple modules are sometimes called irreducible.

8. Semisimple A semisimple module is a direct sum (finite or not) of simple
modules. Historically these modules are also called completely reducible.

9. Indecomposable An indecomposable module is a non-zero module that cannot
be written as a direct sum of two non-zero submodules. Every simple module is
indecomposable, but there are indecomposable modules which are not simple (e.g.
uniform modules).

10. Faithful A faithful module M is one where the action of each r 6= 0 in R on M
is nontrivial (i.e. rx 6= 0 for some x in M). Equivalently, the annihilator of M is the
zero ideal.
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11. Noetherian. A Noetherian module is a module which satisfies the ascending
chain condition on submodules, that is, every increasing chain of submodules
becomes stationary after finitely many steps. Equivalently, every submodule is
finitely generated.

12.Artinian An Artinian module is a module which satisfies the descending chain
condition on submodules, that is, every decreasing chain of submodules becomes
stationary after finitely many steps.

13. Graded A graded module is a module decomposable as a direct sum M =
⊕xMx over a graded ring R = ⊕xRx such that RxMy ⊂ Mx+y for all x and y.

14. Uniform A uniform module is a module in which all pairs of nonzero
submodules have nonzero intersection.
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RELATION TO REPRESENTATION THEORY

If M is a left R-module, then the action of an element r in R is defined to be the
map M → M that sends each x to rx (or xr in the case of a right module), and is
necessarily a group endomorphism of the abelian group (M,+).

The set of all group endomorphisms of M is denoted EndZ (M) and forms a ring
under addition and composition, and sending a ring element r of R to its action
actually defines a ring homomorphism from R to EndZ (M).

Such a ring homomorphism R → EndZ (M) is called a representation of R over the
abelian group M; an alternative and equivalent way of defining left R-modules is
to say that a left R-module is an abelian group M together with a representation
of R over it.

A representation is called faithful if and only if the map R → EndZ (M) is
injective. In terms of modules, this means that if r is an element of R such that
rx=0 for all x in M, then r=0.
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