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WHAT IS A MODULE?

The American Heritage Dictionary of the

English Language, Fourth Edition 2009.

HAS 8 DEFINITIONS



1. A standard or unit of measurement.

2. Architecture The dimensions of a struc-

tural component, such as the base of a

column, used as a unit of measurement or

standard for determining the proportions of

the rest of the construction.

3. Visual Arts/Furniture A standardized, of-

ten interchangeable component of a sys-

tem or construction that is designed for

easy assembly or flexible use: a sofa con-

sisting of two end modules.

4. Electronics A self-contained assembly of

electronic components and circuitry, such

as a stage in a computer, that is installed

as a unit.



5. Computer Science A portion of a pro-

gram that carries out a specific function

and may be used alone or combined with

other modules of the same program.

6. Astronautics A self-contained unit of a

spacecraft that performs a specific task or

class of tasks in support of the major func-

tion of the craft.

7. Education A unit of education or instruc-

tion with a relatively low student-to-teacher

ratio, in which a single topic or a small sec-

tion of a broad topic is studied for a given

period of time.

8. Mathematics A system with scalars com-

ing from a ring.



1. REVIEW OF PART I—ALGEBRAS

AXIOMATIC APPROACH

AN ALGEBRA IS DEFINED TO BE A SET

(ACTUALLY A VECTOR SPACE) WITH

TWO BINARY OPERATIONS, CALLED

ADDITION AND MULTIPLICATION

ACTUALLY, IF YOU FORGET ABOUT

THE VECTOR SPACE, THIS DEFINES A

RING



ADDITION IS DENOTED BY

a+ b

AND IS REQUIRED TO BE

COMMUTATIVE AND ASSOCIATIVE

a+ b = b+ a, (a+ b) + c = a+ (b+ c)

THERE IS ALSO AN ELEMENT 0 WITH

THE PROPERTY THAT FOR EACH a,

a+ 0 = a

AND THERE IS AN ELEMENT CALLED −a
SUCH THAT

a+ (−a) = 0

MULTIPLICATION IS DENOTED BY

ab

AND IS REQUIRED TO BE DISTRIBUTIVE

WITH RESPECT TO ADDITION

(a+ b)c = ac+ bc, a(b+ c) = ab+ ac



IMPORTANT: A RING MAY OR MAY

NOT HAVE AN IDENTITY ELEMENT

1x = x1 = x

AN ALGEBRA (or RING) IS SAID TO BE

ASSOCIATIVE (RESP. COMMUTATIVE) IF

THE MULTIPLICATION IS ASSOCIATIVE

(RESP. COMMUTATIVE)

(RECALL THAT ADDITION IS ALWAYS

COMMUTATIVE AND ASSOCIATIVE)



Table 2

ALGEBRAS (OR RINGS)

commutative algebras

ab = ba

associative algebras

a(bc) = (ab)c

Lie algebras

a2 = 0

(ab)c+ (bc)a+ (ca)b = 0

Jordan algebras

ab = ba

a(a2b) = a2(ab)



Sophus Lie (1842–1899)

Marius Sophus Lie was a Norwegian

mathematician. He largely created the theory

of continuous symmetry, and applied it to the

study of geometry and differential equations.



Pascual Jordan (1902–1980)

Pascual Jordan was a German theoretical and

mathematical physicist who made significant

contributions to quantum mechanics and

quantum field theory.



THE DERIVATIVE

f ′(x) = lim
h→0

f(x+ h)− f(x)

h

DIFFERENTIATION IS A LINEAR

PROCESS

(f + g)′ = f ′+ g′

(cf)′ = cf ′

THE SET OF DIFFERENTIABLE

FUNCTIONS FORMS AN ALGEBRA D

(fg)′ = fg′+ f ′g

(product rule)



HEROS OF CALCULUS

#1

Sir Isaac Newton (1642-1727)

Isaac Newton was an English physicist,

mathematician, astronomer, natural

philosopher, alchemist, and theologian, and is

considered by many scholars and members of

the general public to be one of the most

influential people in human history.





LEIBNIZ RULE

(fg)′ = f ′g + fg′

(order changed)

************************************
(fgh)′ = f ′gh+ fg′h+ fgh′

************************************

(f1f2 · · · fn)′ = f ′1f2 · · · fn + · · ·+ f1f2 · · · f ′n

The chain rule,

(f ◦ g)′(x) = f ′(g(x))g′(x)

plays no role in this talk

Neither does the quotient rule

(f/g)′ =
gf ′ − fg′

g2



CONTINUITY

xn → x⇒ f(xn)→ f(x)

THE SET OF CONTINUOUS FUNCTIONS

FORMS AN ALGEBRA C

(sums, constant multiples and products of

continuous functions are continuous)

D and C ARE EXAMPLES OF ALGEBRAS

WHICH ARE BOTH ASSOCIATIVE AND

COMMUTATIVE

PROPOSITION 1

EVERY DIFFERENTIABLE FUNCTION IS

CONTINUOUS

D is a subalgebra of C; D ⊂ C



DIFFERENTIATION IS A LINEAR

PROCESS

LET US DENOTE IT BY D AND WRITE

Df for f ′

D(f + g) = Df +Dg

D(cf) = cDf

D(fg) = (Df)g + f(Dg)

D(f/g) =
g(Df)− f(Dg)

g2

IS THE LINEAR PROCESS D : f 7→ f ′

CONTINUOUS?

(If fn → f in D, does it follow that f ′n → f ′? )

(ANSWER: NO!)



DEFINITION 1

A DERIVATION ON C IS A LINEAR

PROCESS SATISFYING THE LEIBNIZ

RULE:

δ(f + g) = δ(f) + δ(g)

δ(cf) = cδ(f)

δ(fg) = δ(f)g + fδ(g)

THEOREM 1

There are no (non-zero) derivations on C.

In other words,

Every derivation of C is identically zero

COROLLARY D 6= C

(NO DUUUH! f(x) = |x|)



THEOREM 1A

(1955-Singer and Wermer)

Every continuous derivation on C is zero.

Theorem 1B

(1960-Sakai)

Every derivation on C is continuous.

(False for D)

John Wermer Soichiro Sakai

(b. 1925) (b. 1926)



Isadore Singer (b. 1924)

Isadore Manuel Singer is an Institute

Professor in the Department of Mathematics

at the Massachusetts Institute of Technology.

He is noted for his work with Michael Atiyah

in 1962, which paved the way for new

interactions between pure mathematics and

theoretical physics.



DERIVATIONS ON THE SET OF

MATRICES

THE SET Mn(R) of n by n MATRICES IS

AN ALGEBRA UNDER

MATRIX ADDITION

A+B

AND

MATRIX MULTIPLICATION

A×B

WHICH IS ASSOCIATIVE BUT NOT

COMMUTATIVE.

(WE SHALL DEFINE TWO MORE

MULTIPLICATIONS)



DEFINITION 2

A DERIVATION ON Mn(R) WITH

RESPECT TO MATRIX MULTIPLICATION

IS A LINEAR PROCESS δ WHICH

SATISFIES THE PRODUCT RULE

δ(A×B) = δ(A)×B +A× δ(B)

.

PROPOSITION 2

FIX A MATRIX A in Mn(R) AND DEFINE

δA(X) = A×X −X ×A.

THEN δA IS A DERIVATION WITH

RESPECT TO MATRIX MULTIPLICATION

(WHICH CAN BE NON-ZERO)



THEOREM 2
(1942 Hochschild)

EVERY DERIVATION ON Mn(R) WITH
RESPECT TO MATRIX MULTIPLICATION

IS OF THE FORM δA FOR SOME A IN
Mn(R).

Gerhard Hochschild (1915–2010)

(Photo 1968)
Gerhard Paul Hochschild was an American
mathematician who worked on Lie groups,
algebraic groups, homological algebra and

algebraic number theory.



(Photo 1976)

(Photo 1981)



Joseph Henry Maclagan Wedderburn

(1882–1948)

Scottish mathematician, who taught at

Princeton University for most of his career. A

significant algebraist, he proved that a finite

division algebra is a field, and part of the

Artin–Wedderburn theorem on simple

algebras. He also worked on group theory and

matrix algebra.



Amalie Emmy Noether (1882–1935)

Amalie Emmy Noether was an influential

German mathematician known for her

groundbreaking contributions to abstract

algebra and theoretical physics. Described as

the most important woman in the history of

mathematics, she revolutionized the theories

of rings, fields, and algebras. In physics,

Noether’s theorem explains the fundamental

connection between symmetry and

conservation laws.



THE BRACKET PRODUCT ON THE

SET OF MATRICES

(THIS IS THE SECOND MULTIPLICATION)

THE BRACKET PRODUCT ON THE SET

Mn(R) OF MATRICES IS DEFINED BY

[X,Y ] = X × Y − Y ×X

THE SET Mn(R) of n by n MATRICES IS

AN ALGEBRA UNDER MATRIX ADDITION

AND BRACKET MULTIPLICATION,

WHICH IS NOT ASSOCIATIVE AND NOT

COMMUTATIVE.



DEFINITION 3

A DERIVATION ON Mn(R) WITH

RESPECT TO BRACKET MULTIPLICATION

IS A LINEAR PROCESS δ WHICH

SATISFIES THE PRODUCT RULE

δ([A,B]) = [δ(A), B] + [A, δ(B)]

.

PROPOSITION 3

FIX A MATRIX A in Mn(R) AND DEFINE

δA(X) = [A,X] = A×X −X ×A.

THEN δA IS A DERIVATION WITH

RESPECT TO BRACKET

MULTIPLICATION



THEOREM 3

(1942 Hochschild, Zassenhaus)
EVERY DERIVATION ON Mn(R) WITH

RESPECT TO BRACKET
MULTIPLICATION IS OF THE FORM δA

FOR SOME A IN Mn(R).

Hans Zassenhaus (1912–1991)

Hans Julius Zassenhaus was a German
mathematician, known for work in many parts

of abstract algebra, and as a pioneer of
computer algebra.



Gerhard Hochschild (1915–2010)

(Photo 1986)

(Photo 2003)



THE CIRCLE PRODUCT ON THE SET

OF MATRICES

(THIS IS THE THIRD MULTIPLICATION)

THE CIRCLE PRODUCT ON THE SET

Mn(R) OF MATRICES IS DEFINED BY

X ◦ Y = (X × Y + Y ×X)/2

THE SET Mn(R) of n by n MATRICES IS

AN ALGEBRA UNDER MATRIX ADDITION

AND CIRCLE MULTIPLICATION, WHICH IS

COMMUTATIVE BUT NOT ASSOCIATIVE.



DEFINITION 4

A DERIVATION ON Mn(R) WITH

RESPECT TO CIRCLE MULTIPLICATION

IS A LINEAR PROCESS δ WHICH

SATISFIES THE PRODUCT RULE

δ(A ◦B) = δ(A) ◦B +A ◦ δ(B)

PROPOSITION 4

FIX A MATRIX A in Mn(R) AND DEFINE

δA(X) = A×X −X ×A.

THEN δA IS A DERIVATION WITH

RESPECT TO CIRCLE MULTIPLICATION



THEOREM 4

(1972-Sinclair)

EVERY DERIVATION ON Mn(R) WITH

RESPECT TO CIRCLE MULTIPLICATION

IS OF THE FORM δA FOR SOME A IN

Mn(R).

REMARK

(1937-Jacobson)

THE ABOVE PROPOSITION AND

THEOREM NEED TO BE MODIFIED FOR

THE SUBALGEBRA (WITH RESPECT TO

CIRCLE MULTIPLICATION) OF

SYMMETRIC MATRICES.



Alan M. Sinclair (retired)

Nathan Jacobson (1910–1999)

Nathan Jacobson was an American
mathematician who was recognized as one of
the leading algebraists of his generation, and
he was also famous for writing more than a

dozen standard monographs.



Table 1

Mn(R) (ALGEBRAS)

matrix bracket circle
ab = a× b [a, b] = ab− ba a ◦ b = ab+ ba

Th. 2 Th.3 Th.4
δa(x) δa(x) δa(x)

= = =
ax− xa ax− xa ax− xa



GRADUS AD PARNASSUM

PART I—ALGEBRAS

1. Prove Proposition 2

2. Prove Proposition 3

3. Prove Proposition 4

4. Let A,B are two fixed matrices in Mn(R).

Show that the linear process

δA,B(X) = A ◦ (B ◦X)−B ◦ (A ◦X)

is a derivation of Mn(R) with respect to

circle multiplication.

(cf. Remark following Theorem 4)

5. Show that Mn(R) is a Lie algebra with re-

spect to bracket multiplication. In other

words, show that the two axioms for Lie al-

gebras in Table 2 are satisfied if ab denotes

[a, b] = ab−ba (a and b denote matrices and

ab denotes matrix multiplication)



6. Show that Mn(R) is a Jordan algebra with

respect to circle multiplication. In other

words, show that the two axioms for Jor-

dan algebras in Table 2 are satisfied if ab

denotes a◦b = ab+ba (a and b denote matri-

ces and ab denotes matrix multiplication—

forget about dividing by 2)

7. (Extra credit)

Let us write δa,b for the linear process δa,b(x) =

a(bx) − b(ax) in a Jordan algebra. Show

that δa,b is a derivation of the Jordan al-

gebra by following the outline below. (cf.

Homework problem 4 above.)

(a) In the Jordan algebra axiom

u(u2v) = u2(uv),

replace u by u+w to obtain the two equa-

tions

2u((uw)v) +w(u2v) = 2(uw)(uv) + u2(wv)

(1)

and (correcting the misprint in part I)

u(w2v)+2w((uw)v) = w2(uv)+2(uw)(wv).



(Hint: Consider the “degree” of w on each

side of the equation resulting from the sub-

stitution)

(b) In (1), interchange v and w and sub-

tract the resulting equation from (1) to ob-

tain the equation

2u(δv,w(u)) = δv,w(u2). (2)

(c) In (2), replace u by x+ y to obtain the

equation

δv,w(xy) = yδv,w(x) + xδv,w(y),

which is the desired result.

END OF REVIEW OF PART I



2. REVIEW OF PART II

IN THESE TALKS, I AM MOSTLY

INTERESTED IN NONASSOCIATIVE

ALGEBRAS (PART I) AND

NONASSOCIATIVE TRIPLE SYSTEMS

(PART II), ALTHOUGH THEY MAY OR

MAY NOT BE COMMUTATIVE.

(ASSOCIATIVE AND COMMUTATIVE

HAVE TO BE INTERPRETED

APPROPRIATELY FOR THE TRIPLE

SYSTEMS CONSIDERED WHICH ARE

NOT ACTUALLY ALGEBRAS)



DERIVATIONS ON RECTANGULAR

MATRICES

MULTIPLICATION DOES NOT MAKE

SENSE ON Mm,n(R) if m 6= n.

NOT TO WORRY!

WE CAN FORM A TRIPLE PRODUCT

X × Y t × Z
(TRIPLE MATRIX MULTIPLICATION)

COMMUTATIVE AND ASSOCIATIVE

DON’T MAKE SENSE HERE. RIGHT?

WRONG!!

(X × Y t × Z)×At ×B = X × Y t × (Z ×At ×B)

(WHAT WOULD ASSOCIATIVE MEAN

FOR A “QUADRUPLE” PRODUCT?)



DEFINITION 5

A DERIVATION ON Mm,n(R) WITH

RESPECT TO

TRIPLE MATRIX MULTIPLICATION

IS A LINEAR PROCESS δ WHICH

SATISFIES THE (TRIPLE) PRODUCT

RULE

δ(A×Bt × C) =

δ(A)×Bt × C +A× δ(B)t × C +A×Bt × δ(C)

PROPOSITION 5

FOR TWO MATRICES A,B in Mm,n(R),

DEFINE δA,B(X) =

A×Bt×X+X×Bt×A−B×At×X−X×At×B

THEN δA,B IS A DERIVATION WITH

RESPECT TO TRIPLE MATRIX

MULTIPLICATION



THEOREM 8∗

EVERY DERIVATION ON Mm,n(R) WITH

RESPECT TO TRIPLE MATRIX

MULTIPLICATION IS A SUM OF

DERIVATIONS OF THE FORM δA,B.

REMARK

THESE RESULTS HOLD TRUE AND ARE

OF INTEREST FOR THE CASE m = n.

(WE SHALL DEFINE TWO OTHER

TRIPLE PRODUCTS)

∗Theorems 5,6,7 were in part I



TRIPLE BRACKET MULTIPLICATION

LET’S GO BACK FOR A MOMENT TO

SQUARE MATRICES AND THE BRACKET

MULTIPLICATION.

MOTIVATED BY THE LAST REMARK,

WE DEFINE THE TRIPLE BRACKET

MULTIPLICATION TO BE [[X,Y ], Z]

(THIS IS THE SECOND TRIPLE

PRODUCT)

DEFINITION 6

A DERIVATION ON Mn(R) WITH

RESPECT TO

TRIPLE BRACKET MULTIPLICATION

IS A LINEAR PROCESS δ WHICH

SATISFIES THE TRIPLE PRODUCT RULE

δ([[A,B], C]) =

[[δ(A), B], C] + [[A, δ(B)], C] + [[A,B], δ(C)]



PROPOSITION 6

FIX TWO MATRICES A,B IN Mn(R) AND

DEFINE δA,B(X) = [[A,B], X]

THEN δA,B IS A DERIVATION WITH

RESPECT TO TRIPLE BRACKET

MULTIPLICATION.

THEOREM 9

EVERY DERIVATION OF Mn(R) WITH

RESPECT TO TRIPLE BRACKET

MULTIPLICATION IS A SUM OF

DERIVATIONS OF THE FORM δA,B.



TRIPLE CIRCLE MULTIPLICATION

LET’S RETURN TO RECTANGULAR

MATRICES AND FORM THE TRIPLE

CIRCLE MULTIPLICATION

(A×Bt × C + C ×Bt ×A)/2

For sanity’s sake, let us write this as

{A,B,C} = (A×Bt × C + C ×Bt ×A)/2

(THIS IS THE THIRD TRIPLE PRODUCT)

DEFINITION 7

A DERIVATION ON Mm,n(R) WITH

RESPECT TO

TRIPLE CIRCLE MULTIPLICATION

IS A LINEAR PROCESS δ WHICH

SATISFIES THE TRIPLE PRODUCT RULE

δ({A,B,C})=

{δ(A), B, C}+ {A, δ(B), C}+ {A,B, δ(C)}



PROPOSITION 7

FIX TWO MATRICES A,B IN Mm,n(R) AND

DEFINE

δA,B(X) = {A,B,X} − {B,A,X}

THEN δA,B IS A DERIVATION WITH

RESPECT TO TRIPLE CIRCLE

MULTIPLICATION.

THEOREM 10

EVERY DERIVATION OF Mm,n(R) WITH

RESPECT TO TRIPLE CIRCLE

MULTIPLICATION IS A SUM OF

DERIVATIONS OF THE FORM δA,B.



IT IS TIME FOR ANOTHER SUMMARY

OF THE PRECEDING

Table 3

Mm,n(R) (TRIPLE SYSTEMS)

triple triple triple
matrix bracket circle
abtc [[a, b], c] abtc+ cbta

Th. 8 Th.9 Th.10
δa,b(x) δa,b(x) δa,b(x)

= = =
abtx abx abtx

+xbta +xba +xbta
−batx −bax −batx
−xatb −xab −xatb

(sums) (sums) (sums)
(m = n)

(WHAT IS THE DEFINITION OF A

DERIVATION OF A “QUADRUPLE”

PRODUCT?)



LET’S PUT ALL THIS NONSENSE
TOGETHER

Table 1 Mn(R) (ALGEBRAS)

matrix bracket circle
ab = a× b [a, b] = ab− ba a ◦ b = ab+ ba

Th. 2 Th.3 Th.4
δa(x) δa(x) δa(x)

= = =
ax− xa ax− xa ax− xa

Table 3 Mm,n(R) (TRIPLE SYSTEMS)

triple triple triple
matrix bracket circle
abtc [[a, b], c] abtc+ cbta

Th. 8 Th.9 Th.10
δa,b(x) δa,b(x) δa,b(x)

= = =
abtx abx abtx

+xbta +xba +xbta
−batx −bax −batx
−xatb −xab −xatb

(sums) (sums) (sums)
(m = n)

HEY! IT IS NOT SO NONSENSICAL!



AXIOMATIC APPROACH FOR TRIPLE

SYSTEMS

AN TRIPLE SYSTEM IS DEFINED TO BE

A SET (ACTUALLY A VECTOR SPACE)

WITH ONE BINARY OPERATION,

CALLED ADDITION AND ONE TERNARY

OPERATION CALLED

TRIPLE MULTIPLICATION

ACTUALLY, IF YOU FORGET ABOUT

THE VECTOR SPACE, THIS DEFINES A

TERNARY RING



ADDITION IS DENOTED BY

a+ b

AND IS REQUIRED TO BE

COMMUTATIVE AND ASSOCIATIVE

a+ b = b+ a, (a+ b) + c = a+ (b+ c)

(THIS IS EXACTLY THE SAME AS FOR

ALGEBRAS, OR RINGS, INCLUDING THE

EXISTENCE OF 0)

TRIPLE MULTIPLICATION IS DENOTED

abc

AND IS REQUIRED TO BE LINEAR IN

EACH VARIABLE

(a+ b)cd = acd+ bcd

a(b+ c)d = abd+ acd

ab(c+ d) = abc+ abd



AXIOMATIC APPROACH FOR TRIPLE

SYSTEMS

THE AXIOM WHICH CHARACTERIZES

TRIPLE MATRIX MULTIPLICATION IS

(abc)de = ab(cde) = a(dcb)e

THESE ARE CALLED

ASSOCIATIVE TRIPLE SYSTEMS

or

HESTENES ALGEBRAS



Magnus Hestenes (1906–1991)

Magnus Rudolph Hestenes was an American

mathematician. Together with Cornelius

Lanczos and Eduard Stiefel, he invented the

conjugate gradient method.



THE AXIOMS WHICH CHARACTERIZE

TRIPLE BRACKET MULTIPLICATION ARE

aab = 0

abc+ bca+ cab = 0

de(abc) = (dea)bc+ a(deb)c+ ab(dec)

THESE ARE CALLED

LIE TRIPLE SYSTEMS

(NATHAN JACOBSON, MAX KOECHER)



Max Koecher (1924–1990)

Max Koecher was a German mathematician.
His main research area was the theory of
Jordan algebras, where he introduced the

KantorKoecherTits construction.

Nathan Jacobson (1910–1999)



THE AXIOMS WHICH CHARACTERIZE
TRIPLE CIRCLE MULTIPLICATION ARE

abc = cba

de(abc) = (dea)bc− a(edb)c+ ab(dec)

THESE ARE CALLED
JORDAN TRIPLE SYSTEMS

Kurt Meyberg (living)

Ottmar Loos + Erhard Neher
(both living)



YET ANOTHER SUMMARY

Table 4

TRIPLE SYSTEMS

associative triple systems

(abc)de = ab(cde) = a(dcb)e

Lie triple systems

aab = 0

abc+ bca+ cab = 0

de(abc) = (dea)bc+ a(deb)c+ ab(dec)

Jordan triple systems

abc = cba

de(abc) = (dea)bc− a(edb)c+ ab(dec)



GRADUS AD PARNASSUM

PART II—TRIPLE SYSTEMS

1. Prove Proposition 5

(Use the notation 〈abc〉 for abtc)

2. Prove Proposition 6

(Use the notation [abc] for [[a, b], c])

3. Prove Proposition 7

(Use the notation {abc} for abtc+ cbta)

4. Show that Mn(R) is a Lie triple system

with respect to triple bracket multiplica-

tion. In other words, show that the three

axioms for Lie triple systems in Table 4

are satisfied if abc denotes [[a, b], c] = (ab−
ba)c−c(ab−ba) (a, b and c denote matrices)

(Use the notation [abc] for [[a, b], c])

5. Show that Mm,n(R) is a Jordan triple sys-

tem with respect to triple circle multipli-

cation. In other words, show that the two

axioms for Jordan triple systems in Table

4 are satisfied if abc denotes abtc+cbta (a, b

and c denote matrices)

(Use the notation {abc} for abtc+ cbta)



6. Let us write δa,b for the linear process

δa,b(x) = abx

in a Lie triple system. Show that δa,b is a

derivation of the Lie triple system by using

the axioms for Lie triple systems in Table 4.

(Use the notation [abc] for the triple prod-

uct in any Lie triple system, so that, for

example, δa,b(x) is denoted by [abx])

7. Let us write δa,b for the linear process

δa,b(x) = abx− bax

in a Jordan triple system. Show that δa,b is

a derivation of the Jordan triple system by

using the axioms for Jordan triple systems

in Table 4.

(Use the notation {abc} for the triple prod-

uct in any Jordan triple system, so that,

for example, δa,b(x) = {abx} − {bax})



8. On the Jordan algebra Mn(R) with the cir-
cle product a ◦ b = ab + ba, define a triple
product

{abc} = (a ◦ b) ◦ c+ (c ◦ b) ◦ a− (a ◦ c) ◦ b.

Show that Mn(R) is a Jordan triple system
with this triple product.
Hint: show that {abc} = 2a×b×c+2c×b×a

9. On the vector space Mn(R), define a triple
product 〈abc〉 = abc (matrix multiplication
without the transpose in the middle). For-
mulate the definition of a derivation of the
resulting triple system, and state and prove
a result corresponding to Proposition 5. Is
this triple system associative?

10. In an associative algebra, define a triple
product 〈abc〉 to be (ab)c. Show that the
algebra becomes an associative triple sys-
tem with this triple product.

11. In an associative triple system with triple
product denoted 〈abc〉, define a binary prod-
uct ab to be 〈aub〉, where u is a fixed el-
ement. Show that the triple system be-
comes an associative algebra with this prod-
uct.



12. In a Lie algebra with product denoted by

[a, b], define a triple product [abc] to be

[[a, b], c]. Show that the Lie algebra be-

comes a Lie triple system with this triple

product.

13. Let A be an algebra (associative, Lie, or

Jordan; it doesn’t matter). Show that the

set D := Der (A) of all derivations of A is a

Lie subalgebra of End (A). That is D is a

linear subspace of the vector space of linear

transformations on A, and if D1, D2 ∈ D,

then D1D2 −D2D1 ∈ D.

14. Let A be a triple system (associative, Lie,

or Jordan; it doesn’t matter). Show that

the set D := Der (A) of derivations of A is

a Lie subalgebra of End (A). That is D is a

linear subspace of the vector space of linear

transformations on A, and if D1, D2 ∈ D,

then D1D2 −D2D1 ∈ D.

END OF REVIEW OF PART II



GRADUS AD PARNASSUM

PART III

ALGEBRAS AND TRIPLE SYSTEMS

(SNEAK PREVIEW)

1. In an arbitrary Jordan triple system, with

triple product denoted by {abc}, define a

triple product by

[abc] = {abc} − {bac}.

Show that the Jordan triple system be-

comes a Lie triple system with this new

triple product.

2. In an arbitrary associative triple system,

with triple product denoted by 〈abc〉, de-

fine a triple product by

[xyz] = 〈xyz〉 − 〈yxz〉 − 〈zxy〉+ 〈zyx〉.

Show that the associative triple system be-

comes a Lie triple system with this new

triple product.



3. In an arbitrary Jordan algebra, with prod-

uct denoted by xy, define a triple product

by [xyz] = x(yz) − y(xz). Show that the

Jordan algebra becomes a Lie triple sys-

tem with this new triple product.

4. In an arbitrary Jordan triple system, with

triple product denoted by {abc}, fix an ele-

ment y and define a binary product by

ab = {ayb}.

Show that the Jordan triple system be-

comes a Jordan algebra with this (binary)

product.

5. In an arbitrary Jordan algebra with multipli-

cation denoted by ab, define a triple prod-

uct

{abc} = (ab)c+ (cb)a− (ac)b.

Show that the Jordan algebra becomes a

Jordan triple system with this triple prod-

uct. (cf. Problem 8)



6. Show that every Lie triple system, with

triple product denoted [abc] is a subspace

of some Lie algebra, with product denoted

[a, b], such that [abc] = [[a, b], c].

7. Find out what a semisimple associative al-

gebra is and prove that every derivation

of a finite dimensional semisimple associa-

tive algebra is inner, that is, of the form

x 7→ ax−xa for some fixed a in the algebra.

8. Find out what a semisimple Lie algebra is

and prove that every derivation of a finite

dimensional semisimple Lie algebra is inner,

that is, of the form x 7→ [a, x] for some fixed

a in the algebra.

9. Find out what a semisimple Jordan alge-

bra is and prove that every derivation of

a finite dimensional semisimple Jordan al-

gebra is inner, that is, of the form x 7→∑n
i=1(ai(bix) − bi(aix)) for some fixed ele-

ments a1, . . . , an and b1, . . . , bn in the alge-

bra.



10. Find out what a semisimple associative triple

system is and prove that every derivation

of a finite dimensional semisimple associa-

tive triple system is inner, that is, of the

form x 7→
∑n
i=1(〈aibix〉 − 〈biaix〉) for some

fixed elements a1, . . . , an and b1, . . . , bn in

the associative triple system.

11. Find out what a semisimple Lie triple sys-

tem is and prove that every derivation of

a finite dimensional semisimple Lie triple

system is inner, that is, of the form x 7→∑n
i=1[aibix] for some fixed elements a1, . . . , an

and b1, . . . , bn in the Lie triple system.

12. Find out what a semisimple Jordan triple

system is and prove that every derivation

of a finite dimensional semisimple Jordan

triple system is inner, that is, of the form

x 7→
∑n
i=1({aibix} − {biaix}) for some fixed

elements a1, . . . , an and b1, . . . , bn in the Jor-

dan triple system.



3. WHAT IS A MODULE?

The American Heritage Dictionary of the

English Language, Fourth Edition 2009.

1. A standard or unit of measurement.

2. Architecture The dimensions of a struc-

tural component, such as the base of a

column, used as a unit of measurement or

standard for determining the proportions of

the rest of the construction.

3. Visual Arts/Furniture A standardized, of-

ten interchangeable component of a sys-

tem or construction that is designed for

easy assembly or flexible use: a sofa con-

sisting of two end modules.

4. Electronics A self-contained assembly of

electronic components and circuitry, such

as a stage in a computer, that is installed

as a unit.



5. Computer Science A portion of a pro-

gram that carries out a specific function

and may be used alone or combined with

other modules of the same program.

6. Astronautics A self-contained unit of a

spacecraft that performs a specific task or

class of tasks in support of the major func-

tion of the craft.

7. Education A unit of education or instruc-

tion with a relatively low student-to-teacher

ratio, in which a single topic or a small sec-

tion of a broad topic is studied for a given

period of time.

8. Mathematics A system with scalars com-

ing from a ring.



Nine Zulu Queens Ruled China

• Mathematicians think of numbers as a set

of nested Russian dolls. The inhabitants of

each Russian doll are honorary inhabitants

of the next one out.

N ⊂ Z ⊂ Q ⊂ R ⊂ C

• In N you can’t subtract; in Z you can’t

divide; in Q you can’t take limits; in R you

can’t take the square root of a negative

number. With the complex numbers C,

nothing is impossible. You can even raise

a number to a complex power.

• Z is a ring

• Q,R,C are fields

• Qn is a vector space over Q

• Rn is a vector space over R

• Cn is a vector space over C



A field is a commutative ring with iden-

tity element 1 such that for every nonzero

element x, there is an element called x−1

such that

xx−1 = 1

A vector space over a field F (called the

field of scalars) is a set V with an addition

+ which is commutative and associative

and has a zero element and for which there

is a “scalar” product ax in V for each a

in F and x in V , satisfying the following

properties for arbitrary elements a, b in F

and x, y in V :

1. (a+ b)x = ax+ bx

2. a(x+ y) = ax+ ay

3. a(bx) = (ab)x

4. 1x = x



In abstract algebra, the concept of a module

over a ring is a generalization of the notion of

vector space, wherein the corresponding

scalars are allowed to lie in an arbitrary ring.

Modules also generalize the notion of abelian

groups, which are modules over the ring of

integers.

Thus, a module, like a vector space, is an

additive abelian group; a product is defined

between elements of the ring and elements of

the module, and this multiplication is

associative (when used with the

multiplication in the ring) and distributive.



Modules are very closely related to the

representation theory

of groups and of other algebraic structures.

They are also one of the central notions of

commutative algebra

and

homological algebra,

and are used widely in

algebraic geometry

and

algebraic topology.



The traditional division of mathematics into

subdisciplines:

Arithmetic (whole numbers)

Geometry (figures)

Algebra (abstract symbols)

Analysis (limits).



MATHEMATICS SUBJECT CLASSIFICATION

(AMERICAN MATHEMATICAL SOCIETY)

00-XX General

01-XX History and biography

03-XX Mathematical logic and foundations

05-XX Combinatorics

06-XX Lattices, ordered algebraic structures

08-XX General algebraic systems

11-XX Number Theory

12-XX Field theory and polynomials

13-XX COMMUTATIVE ALGEBRA

14-XX ALGEBRAIC GEOMETRY

15-XX Linear algebra; matrix theory

16-XX Associative rings and algebras

16-XX REPRESENTATION THEORY

17-XX Nonassociative rings and algebras

18-XX Category theory;

18-XX HOMOLOGICAL ALGEBRA

19-XX K-theory

20-XX Group theory and generalizations

20-XX REPRESENTATION THEORY

22-XX Topological groups, Lie groups



26-XX Real functions

28-XX Measure and integration

30-XX Complex Function Theory

31-XX Potential theory

32-XX Several complex variables

33-XX Special functions

34-XX Ordinary differential equations

35-XX Partial differential equations

37-XX Dynamical systems, ergodic theory

39-XX Difference and functional equations

40-XX Sequences, series, summability

41-XX Approximations and expansions

42-XX Harmonic analysis on Euclidean spaces

43-XX Abstract harmonic analysis

44-XX Integral transforms

45-XX Integral equations

46-XX Functional analysis

47-XX Operator theory

49-XX Calculus of variations, optimal control

51-XX Geometry

52-XX Convex and discrete geometry

53-XX Differential geometry

54-XX General topology



55-XX ALGEBRAIC TOPOLOGY

57-XX Manifolds and cell complexes

58-XX Global analysis, analysis on manifolds

60-XX Probability theory

62-XX Statistics

65-XX Numerical analysis

68-XX Computer science

70-XX Mechanics of particles and systems

74-XX Mechanics of deformable solids

76-XX Fluid mechanics

78-XX Optics, electromagnetic theory

80-XX Classical thermodynamics, heat

81-XX Quantum theory

82-XX Statistical mechanics, matter

83-XX Relativity and gravitational theory

85-XX Astronomy and astrophysics

86-XX Geophysics

90-XX Operations research

91-XX Game theory, economics

92-XX Biology and other natural sciences

93-XX Systems theory; control

94-XX Information and communication

97-XX Mathematics education



MOTIVATION

In a vector space, the set of scalars forms

a field and acts on the vectors by scalar mul-

tiplication, subject to certain axioms such as

the distributive law. In a module, the scalars

need only be a ring, so the module concept

represents a significant generalization.

In commutative algebra, it is important that

both ideals and quotient rings are modules, so

that many arguments about ideals or quotient

rings can be combined into a single argument

about modules.

In non-commutative algebra the distinction

between left ideals, ideals, and modules be-

comes more pronounced, though some impor-

tant ring theoretic conditions can be expressed

either about left ideals or left modules.



Much of the theory of modules consists of

extending as many as possible of the desir-

able properties of vector spaces to the realm

of modules over a ”well-behaved” ring, such

as a principal ideal domain.

However, modules can be quite a bit more

complicated than vector spaces; for instance,

not all modules have a basis, and even those

that do, free modules, need not have a unique

rank if the underlying ring does not satisfy the

invariant basis number condition.

Vector spaces always have a basis whose car-

dinality is unique (assuming the axiom of choice).



FORMAL DEFINITION

A left R-module M over the ring R consists

of an abelian group (M, +) and an operation

R×M →M such that for all r,s in R, x,y in M,

we have:

r(x+ y) = rx+ ry

(r + s)x = rx+ sx

(rs)x = r(sx)

1x = x

if R has multiplicative identity 1.

The operation of the ring on M is called scalar

multiplication, and is usually written by juxta-

position, i.e. as rx for r in R and x in M.



If one writes the scalar action as fr so that

fr(x) = rx, and f for the map which takes each

r to its corresponding map fr, then the first

axiom states that every fr is a group homo-

morphism of M, and the other three axioms

assert that the map f:R → End(M) given by

r 7→ fr is a ring homomorphism from R to the

endomorphism ring End(M).

In this sense, module theory generalizes rep-

resentation theory, which deals with group ac-

tions on vector spaces.

A bimodule is a module which is a left mod-

ule and a right module such that the two mul-

tiplications are compatible.



EXAMPLES

1. If K is a field, then the concepts ”K-vector

space” (a vector space over K) and K-

module are identical.

2. The concept of a Z-module agrees with the

notion of an abelian group. That is, every

abelian group is a module over the ring of

integers Z in a unique way. For n ≥ 0, let

nx = x + x + ... + x (n summands), 0x =

0, and (-n)x = -(nx). Such a module need

not have a basis

3. If R is any ring and n a natural number,

then the cartesian product Rn is both a left

and a right module over R if we use the

component-wise operations. Hence when

n = 1, R is an R-module, where the scalar

multiplication is just ring multiplication. The

case n = 0 yields the trivial R-module 0

consisting only of its identity element. Mod-

ules of this type are called free



4. If S is a nonempty set, M is a left R-

module, and MS is the collection of all

functions f : S → M, then with addition

and scalar multiplication in MS defined by

(f + g)(s) = f(s) + g(s) and (rf)(s) =

rf(s), MS is a left R-module. The right

R-module case is analogous. In particu-

lar, if R is commutative then the collection

of R-module homomorphisms h : M → N

(see below) is an R-module (and in fact a

submodule of NM).

5. The square n-by-n matrices with real en-

tries form a ring R, and the Euclidean space

Rn is a left module over this ring if we de-

fine the module operation via matrix mul-

tiplication. If R is any ring and I is any

left ideal in R, then I is a left module over

R. Analogously of course, right ideals are

right modules.

6. There are modules of a Lie algebra as well.



SUBMODULES AND HOMOMORPHISMS

Suppose M is a left R-module and N is a

subgroup of M. Then N is a submodule

(or R-submodule, to be more explicit) if,

for any n in N and any r in R, the product

r n is in N (or nr for a right module).

If M and N are left R-modules, then a map

f : M → N is a homomorphism of R-

modules if, for any m, n in M and r, s in

R, f(rm + sn) = rf(m) + sf(n).

This, like any homomorphism of mathe-

matical objects, is just a mapping which

preserves the structure of the objects. An-

other name for a homomorphism of mod-

ules over R is an R-linear map.



A bijective module homomorphism is an

isomorphism of modules, and the two

modules are called isomorphic.

Two isomorphic modules are identical for

all practical purposes, differing solely in the

notation for their elements.

The kernel of a module homomorphism f :

M → N is the submodule of M consisting

of all elements that are sent to zero by f.

The isomorphism theorems familiar from

groups and vector spaces are also valid for

R-modules.



TYPES OF MODULES

(a) Finitely generated A module M is finitely
generated if there exist finitely many el-
ements x1, . . . xn in M such that every
element of M is a linear combination
of those elements with coefficients from
the scalar ring R.

(b) Cyclic module A module is called a
cyclic module if it is generated by one
element.

(c) Free A free module is a module that
has a basis, or equivalently, one that is
isomorphic to a direct sum of copies of
the scalar ring R. These are the mod-
ules that behave very much like vector
spaces.

(d) Projective Projective modules are di-
rect summands of free modules and share
many of their desirable properties.

(e) Injective Injective modules are defined
dually to projective modules.

(f) Flat A module is called flat if taking
the tensor product of it with any short
exact sequence of R modules preserves
exactness.



(g) Simple A simple module S is a module

that is not 0 and whose only submod-

ules are 0 and S. Simple modules are

sometimes called irreducible.

(h) Semisimple A semisimple module is a

direct sum (finite or not) of simple mod-

ules. Historically these modules are also

called completely reducible.

(i) Indecomposable An indecomposable mod-

ule is a non-zero module that cannot be

written as a direct sum of two non-zero

submodules. Every simple module is in-

decomposable, but there are indecom-

posable modules which are not simple

(e.g. uniform modules).

(j) Faithful A faithful module M is one where

the action of each r 6= 0 in R on M is

nontrivial (i.e. rx 6= 0 for some x in M).

Equivalently, the annihilator of M is the

zero ideal.

(k) Noetherian. A Noetherian module is

a module which satisfies the ascending

chain condition on submodules, that is,



every increasing chain of submodules be-

comes stationary after finitely many steps.

Equivalently, every submodule is finitely

generated.

(l) Artinian An Artinian module is a mod-

ule which satisfies the descending chain

condition on submodules, that is, ev-

ery decreasing chain of submodules be-

comes stationary after finitely many steps.

(m) Graded A graded module is a module

decomposable as a direct sum M = ⊕xMx

over a graded ring R = ⊕xRx such that

RxMy ⊂Mx+y for all x and y.

(n) Uniform A uniform module is a module

in which all pairs of nonzero submodules

have nonzero intersection.



RELATION TO REPRESENTATION

THEORY

If M is a left R-module, then the action

of an element r in R is defined to be the

map M → M that sends each x to rx (or

xr in the case of a right module), and is

necessarily a group endomorphism of the

abelian group (M,+).

The set of all group endomorphisms of M is

denoted EndZ(M) and forms a ring under

addition and composition, and sending a

ring element r of R to its action actually

defines a ring homomorphism from R to

EndZ(M).



Such a ring homomorphism R → EndZ(M)

is called a representation of R over the

abelian group M; an alternative and equiv-

alent way of defining left R-modules is to

say that a left R-module is an abelian group

M together with a representation of R over

it.

A representation is called faithful if and

only if the map R → EndZ(M) is injective.

In terms of modules, this means that if r

is an element of R such that rx=0 for all x

in M, then r=0.

END OF “MODULE” ON MODULES



4. DERIVATIONS INTO A MODULE

CONTEXTS

(i) ASSOCIATIVE ALGEBRAS

(ii) JORDAN ALGEBRAS

(iii) JORDAN TRIPLE SYSTEMS

Could also consider:

(ii’) LIE ALGEBRAS

(iii’)LIE TRIPLE SYSTEMS

(i’)ASSOCIATIVE TRIPLE SYSTEMS



(i) ASSOCIATIVE ALGEBRAS

derivation: D(ab) = a ·Db+Da · b

inner derivation: ad x(a) = x · a− a · x
(x ∈M)

THEOREM (Noether,Wedderburn)

(early 20th century))

EVERY DERIVATION OF SEMISIMPLE

ASSOCIATIVE ALGEBRA IS INNER,

THAT IS, OF THE FORM x 7→ ax− xa
FOR SOME a IN THE ALGEBRA

THEOREM (Hochschild 1942)

EVERY DERIVATION OF SEMISIMPLE

ASSOCIATIVE ALGEBRA INTO A

MODULE IS INNER, THAT IS, OF THE

FORM x 7→ ax− xa FOR SOME a IN

THE MODULE



(ii) JORDAN ALGEBRAS

derivation: D(a ◦ b) = a ◦Db+Da ◦ b

inner derivation:∑
i[L(xi)L(ai)− L(ai)L(xi)]

(xi ∈M,ai ∈ A)

b 7→
∑
i[xi ◦ (ai ◦ b)− ai ◦ (xi ◦ b)]

THEOREM (1949-Jacobson)

EVERY DERIVATION OF A FINITE

DIMENSIONAL SEMISIMPLE JORDAN

ALGEBRA INTO ITSELF IS INNER

THEOREM (1951-Jacobson)

EVERY DERIVATION OF A FINITE

DIMENSIONAL SEMISIMPLE JORDAN

ALGEBRA INTO A (JORDAN)

MODULE IS INNER

(Lie algebras, Lie triple systems)



(iii) JORDAN TRIPLE SYSTEMS

derivation:

D{a, b, c} = {Da.b, c}+ {a,Db, c}+ {a, b,Dc}

{x, y, z} = (xy∗z + zy∗x)/2

inner derivation:
∑
i[L(xi, ai)− L(ai, xi)]

(xi ∈M,ai ∈ A)

b 7→
∑
i[{xi, ai, b} − {ai, xi, b}]

THEOREM (1972 Meyberg)

EVERY DERIVATION OF A FINITE

DIMENSIONAL SEMISIMPLE JORDAN

TRIPLE SYSTEM IS INNER

(Lie algebras, Lie triple systems)

THEOREM (1978 Kühn-Rosendahl)

EVERY DERIVATION OF A FINITE

DIMENSIONAL SEMISIMPLE JORDAN

TRIPLE SYSTEM INTO A JORDAN

TRIPLE MODULE IS INNER

(Lie algebras)



(i’) ASSOCIATIVE TRIPLE

SYSTEMS

derivation:

D(abtc) = abtDc+ a(Db)tc+ (Da)btc

inner derivation: see Table 3

The (non-module) result can be derived

from the result for Jordan triple systems.

(See an exercise)

THEOREM (1976 Carlsson)

EVERY DERIVATION OF A FINITE

DIMENSIONAL SEMISIMPLE

ASSOCIATIVE TRIPLE SYSTEM INTO

A MODULE IS INNER

(Lie algebras)



(ii’) LIE ALGEBRAS

THEOREM (Zassenhaus)

(early 20th century)

EVERY DERIVATION OF A FINITE

DIMENSIONAL SEMISIMPLE LIE

ALGEBRA INTO ITSELF IS INNER

THEOREM (Hochschild 1942)

EVERY DERIVATION OF A FINITE

DIMENSIONAL SEMISIMPLE LIE

ALGEBRA INTO A MODULE IS INNER



(ii’) LIE TRIPLE SYSTEMS

THEOREM (Lister 1952)

EVERY DERIVATION OF A FINITE

DIMENSIONAL SEMISIMPLE LIE

TRIPLE SYSTEM INTO ITSELF IS

INNER

THEOREM (Harris 1961)

EVERY DERIVATION OF A FINITE

DIMENSIONAL SEMISIMPLE LIE

TRIPLE SYSTEM INTO A MODULE IS

INNER



Table 1 Mn(R) (ALGEBRAS)

associative Lie Jordan
ab = a× b [a, b] = ab− ba a ◦ b = ab+ ba

Noeth,Wedd Zassenhaus Jacobson
1920 1930 1949

Hochschild Hochschild Jacobson
1942 1942 1951

Table 3 Mm,n(R) (TRIPLE SYSTEMS)

associative Lie Jordan
triple triple triple
abtc [[a, b], c] abtc+ cbta

Lister Meyberg
1952 1972

Carlsson Harris Kühn-Rosendahl
1976 1961 1978


