DERIVATIONS

An introduction to non associative algebra (or, Playing havoc with the product rule)

Series 2—Part 4

Derivations, local derivations, and 2-local derivations on (algebras of) matrices

Colloquium Fullerton College

Bernard Russo

University of California, Irvine

February 23, 2016

HISTORY

Series 1

- PART I FEBRUARY 8, 2011 ALGEBRAS; DERIVATIONS
- PART II JULY 21, 2011 TRIPLE SYSTEMS; DERIVATIONS
- PART III FEBRUARY 28, 2012 MODULES; DERIVATIONS
- PART IV JULY 26, 2012 COHOMOLOGY (ASSOCIATIVE ALGEBRAS)
- PART V OCTOBER 25, 2012 THE SECOND COHOMOLOGY GROUP
- PART VI MARCH 7, 2013 COHOMOLOGY (LIE ALGEBRAS)
- PART VII JULY 25, 2013 COHOMOLOGY (JORDAN ALGEBRAS)
- PART VIII SEPTEMBER 17, 2013 VANISHING THEOREMS IN DIMENSIONS 1 AND 2 (ASSOCIATIVE ALGEBRAS)
- PART IX FEBRUARY 18, 2014 VANISHING THEOREMS IN DIMENSIONS 1 AND 2 (JORDAN ALGEBRAS)

Series 2

- PART I JULY 24, 2014 THE REMARKABLE CONNECTION BETWEEN JORDAN ALGEBRAS AND LIE ALGEBRAS (Two theorems relating different types of derivations)
- PART II NOVEMBER 18, 2014 THE REMARKABLE CONNECTION BETWEEN JORDAN ALGEBRAS AND LIE ALGEBRAS (Two theorems embedding triple systems in Lie algebras
- (digression) FEBRUARY 24, 2015 GENETIC ALGEBRAS
- PART III JULY 15, 2015 LOCAL DERIVATIONS
- (Fall 2015 missed due to the flu)
- PART IV (today)
 FEBRUARY 23, 2016
 2-LOCAL DERIVATIONS

"Slides" for all series 1 and series 2 talks available at

http://www.math.uci.edu/INSERT a "~" HERE brusso/undergraduate.html

ABSTRACT for February 23, 2016

After reviewing derivations and local derivations we consider local and 2-local derivations on the set of 2 by 2 matrices, considered

- (1) as an associative algebra under matrix multiplication;
- (2) as a Lie algebra under bracket multiplication;
- (3) as a Jordan algebra under circle multiplication

ABSTRACT for July 15, 2015 (for context)

A local derivation is a linear map T of an algebra which at each element of the algebra agrees with some derivation D, which can vary from element to element. Every derivation is obviously a local derivation but not all local derivations are derivations. For a large class of operator algebras, the two notions coincide. Similar definitions and results hold for local derivations on triple systems. There is also a nonlinear version on algebras and triple systems.

Review of Algebras—Axiomatic approach

AN <u>ALGEBRA</u> IS DEFINED TO BE A SET (ACTUALLY A VECTOR SPACE OVER A FIELD) WITH TWO BINARY OPERATIONS, CALLED <u>ADDITION</u> AND <u>MULTIPLICATION</u>—we are downplaying multiplication by scalars (=numbers=field elements)

ADDITION IS DENOTED BY a+b AND IS REQUIRED TO BE COMMUTATIVE a+b=b+a AND ASSOCIATIVE (a+b)+c=a+(b+c)

MULTIPLICATION IS DENOTED BY ab AND IS REQUIRED TO BE DISTRIBUTIVE WITH RESPECT TO ADDITION $(a+b)c=ac+bc, \quad a(b+c)=ab+ac$

AN ALGEBRA IS SAID TO BE <u>ASSOCIATIVE</u> (RESP. <u>COMMUTATIVE</u>) IF THE **MULTIPLICATION** IS ASSOCIATIVE (RESP. COMMUTATIVE) (RECALL THAT ADDITION IS ALWAYS COMMUTATIVE AND ASSOCIATIVE)

Table 1 (FASHIONABLE) ALGEBRAS

commutative algebras ab = ba (Real numbers, Complex numbers, Continuous functions)

associative algebras a(bc) = (ab)c (Matrix multiplication)

Lie algebras $a^2 = 0$, (ab)c + (bc)a + (ca)b = 0(Bracket multiplication on associative algebras: [x, y] = xy - yx)

Jordan algebras ab = ba, $a(a^2b) = a^2(ab)$ (Circle multiplication on associative algebras: $x \circ y = (xy + yx)/2$)

Types of derivations

Derivation

$$\delta(ab) = a\delta(b) + \delta(a)b$$

Lie derivation

$$\delta([a,b]) = [a,\delta(b)] + [\delta(a),b]$$

Jordan derivation

$$\delta(a \circ b) = a \circ \delta(b) + \delta(a) \circ b$$

There are two theorems relating different types of derivations. We will use one of them extensively today (Theorem A on the next page). We gave the proofs of Theorems A and B in Series 2, part I (July 24, 2014). The proofs are not easy!

Recall that any associative algebra A with product ab can be made into a Lie algebra, denoted by A^- , by defining [a,b]=ab-ba and into a Jordan algebra, denoted by A^+ , by defining $a\circ b=(ab+ba)/2$

Trivial Exercise

A derivation is also a Lie derivation and a Jordan derivation.

Theorem A

Every Jordan derivation on A^+ is a derivation of A $(A = M_n(\mathbb{R}))$

Example

There is a Lie derivation which is not a derivation $(A = M_n(\mathbb{R}), \text{ namely } \delta(x) = trace(x)I$

Theorem B

Every Lie derivation on A^- is the sum of a derivation and a linear operator of the above form $(A = M_n(\mathbb{R}))$

DERIVATIONS ON MATRIX ALGEBRAS

THE SET $M_n(\mathbb{R})$ of n by n MATRICES IS AN ALGEBRA UNDER MATRIX ADDITION A+BAND MATRIX MULTIPLICATION $A \times B$ WHICH IS ASSOCIATIVE BUT NOT COMMUTATIVE.

For the Record: (square matrices)

$$[a_{ij}] + [b_{ij}] = [a_{ij} + b_{ij}]$$
 $[a_{ij}] \times [b_{ij}] = [\sum_{k=1}^{n} a_{ik} b_{kj}]$

DEFINITION

A <u>DERIVATION</u> ON $M_n(\mathbb{R})$ WITH <u>RESPECT TO MATRIX MULTIPLICATION</u> IS A LINEAR PROCESS δ : $\delta(A+B)=\delta(A)+\delta(B)$ WHICH SATISFIES THE PRODUCT RULE

$$\delta(A \times B) = \delta(A) \times B + A \times \delta(B)$$

PROPOSITION

FIX A MATRIX A in $M_n(\mathbb{R})$ AND DEFINE

$$\delta_A(X) = A \times X - X \times A.$$

THEN δ_A IS A DERIVATION WITH RESPECT TO MATRIX MULTIPLICATION (WHICH ARE CALLED **INNER DERIVATIONS**)

THEOREM (Noether, Wedderburn, Hochschild, Jacobson, Kaplansky, Kadison, Sakai, . . .)

EVERY DERIVATION ON $M_n(\mathbb{R})$ WITH RESPECT TO MATRIX MULTIPLICATION IS INNER, THAT IS, OF THE FORM δ_A FOR SOME A IN $M_n(\mathbb{R})$.

We gave a proof of this theorem for n = 2 in part 8 of series 1.

In 1990, Kadison and Larson and Sourour introduced the concept of local derivation for Banach algebras and modules. A linear mapping $T:A\to A$, where A is an algebra is said to be a *local derivation* if for every a in A there exists a derivation $D_a:A\to A$, depending on a, satisfying $T(a)=D_a(a)$.

Theorem 1 (Kadison 1990, Larson and Sourour 1990)

A local derivation on $M_n(\mathbb{R})$ is a derivation

Example

Let $\mathbb{R}(x)$ denote the algebra of all rational functions (quotients of polynomials). There exists a local derivation of $\mathbb{R}(x)$ which is not a derivation.

Proof of Theorem 1

(Ayupov, Kudaybergenov, Peralta 2014)

Steps in the Proof

- Every matrix $A \in M_n(\mathbb{C})$ is a (complex) linear combination of pairwise orthogonal projections, where a projection is a matrix P such that $P = P^* = P^2$ and two projections are orthogonal if their product is 0.
- It T is a local derivation on $M_n(\mathbb{C})$, then for each pair of orthogonal projections P and Q, we have

$$QT(P)+T(Q)P=0.$$

• If $A = \sum \lambda_i P_i$ with $P_i P_j = 0$ for $i \neq j$, then

$$T(A^2) = AT(A) + T(A)A$$

• T is a Jordan derivation, hence a derivation. Q.E.D.

Details of the example

From Series 2, part I (July 15, 2015)

Example

Let $\mathbb{R}(x)$ denote the algebra of all rational functions (quotients of polynomials). There exists a local derivation of $\mathbb{R}(x)$ which is not a derivation.

Exercise 1

The derivations of $\mathbb{R}(x)$ are the mappings of the form $f \mapsto gf'$ for some g in $\mathbb{R}(x)$, where f' is the usual derivative of f.

Exercise 2

The local derivations of $\mathbb{R}(x)$ are the mappings which annihilate the constants.

Exercise 3

Write $\mathbb{R}(x) = S + T$ where S is the 2-dimensional space generated by 1 and x.

Define $\alpha : \mathbb{R}(x) \to \mathbb{R}(x)$ by $\alpha(a+b) = b$. Then α is a local derivation which is not a derivation.

The algebra is $\mathbb{C}(x)$, the rational functions in the variable x over \mathbb{C} . Let $\mathbb{C}[x]$ be the subalgebra of polynomials. We note certain facts.

a. The derivations of $\mathbb{C}(x)$ into itself are mappings of the form $f \to gf'$ for some g in $\mathbb{C}(x)$, where f' is the usual derivative of f. Such a mapping is a derivation of $\mathbb{C}(x)$. Let δ be a derivation of $\mathbb{C}(x)$ into $\mathbb{C}(x)$ and let g be $\delta(x)$. If $p \in \mathbb{C}[x]$, then $\delta(p) = gp'$ (applying the multiplicative property of the derivation). At the same time, if $p \neq 0$, then

$$0 = \delta(1) = \delta(pp^{-1}) = \delta(p) p^{-1} + p\delta(p^{-1}),$$

whence $\delta(p^{-1}) = -\delta(p) p^{-2} = -gp'p^{-2}$. Thus, with p and q in $\mathbb{C}[x]$,

$$\begin{split} \delta(pq^{-1}) &= \delta(p) \ q^{-1} + p\delta(q^{-1}) = gp'q^{-1} - gpq'q^{-2} \\ &= g[p'q - pq'] \ q^{-2} = g[pq^{-1}]'. \end{split}$$

- b. The local derivations of $\mathbb{C}(x)$ are the linear mappings that annihilate the constants. If α is a local derivation, then for each c in \mathbb{C} , there is a derivation δ of $\mathbb{C}(x)$ such that $\alpha(c) = \delta(c) = 0$. Suppose, now, that α is a linear mapping of $\mathbb{C}(x)$ into $\mathbb{C}(x)$ that annihilates the constants. Of course α agrees with every derivation on all constants. If f, in $\mathbb{C}(x)$, is not a constant, then $f' \neq 0$. Let $\delta(h)$ be $(\alpha(f)/f')/h'$. Then δ is a derivation of $\mathbb{C}(x)$, and $\delta(f) = \alpha(f)$. Thus α is a local derivation of $\mathbb{C}(x)$.
- c. We display a local derivation of $\mathbb{C}(x)$ into itself that is not a derivation. With $\mathbb{C}(x)$ considered as a vector space over \mathbb{C} , the 2-dimensional subspace X generated by 1 and x has a complement Y. Let α be the projection of $\mathbb{C}(x)$ on Y along X. Then α annihilates the constants, whence α is a local derivation from b. If α were a derivation, then from a, $\alpha(f)$ would be $\alpha(x) f'$, which is a 0 since $\alpha(x) = 0$. As $\alpha \neq 0$, α is not a derivation

A (not necessarily linear) mapping T from an algebra A into itself is said to be a 2-local derivation if for every $a, b \in A$ there exists a (of course linear) derivation $D_{a,b}: A \to A$, depending on a and b, such that $D_{a,b}(a) = T(a)$ and $D_{a,b}(b) = T(b)$.

Theorem 2

Every 2-local derivation $T:M_n(\mathbb{R})\to M_n(\mathbb{R})$ (no linearity of T is assumed) is a derivation.

Semrl 1997

Kim-Kim 2004

Ayupov-Kudaybergenov-Nuranjov 2014

Ayupov-Arzikulov 2014

Ayupov-Kudaybergenov 2015

Proof of Theorem 2

Kim. Kim 2004

Steps in the Proof

• Let e_1, e_2 be the standard basis for \mathbb{C}^2 and let

$$A = \begin{bmatrix} 1/2 & 0 \\ 0 & 1/4 \end{bmatrix}$$
 and $N = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$

• Any $S \in M_2(\mathbb{C})$ which commutes with A is diagonal and any $U \in M_2(\mathbb{C})$ which commutes with N has the form

$$U = \begin{bmatrix} a & b \\ 0 & a \end{bmatrix}$$

- If T is a 2-local derivation, then $T D_{A,N}$ is another 2-local derivation which vanishes at A and at N.
- Let $\phi = T D_{A,N}$. Calculate that $\phi(E_{ij}) = 0$, where E_{ij} are the matrix units
- Calculate that $E_{ij}\phi(X)E_{ij}=0$ for all $X\in M_2(\mathbb{C})$. Thus $\phi(X)=0$ for all X. Q.E.D.

Example (Zhang-Li 2006)

Let us consider the algebra of all upper-triangular complex 2 \times 2-matrices

$$A = \left\{ x = \left(\begin{array}{cc} \lambda_{11} & \lambda_{12} \\ 0 & \lambda_{22} \end{array} \right) : \lambda_{ij} \in \mathbb{C} \right\}.$$

Define an operator Δ on A by

$$\Delta(x) = \left\{ \begin{array}{ll} 0, & \text{if } \lambda_{11} \neq \lambda_{22}, \\ \\ \begin{pmatrix} 0 & 2\lambda_{12} \\ 0 & 0 \end{array} \right), & \text{if } \lambda_{11} = \lambda_{22}. \end{array} \right.$$

Then Δ is a 2-local derivation, which is not a derivation.

THE CIRCLE PRODUCT ON THE SET OF MATRICES

DEFINITION

THE **CIRCLE PRODUCT** ON THE SET $M_n(\mathbb{R})$ OF MATRICES IS DEFINED BY

$$X \circ Y = (X \times Y + Y \times X)/2$$

THE SET $M_n(\mathbb{R})$ of n by n MATRICES IS AN ALGEBRA UNDER MATRIX ADDITION AND CIRCLE MULTIPLICATION, WHICH IS COMMUTATIVE BUT NOT ASSOCIATIVE.

DEFINITION

A DERIVATION ON $M_n(\mathbb{R})$ WITH RESPECT TO CIRCLE MULTIPLICATION IS A LINEAR PROCESS δ WHICH SATISFIES THE PRODUCT RULE

$$\delta(A \circ B) = \delta(A) \circ B + A \circ \delta(B)$$

PROPOSITION

FIX A MATRIX A in $M_n(\mathbb{R})$ AND DEFINE

$$\delta_A(X) = A \times X - X \times A.$$

THEN δ_A IS A DERIVATION WITH RESPECT TO CIRCLE MULTIPLICATION (ALSO CALLED AN INNER DERIVATION IN THIS CONTEXT³)

 a However, see the following remark. Also see some of the exercises (Dr. Gradus Ad Parnassum) in part 1 of these lectures

THEOREM (1972-Sinclair)

EVERY DERIVATION ON $M_n(\mathbb{R})$ WITH RESPECT TO CIRCLE MULTIPLICATION IS INNER, THAT IS, OF THE FORM δ_A FOR SOME A IN $M_n(\mathbb{R})$.

REMARK (1937-Jacobson)

THE ABOVE PROPOSITION AND THEOREM NEED TO BE MODIFIED FOR THE SUBALGEBRA (WITH RESPECT TO CIRCLE MULTIPLICATION) OF SYMMETRIC MATRICES, FOR EXAMPLE.

Table 2 $M_n(\mathbb{R})$ (ALGEBRAS)

matrix	bracket	circle
$ab = a \times b$	[a,b] = ab - ba	$a \circ b = ab + ba$
Associative	Lie	Jordan
$\delta_a(x)$	$\delta_a(x)$	$\delta_a(x)$
=	=	=
ax — xa	ax - xa	ax — xa
	or trace(x)/	

A linear mapping $T: A \to A$, where A is a Jordan algebra is said to be a *local Jordan derivation* if for every a in A there exists a Jordan derivation $D_a: A \to A$, depending on a, satisfying $T(a) = D_a(a)$.

Theorem 3

A local Jordan derivation on $M_n(\mathbb{R})$ is a Jordan derivation

Proof of Theorem 3

Combine Theorem 1 with Theorem A.

A (not necessarily linear) mapping T from a Jordan algebra A into itself is said to be a 2-local Jordan derivation if for every $a,b\in A$ there exists a (linear) Jordan derivation $D_{a,b}:A\to A$, depending on a and b, such that $D_{a,b}(a)=T(a)$ and $D_{a,b}(b)=T(b)$.

Theorem 4

Every 2-local Jordan derivation $T:M_n(\mathbb{R})\to M_n(\mathbb{R})$ (no linearity of T is assumed) is a Jordan derivation.

Proof of Theorem 4

Combine Theorem 2 with Theorem A.

THE BRACKET PRODUCT ON THE SET OF MATRICES

DEFINITION

THE **BRACKET PRODUCT** ON THE SET $M_n(\mathbb{R})$ OF MATRICES IS DEFINED BY

$$[X, Y] = X \times Y - Y \times X$$

THE SET $M_n(\mathbb{R})$ of n by n MATRICES IS AN ALGEBRA UNDER MATRIX ADDITION AND BRACKET MULTIPLICATION, WHICH IS NOT ASSOCIATIVE AND NOT COMMUTATIVE.

DEFINITION

A <u>DERIVATION</u> ON $M_n(\mathbb{R})$ WITH <u>RESPECT TO BRACKET MULTIPLICATION</u> IS A LINEAR PROCESS δ WHICH SATISFIES THE PRODUCT RULE

$$\delta([A,B]) = [\delta(A),B] + [A,\delta(B)].$$

PROPOSITION

FIX A MATRIX A in $M_n(\mathbb{R})$ AND DEFINE

$$\delta_A(X) = [A, X] = A \times X - X \times A.$$

THEN δ_A IS A DERIVATION WITH RESPECT TO BRACKET MULTIPLICATION (STILL CALLED **INNER DERIVATION**).

THEOREM

EVERY DERIVATION ON $M_n(\mathbb{R})$ WITH RESPECT TO BRACKET MULTIPLICATION IS INNER, THAT IS, OF THE FORM δ_A FOR SOME A IN $M_n(\mathbb{R})$.

aFull disclosure: this is actually not true. Check that the map $X\mapsto$ (trace of X)I is a derivation which is not inner (I is the identity matrix). The correct statement is that every derivation of a semisimple finite dimensional Lie algebra is inner. $M_n(\mathbb{R})$ is a semisimple associative algebra under matrix multiplication, a semisimple Jordan algebra under circle multiplication, but not a semisimple Lie algebra under bracket multiplication. Please ignore this footnote until you find out what semisimple means in each context

Theorem C (Equivalent definitions of semisimplicity)

Let \mathfrak{g} be a Lie algebra. Then the following are equivalent:

- 1. g does not contain any non-trivial solvable ideal.
- 2. g does not contain any non-trivial abelian ideal.
- 3. The Killing form $K : \mathfrak{g} \times \mathfrak{g} \to \mathbf{C}$, defined as the bilinear form $K(x,y) := \operatorname{tr}_{\mathfrak{g}}((\operatorname{ad} x)(\operatorname{ad} y))$, is non-degenerate on \mathfrak{g} .
- 4. $\mathfrak g$ is isomorphic to the direct sum of finitely many non-abelian simple Lie algebras.

Theorem D (Classification of simple Lie algebras)

Up to isomorphism, every simple Lie algebra is of one of the following forms:

- 1. $A_n = \mathfrak{sl}_{n+1}$ for some $n \ge 1$. (trace zero, $\operatorname{tr}(A) = 0$)
- 2. $B_n = \mathfrak{so}_{2n+1}$ for some $n \geq 2$. (skew-symmetric, $A^t = -A$)
- 3. $C_n = \mathfrak{sp}_{2n}$ for some $n \ge 3$. $(A^t J = -JA, J = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix})$
- 4. $D_n = \mathfrak{so}_{2n}$ for some $n \geq 4$. (skew-symmetric)
- 5. E_6 , E_7 , or E_8 .
- 6. F_4 .
- 7. G_2 .

A linear mapping $T: A \to A$, where A is a Lie algebra is said to be a *local Lie derivation* if for every a in A there exists a Lie derivation $D_a: A \to A$, depending on a, satisfying $T(a) = D_a(a)$.

Theorem 5

A local Lie derivation on a finite dimensional semisimple Lie algebra (not $M_n(\mathbb{R})!$) is a Lie derivation

Proof of Theorem 5

Ayupov, Kudaybergenov 2014. This proof involves a detailed structure theory of semisimple Lie algebras and is beyond the scope of today's talk.

A (not necessarily linear) mapping T from a Lie algebra A into itself is said to be a 2-local Lie derivation if for every $a,b\in A$ there exists a (linear) Lie derivation $D_{a,b}:A\to A$, depending on a and b, such that $D_{a,b}(a)=T(a)$ and $D_{a,b}(b)=T(b)$.

Theorem 6

Every 2-local Lie derivation on a finite dimensional semisimple Lie algebra (no linearity is assumed) is a Lie derivation (not $M_n(\mathbb{R})$!).

Proof of Theorem 6

It suffices to prove that T is linear, then Theorem 5 applies.