DERIVATIONS
An introduction to non associative algebra
(or, Playing havoc with the product rule)

Series 2—Part 4
Derivations, local derivations, and 2-local derivations on
(algebras of) matrices

Colloquium
Fullerton College

Bernard Russo

University of California, Irvine

February 23, 2016
Series 1

<table>
<thead>
<tr>
<th>Part</th>
<th>Date</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>February 8, 2011</td>
<td>Algebras; Derivations</td>
</tr>
<tr>
<td>II</td>
<td>July 21, 2011</td>
<td>Triple Systems; Derivations</td>
</tr>
<tr>
<td>III</td>
<td>February 28, 2012</td>
<td>Modules; Derivations</td>
</tr>
<tr>
<td>IV</td>
<td>July 26, 2012</td>
<td>Cohomology (Associative Algebras)</td>
</tr>
<tr>
<td>V</td>
<td>October 25, 2012</td>
<td>The Second Cohomology Group</td>
</tr>
<tr>
<td>VI</td>
<td>March 7, 2013</td>
<td>Cohomology (Lie Algebras)</td>
</tr>
<tr>
<td>VII</td>
<td>July 25, 2013</td>
<td>Cohomology (Jordan Algebras)</td>
</tr>
<tr>
<td>VIII</td>
<td>September 17, 2013</td>
<td>Vanishing Theorems in Dimensions 1 and 2 (Associative Algebras)</td>
</tr>
<tr>
<td>IX</td>
<td>February 18, 2014</td>
<td>Vanishing Theorems in Dimensions 1 and 2 (Jordan Algebras)</td>
</tr>
</tbody>
</table>
Series 2

- **PART I** JULY 24, 2014 THE REMARKABLE CONNECTION BETWEEN JORDAN ALGEBRAS AND LIE ALGEBRAS (Two theorems relating different types of derivations)

- **PART II** NOVEMBER 18, 2014 THE REMARKABLE CONNECTION BETWEEN JORDAN ALGEBRAS AND LIE ALGEBRAS (Two theorems embedding triple systems in Lie algebras)

- (digression) FEBRUARY 24, 2015 GENETIC ALGEBRAS

- **PART III** JULY 15, 2015 LOCAL DERIVATIONS

- (Fall 2015 missed due to the flu)

- **PART IV** (today) FEBRUARY 23, 2016 2-LOCAL DERIVATIONS

"Slides" for all series 1 and series 2 talks available at
http://www.math.uci.edu/INSERT a “~” HERE brusso/undergraduate.html
ABSTRACT for February 23, 2016
After reviewing derivations and local derivations we consider local and 2-local derivations on the set of 2 by 2 matrices, considered
(1) as an associative algebra under matrix multiplication;
(2) as a Lie algebra under bracket multiplication;
(3) as a Jordan algebra under circle multiplication

ABSTRACT for July 15, 2015 (for context)
A local derivation is a linear map T of an algebra which at each element of the algebra agrees with some derivation D, which can vary from element to element. Every derivation is obviously a local derivation but not all local derivations are derivations. For a large class of operator algebras, the two notions coincide. Similar definitions and results hold for local derivations on triple systems. There is also a nonlinear version on algebras and triple systems.
AN ALGEBRA IS DEFINED TO BE A SET (ACTUALLY A VECTOR SPACE OVER A FIELD) WITH TWO BINARY OPERATIONS, CALLED ADDITION AND MULTIPLICATION—we are downplaying multiplication by scalars (=numbers=field elements)

ADDITION IS DENOTED BY \(a + b \) AND IS REQUIRED TO BE COMMUTATIVE \(a + b = b + a \) AND ASSOCIATIVE \((a + b) + c = a + (b + c) \)

MULTIPLICATION IS DENOTED BY \(ab \) AND IS REQUIRED TO BE DISTRIBUTIVE WITH RESPECT TO ADDITION \((a + b)c = ac + bc, \quad a(b + c) = ab + ac \)

AN ALGEBRA IS SAID TO BE ASSOCIATIVE (resp. COMMUTATIVE) IF THE MULTIPLICATION IS ASSOCIATIVE (resp. COMMUTATIVE) (RECALL THAT ADDITION IS ALWAYS COMMUTATIVE AND ASSOCIATIVE)
Table 1 (FASHIONABLE) ALGEBRAS

commutative algebras \(ab = ba \)
(Real numbers, Complex numbers, Continuous functions)

associative algebras \(a(bc) = (ab)c \)
(Matrix multiplication)

Lie algebras \(a^2 = 0 \), \((ab)c + (bc)a + (ca)b = 0 \)
(Bracket multiplication on associative algebras: \([x,y] = xy - yx\))

Jordan algebras \(ab = ba \), \(a(a^2b) = a^2(ab) \)
(Circle multiplication on associative algebras: \(x \circ y = (xy + yx)/2 \))
Types of derivations

Derivation

\[
\delta(ab) = a\delta(b) + \delta(a)b
\]

Lie derivation

\[
\delta([a, b]) = [a, \delta(b)] + [\delta(a), b]
\]

Jordan derivation

\[
\delta(a \circ b) = a \circ \delta(b) + \delta(a) \circ b
\]

There are two theorems relating different types of derivations. We will use one of them extensively today (Theorem A on the next page). We gave the proofs of Theorems A and B in Series 2, part I (July 24, 2014). The proofs are not easy!
Recall that any associative algebra A with product ab can be made into a Lie algebra, denoted by A^-, by defining $[a, b] = ab - ba$ and into a Jordan algebra, denoted by A^+, by defining $a \circ b = (ab + ba)/2$

Trivial Exercise

A derivation is also a Lie derivation and a Jordan derivation.

Theorem A

Every Jordan derivation on A^+ is a derivation of A ($A = M_n(\mathbb{R})$)

Example

There is a Lie derivation which is not a derivation ($A = M_n(\mathbb{R})$, namely $\delta(x) = \text{trace}(x) I$)

Theorem B

Every Lie derivation on A^- is the sum of a derivation and a linear operator of the above form ($A = M_n(\mathbb{R})$)
THE SET $M_n(\mathbb{R})$ of n by n MATRICES IS AN ALGEBRA UNDER
MATRIX ADDITION $A + B$
AND MATRIX MULTIPLICATION $A \times B$
WHICH IS ASSOCIATIVE BUT NOT COMMUTATIVE.

For the Record: (square matrices)

$$[a_{ij}] + [b_{ij}] = [a_{ij} + b_{ij}] \quad [a_{ij}] \times [b_{ij}] = \left[\sum_{k=1}^{n} a_{ik} b_{kj} \right]$$

DEFINITION

A DERIVATION ON $M_n(\mathbb{R})$ WITH RESPECT TO MATRIX MULTIPLICATION
IS A LINEAR PROCESS δ: $\delta(A + B) = \delta(A) + \delta(B)$
WHICH SATISFIES THE PRODUCT RULE

$$\delta(A \times B) = \delta(A) \times B + A \times \delta(B)$$
PROPOSITION

FIX A MATRIX A in $M_n(\mathbb{R})$ AND DEFINE

$$\delta_A(X) = A \times X - X \times A.$$

THEN δ_A IS A DERIVATION WITH RESPECT TO MATRIX MULTIPLICATION (WHICH ARE CALLED INNER DERIVATIONS)

THEOREM (Noether, Wedderburn, Hochschild, Jacobson, Kaplansky, Kadison, Sakai, . . .)

EVERY DERIVATION ON $M_n(\mathbb{R})$ WITH RESPECT TO MATRIX MULTIPLICATION IS INNER, THAT IS, OF THE FORM δ_A FOR SOME A IN $M_n(\mathbb{R})$.

We gave a proof of this theorem for $n = 2$ in part 8 of series 1.
In 1990, Kadison and Larson and Sourour introduced the concept of local derivation for Banach algebras and modules. A linear mapping \(T : A \to A \), where \(A \) is an algebra is said to be a local derivation if for every \(a \) in \(A \) there exists a derivation \(D_a : A \to A \), depending on \(a \), satisfying \(T(a) = D_a(a) \).

Theorem 1 (Kadison 1990, Larson and Sourour 1990)

A local derivation on \(M_n(\mathbb{R}) \) is a derivation

Example

Let \(\mathbb{R}(x) \) denote the algebra of all rational functions (quotients of polynomials). There exists a local derivation of \(\mathbb{R}(x) \) which is not a derivation.

Proof of Theorem 1

(Ayupov, Kudaybergenov, Peralta 2014)
Steps in the Proof

• Every matrix $A \in M_n(\mathbb{C})$ is a (complex) linear combination of pairwise orthogonal projections, where a projection is a matrix P such that $P = P^* = P^2$ and two projections are orthogonal if their product is 0.

• If T is a local derivation on $M_n(\mathbb{C})$, then for each pair of orthogonal projections P and Q, we have

$$QT(P) + T(Q)P = 0.$$

• If $A = \sum \lambda_i P_i$ with $P_iP_j = 0$ for $i \neq j$, then

$$T(A^2) = AT(A) + T(A)A$$

• T is a Jordan derivation, hence a derivation. Q.E.D.
Example

Let \(\mathbb{R}(x) \) denote the algebra of all rational functions (quotients of polynomials). There exists a local derivation of \(\mathbb{R}(x) \) which is not a derivation.

Exercise 1

The derivations of \(\mathbb{R}(x) \) are the mappings of the form \(f \mapsto gf' \) for some \(g \) in \(\mathbb{R}(x) \), where \(f' \) is the usual derivative of \(f \).

Exercise 2

The local derivations of \(\mathbb{R}(x) \) are the mappings which annihilate the constants.

Exercise 3

Write \(\mathbb{R}(x) = S + T \) where \(S \) is the 2-dimensional space generated by 1 and \(x \). Define \(\alpha : \mathbb{R}(x) \to \mathbb{R}(x) \) by \(\alpha(a + b) = b \). Then \(\alpha \) is a local derivation which is not a derivation.
The algebra is \(\mathbb{C}(x) \), the rational functions in the variable \(x \) over \(\mathbb{C} \). Let \(\mathbb{C}[x] \) be the subalgebra of polynomials. We note certain facts.

a. The derivations of \(\mathbb{C}(x) \) into itself are mappings of the form \(f \to gf' \) for some \(g \) in \(\mathbb{C}(x) \), where \(f' \) is the usual derivative of \(f \). Such a mapping is a derivation of \(\mathbb{C}(x) \). Let \(\delta \) be a derivation of \(\mathbb{C}(x) \) into \(\mathbb{C}(x) \) and let \(g \) be \(\delta(x) \). If \(p \in \mathbb{C}[x] \), then \(\delta(p) = gp' \) (applying the multiplicative property of the derivation). At the same time, if \(p \neq 0 \), then

\[
0 = \delta(1) = \delta(pp^{-1}) = \delta(p) p^{-1} + p \delta(p^{-1}),
\]

whence \(\delta(p^{-1}) = -\delta(p) p^{-2} = -gp'p^{-2} \). Thus, with \(p \) and \(q \) in \(\mathbb{C}[x] \),

\[
\delta(pq^{-1}) = \delta(p) q^{-1} + p \delta(q^{-1}) = gp'q^{-1} - gpq'q^{-2} = g[p'q - pq']q^{-2} = g[pq^{-1}]'.
\]

b. The local derivations of \(\mathbb{C}(x) \) are the linear mappings that annihilate the constants. If \(\alpha \) is a local derivation, then for each \(c \) in \(\mathbb{C} \), there is a derivation \(\delta \) of \(\mathbb{C}(x) \) such that \(\alpha(c) = \delta(c) = 0 \). Suppose, now, that \(\alpha \) is a linear mapping of \(\mathbb{C}(x) \) into \(\mathbb{C}(x) \) that annihilates the constants. Of course \(\alpha \) agrees with every derivation on all constants. If \(f \), in \(\mathbb{C}(x) \), is not a constant, then \(f' \neq 0 \). Let \(\delta(h) \) be \((\alpha(f)/f')h' \). Then \(\delta \) is a derivation of \(\mathbb{C}(x) \) into \(\mathbb{C}(x) \), and \(\delta(f) = \alpha(f) \). Thus \(\alpha \) is a local derivation of \(\mathbb{C}(x) \).

c. We display a local derivation of \(\mathbb{C}(x) \) into itself that is not a derivation. With \(\mathbb{C}(x) \) considered as a vector space over \(\mathbb{C} \), the 2-dimensional subspace \(X \) generated by \(1 \) and \(x \) has a complement \(Y \). Let \(x \) be the projection of \(\mathbb{C}(x) \) on \(Y \) along \(X \). Then \(x \) annihilates the constants, whence \(x \) is a local derivation from \(b \). If \(x \) were a derivation, then from \(a \), \(\alpha(f) \) would be \(\alpha(x)f' \), which is a \(0 \) since \(\alpha(x) = 0 \). As \(\alpha \neq 0 \), \(\alpha \) is not a derivation.
A (not necessarily linear) mapping T from an algebra A into itself is said to be a 2-local derivation if for every $a, b \in A$ there exists a (of course linear) derivation $D_{a,b} : A \to A$, depending on a and b, such that $D_{a,b}(a) = T(a)$ and $D_{a,b}(b) = T(b)$.

Theorem 2

Every 2-local derivation $T : M_n(\mathbb{R}) \to M_n(\mathbb{R})$ (no linearity of T is assumed) is a derivation.

Semrl 1997
Kim-Kim 2004
Ayupov-Kudaybergenov-Nuranjov 2014
Ayupov-Arzikulov 2014
Ayupov-Kudaybergenov 2015

Proof of Theorem 2

Kim, Kim 2004
Steps in the Proof

• Let e_1, e_2 be the standard basis for \mathbb{C}^2 and let

$$A = \begin{bmatrix} 1/2 & 0 \\ 0 & 1/4 \end{bmatrix} \quad \text{and} \quad N = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$$

• Any $S \in M_2(\mathbb{C})$ which commutes with A is diagonal and any $U \in M_2(\mathbb{C})$ which commutes with N has the form

$$U = \begin{bmatrix} a & b \\ 0 & a \end{bmatrix}$$

• If T is a 2-local derivation, then $T - D_{A,N}$ is another 2-local derivation which vanishes at A and at N.

• Let $\phi = T - D_{A,N}$. Calculate that $\phi(E_{ij}) = 0$, where E_{ij} are the matrix units

• Calculate that $E_{ij}\phi(X)E_{ij} = 0$ for all $X \in M_2(\mathbb{C})$. Thus $\phi(X) = 0$ for all X. Q.E.D.
Example (Zhang-Li 2006)

Let us consider the algebra of all upper-triangular complex 2×2-matrices

$$A = \left\{ x = \begin{pmatrix} \lambda_{11} & \lambda_{12} \\ 0 & \lambda_{22} \end{pmatrix} : \lambda_{ij} \in \mathbb{C} \right\}.$$

Define an operator Δ on A by

$$\Delta(x) = \begin{cases} 0, & \text{if } \lambda_{11} \neq \lambda_{22}, \\ \begin{pmatrix} 0 & 2\lambda_{12} \\ 0 & 0 \end{pmatrix}, & \text{if } \lambda_{11} = \lambda_{22}. \end{cases}$$

Then Δ is a 2-local derivation, which is not a derivation.
THE CIRCLE PRODUCT ON THE SET OF MATRICES

DEFINITION

THE **CIRCLE PRODUCT** ON THE SET $M_n(\mathbb{R})$ OF MATRICES IS DEFINED BY

$$X \circ Y = \frac{(X \times Y + Y \times X)}{2}$$

THE SET $M_n(\mathbb{R})$ of n by n MATRICES IS AN ALGEBRA UNDER MATRIX ADDITION AND CIRCLE MULTIPLICATION, WHICH IS COMMUTATIVE BUT NOT ASSOCIATIVE.

DEFINITION

A **DERIVATION** ON $M_n(\mathbb{R})$ WITH RESPECT TO CIRCLE MULTIPLICATION IS A LINEAR PROCESS δ WHICH SATISFIES THE PRODUCT RULE

$$\delta(A \circ B) = \delta(A) \circ B + A \circ \delta(B)$$
PROPOSITION

FIX A MATRIX A in $M_n(\mathbb{R})$ AND DEFINE

$$\delta_A(X) = A \times X - X \times A.$$

THEN δ_A IS A DERIVATION WITH RESPECT TO CIRCLE MULTIPLICATION (ALSO CALLED AN INNER DERIVATION IN THIS CONTEXTa)

aHowever, see the following remark. Also see some of the exercises (Dr. Gradus Ad Parnassum) in part 1 of these lectures

THEOREM (1972-Sinclair)

EVERY DERIVATION ON $M_n(\mathbb{R})$ WITH RESPECT TO CIRCLE MULTIPLICATION IS INNER, THAT IS, OF THE FORM δ_A FOR SOME A IN $M_n(\mathbb{R})$.

REMARK (1937-Jacobson)

THE ABOVE PROPOSITION AND THEOREM NEED TO BE MODIFIED FOR THE SUBALGEBRA (WITH RESPECT TO CIRCLE MULTIPLICATION) OF SYMMETRIC MATRICES, FOR EXAMPLE.
Table 2 $M_n(\mathbb{R})$ (ALGEBRAS)

<table>
<thead>
<tr>
<th>matrix</th>
<th>bracket</th>
<th>circle</th>
</tr>
</thead>
<tbody>
<tr>
<td>$ab = a \times b$</td>
<td>$[a, b] = ab - ba$</td>
<td>$a \circ b = ab + ba$</td>
</tr>
<tr>
<td>Associative</td>
<td>Lie</td>
<td>Jordan</td>
</tr>
<tr>
<td>$\delta_a(x)$</td>
<td>$\delta_a(x)$</td>
<td>$\delta_a(x)$</td>
</tr>
<tr>
<td>$ax - xa$</td>
<td>$ax - xa$</td>
<td>$ax - xa$</td>
</tr>
<tr>
<td>or trace(x)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
A linear mapping $T : A \rightarrow A$, where A is a Jordan algebra is said to be a *local Jordan derivation* if for every a in A there exists a Jordan derivation $D_a : A \rightarrow A$, depending on a, satisfying $T(a) = D_a(a)$.

Theorem 3
A local Jordan derivation on $M_n(\mathbb{R})$ is a Jordan derivation

Proof of Theorem 3
Combine Theorem 1 with Theorem A.
A (not necessarily linear) mapping T from a Jordan algebra A into itself is said to be a 2-local Jordan derivation if for every $a, b \in A$ there exists a (linear) Jordan derivation $D_{a,b} : A \to A$, depending on a and b, such that $D_{a,b}(a) = T(a)$ and $D_{a,b}(b) = T(b)$.

Theorem 4

Every 2-local Jordan derivation $T : M_n(\mathbb{R}) \to M_n(\mathbb{R})$ (no linearity of T is assumed) is a Jordan derivation.

Proof of Theorem 4

Combine Theorem 2 with Theorem A.
THE BRACKET PRODUCT ON THE SET OF MATRICES

DEFINITION

THE BRACKET PRODUCT ON THE SET $M_n(\mathbb{R})$ OF MATRICES IS DEFINED BY

$$[X, Y] = X \times Y - Y \times X$$

THE SET $M_n(\mathbb{R})$ OF n by n MATRICES IS AN ALGEBRA UNDER MATRIX ADDITION AND BRACKET MULTIPLICATION, WHICH IS NOT ASSOCIATIVE AND NOT COMMUTATIVE.

DEFINITION

A DERIVATION ON $M_n(\mathbb{R})$ WITH RESPECT TO BRACKET MULTIPLICATION IS A LINEAR PROCESS δ WHICH SATISFIES THE PRODUCT RULE

$$\delta([A, B]) = [\delta(A), B] + [A, \delta(B)].$$
PROPOSITION

FIX A MATRIX A in $M_n(\mathbb{R})$ AND DEFINE

$$\delta_A(X) = [A, X] = A \times X - X \times A.$$

THEN δ_A IS A DERIVATION WITH RESPECT TO BRACKET MULTIPLICATION (STILL CALLED INNER DERIVATION).

THEOREM

EVERY DERIVATION ON $M_n(\mathbb{R})$ WITH RESPECT TO BRACKET MULTIPLICATION IS INNER, THAT IS, OF THE FORM δ_A FOR SOME A IN $M_n(\mathbb{R})$.

Full disclosure: this is actually not true. Check that the map $X \mapsto (\text{trace of } X)I$ is a derivation which is not inner (I is the identity matrix). The correct statement is that every derivation of a semisimple finite dimensional Lie algebra is inner. $M_n(\mathbb{R})$ is a semisimple associative algebra under matrix multiplication, a semisimple Jordan algebra under circle multiplication, but not a semisimple Lie algebra under bracket multiplication. Please ignore this footnote until you find out what semisimple means in each context.
Theorem C (Equivalent definitions of semisimplicity)

Let \(\mathfrak{g} \) be a Lie algebra. Then the following are equivalent:

1. \(\mathfrak{g} \) does not contain any non-trivial solvable ideal.
2. \(\mathfrak{g} \) does not contain any non-trivial abelian ideal.
3. The Killing form \(K : \mathfrak{g} \times \mathfrak{g} \to \mathbb{C} \), defined as the bilinear form
 \[K(x, y) := \text{tr}_\mathfrak{g}((\text{ad}x)(\text{ad}y)) \], is non-degenerate on \(\mathfrak{g} \).
4. \(\mathfrak{g} \) is isomorphic to the direct sum of finitely many non-abelian simple Lie algebras.
Theorem D (Classification of simple Lie algebras)

Up to isomorphism, every simple Lie algebra is of one of the following forms:

1. $A_n = \mathfrak{sl}_{n+1}$ for some $n \geq 1$. (trace zero, $\text{tr}(A) = 0$)
2. $B_n = \mathfrak{so}_{2n+1}$ for some $n \geq 2$. (skew-symmetric, $A^t = -A$)
3. $C_n = \mathfrak{sp}_{2n}$ for some $n \geq 3$. ($A^t J = -JA$, $J = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$)
4. $D_n = \mathfrak{so}_{2n}$ for some $n \geq 4$. (skew-symmetric)
5. E_6, E_7, or E_8.
7. G_2.
A linear mapping $T : A \to A$, where A is a Lie algebra is said to be a *local Lie derivation* if for every a in A there exists a Lie derivation $D_a : A \to A$, depending on a, satisfying $T(a) = D_a(a)$.

Theorem 5

A local Lie derivation on a finite dimensional semisimple Lie algebra (not $M_n(\mathbb{R})$!) is a Lie derivation

Proof of Theorem 5

Ayupov, Kudaybergenov 2014. This proof involves a detailed structure theory of semisimple Lie algebras and is beyond the scope of today’s talk.
A (not necessarily linear) mapping T from a Lie algebra A into itself is said to be a 2-local Lie derivation if for every $a, b \in A$ there exists a (linear) Lie derivation $D_{a,b} : A \to A$, depending on a and b, such that $D_{a,b}(a) = T(a)$ and $D_{a,b}(b) = T(b)$.

Theorem 6

Every 2-local Lie derivation on a finite dimensional semisimple Lie algebra (no linearity is assumed) is a Lie derivation (not $M_n(\mathbb{R})$!).

Proof of Theorem 6

It suffices to prove that T is linear, then Theorem 5 applies.