DERIVATIONS

Introduction to non-associative algebra
 OR

Playing havoc with the product rule?

PART VI-COHOMOLOGY OF LIE ALGEBRAS

BERNARD RUSSO
University of California, Irvine

FULLERTON COLLEGE
DEPARTMENT OF MATHEMATICS MATHEMATICS COLLOQUIUM

$$
\text { MARCH 7, } 2013
$$

THIS PAGE PURPOSELY LEFT BLANK

HISTORY OF THESE LECTURES
PART I
ALGEBRAS
FEBRUARY 8, 2011
PART II
TRIPLE SYSTEMS
JULY 21, 2011
PART III
MODULES AND DERIVATIONS
FEBRUARY 28, 2012
PART IV
COHOMOLOGY OF ASSOCIATIVE ALGEBRAS
JULY 26, 2012
PART V
MEANING OF THE SECOND
COHOMOLOGY GROUP
OCTOBER 25, 2012
PART VI
COHOMOLOGY OF LIE ALGEBRAS MARCH 7, 2013

OUTLINE OF TODAY'S TALK

1. DERIVATIONS ON ALGEBRAS
(FROM FEBRUARY 8, 2011)
2. SET THEORY and GROUPS (EQUIVALENCE CLASSES and QUOTIENT GROUPS)
(FROM OCTOBER 25, 2012)
3. FIRST COHOMOLOGY GROUP (FROM JULY 26, 2012)
4. SECOND COHOMOLOGY GROUP
5. COHOMOLOGY OF LIE ALGEBRAS

PART I: REVIEW OF ALGEBRAS

AXIOMATIC APPROACH

AN ALGEBRA IS DEFINED TO BE A SET (ACTUALLY A VECTOR SPACE) WITH TWO BINARY OPERATIONS, CALLED ADDITION AND MULTIPLICATION

ADDITION IS DENOTED BY $a+b$
AND IS REQUIRED TO BE COMMUTATIVE AND ASSOCIATIVE $a+b=b+a, \quad(a+b)+c=a+(b+c)$

MULTIPLICATION IS DENOTED BY $a b$

AND IS REQUIRED TO BE DISTRIBUTIVE WITH RESPECT TO ADDITION
$(a+b) c=a c+b c, \quad a(b+c)=a b+a c$

AN ALGEBRA IS SAID TO BE
ASSOCIATIVE (RESP. COMMUTATIVE) IF
THE MULTIPLICATION IS ASSOCIATIVE (RESP. COMMUTATIVE)
(RECALL THAT ADDITION IS ALWAYS COMMUTATIVE AND ASSOCIATIVE)

Table 2

ALGEBRAS

commutative algebras

$$
a b=b a
$$

associative algebras $a(b c)=(a b) c$

Lie algebras
$a^{2}=0$
$(a b) c+(b c) a+(c a) b=0$
Jordan algebras

$$
\begin{aligned}
a b & =b a \\
a\left(a^{2} b\right) & =a^{2}(a b)
\end{aligned}
$$

THIS PAGE PURPOSELY LEFT BLANK

DERIVATIONS ON THE SET OF MATRICES

THE SET $M_{n}(\mathbf{R})$ of n by n MATRICES IS AN ALGEBRA UNDER
MATRIX ADDITION
$$
A+B
$$
AND

MATRIX MULTIPLICATION
$A \times B$
WHICH IS ASSOCIATIVE BUT NOT commutative.

DEFINITION 2
A DERIVATION ON $M_{n}(\mathbf{R})$ WITH
RESPECT TO MATRIX MULTIPLICATION IS A LINEAR PROCESS δ WHICH SATISFIES THE PRODUCT RULE
$$
\delta(A \times B)=\delta(A) \times B+A \times \delta(B)
$$

PROPOSITION 2
FIX A MATRIX A in $M_{n}(\mathbf{R})$ AND DEFINE

$$
\delta_{A}(X)=A \times X-X \times A
$$

THEN δ_{A} IS A DERIVATION WITH RESPECT TO MATRIX MULTIPLICATION (WHICH CAN BE NON-ZERO)

THEOREM 2
(1942 Hochschild)

EVERY DERIVATION ON $M_{n}(\mathbf{R})$ WITH RESPECT TO MATRIX MULTIPLICATION IS OF THE FORM δ_{A} FOR SOME A IN $M_{n}(\mathbf{R})$.

Gerhard Hochschild (1915-2010)

Gerhard Paul Hochschild was an American mathematician who worked on Lie groups, algebraic groups, homological algebra and algebraic number theory.

THIS PAGE PURPOSELY LEFT BLANK

THE BRACKET PRODUCT ON THE SET OF MATRICES

THE BRACKET PRODUCT ON THE SET $M_{n}(\mathrm{R})$ OF MATRICES IS DEFINED BY

$$
[X, Y]=X \times Y-Y \times X
$$

THE SET $M_{n}(\mathbf{R})$ of n by n MATRICES IS AN ALGEBRA UNDER MATRIX ADDITION AND BRACKET MULTIPLICATION, WHICH IS NOT ASSOCIATIVE AND NOT COMMUTATIVE.

DEFINITION 3

A DERIVATION ON $M_{n}(\mathbf{R})$ WITH RESPECT TO BRACKET MULTIPLICATION

IS A LINEAR PROCESS δ WHICH
SATISFIES THE PRODUCT RULE

$$
\delta([A, B])=[\delta(A), B]+[A, \delta(B)]
$$

PROPOSITION 3
FIX A MATRIX A in $M_{n}(\mathbf{R})$ AND DEFINE

$$
\delta_{A}(X)=[A, X]=A \times X-X \times A .
$$

THEN δ_{A} IS A DERIVATION WITH RESPECT TO BRACKET MULTIPLICATION

THEOREM 3

(1942 Hochschild, Zassenhaus)
EVERY DERIVATION ON $M_{n}(\mathbf{R})$ WITH RESPECT TO BRACKET MULTIPLICATION IS OF THE FORM δ_{A} FOR SOME A IN $M_{n}(\mathbf{R})$.

Hans Zassenhaus (1912-1991)

Hans Julius Zassenhaus was a German mathematician, known for work in many parts of abstract algebra, and as a pioneer of computer algebra.

THIS PAGE PURPOSELY LEFT BLANK

the circle product on the set OF MATRICES

THE CIRCLE PRODUCT ON THE SET $M_{n}(\mathrm{R})$ OF MATRICES IS DEFINED BY

$$
X \circ Y=(X \times Y+Y \times X) / 2
$$

THE SET $M_{n}(\mathbf{R})$ of n by n MATRICES IS AN ALGEBRA UNDER MATRIX ADDITION AND CIRCLE MULTIPLICATION, WHICH IS COMMUTATIVE BUT NOT ASSOCIATIVE.

DEFINITION 4

A DERIVATION ON $M_{n}(\mathbf{R})$ WITH RESPECT TO CIRCLE MULTIPLICATION

IS A LINEAR PROCESS δ WHICH
SATISFIES THE PRODUCT RULE

$$
\delta(A \circ B)=\delta(A) \circ B+A \circ \delta(B)
$$

PROPOSITION 4

FIX A MATRIX A in $M_{n}(\mathbf{R})$ AND DEFINE

$$
\delta_{A}(X)=A \times X-X \times A
$$

THEN δ_{A} IS A DERIVATION WITH RESPECT TO CIRCLE MULTIPLICATION

THEOREM 4
(1972-Sinclair)
EVERY DERIVATION ON $M_{n}(\mathbf{R})$ WITH
RESPECT TO CIRCLE MULTIPLICATION
IS OF THE FORM δ_{A} FOR SOME A IN $M_{n}(\mathbf{R})$.

REMARK
(1937-Jacobson)
THE ABOVE PROPOSITION AND
THEOREM NEED TO BE MODIFIED FOR
THE SUBALGEBRA (WITH RESPECT TO
CIRCLE MULTIPLICATION) OF SYMMETRIC MATRICES.

Alan M. Sinclair (retired)

Nathan Jacobson (1910-1999)

Nathan Jacobson was an American mathematician who was recognized as one of the leading algebraists of his generation, and he was also famous for writing more than a dozen standard monographs.

Table 1
$M_{n}(\mathrm{R})$ (ALGEBRAS)

matrix	bracket	circle
$a b=a \times b$	$[a, b]=a b-b a$	$a \circ b=a b+b a$
Th. 2	Th.3	Th.4
$\delta_{a}(x)$	$\delta_{a}(x)$	$\delta_{a}(x)$
$=$	$=$	$=$
$a x-x a$	$a x-x a$	$a x-x a$

THIS PAGE PURPOSELY LEFT BLANK

PART 2 OF TODAY'S TALK

A partition of a set X is a disjoint class $\left\{X_{i}\right\}$ of non-empty subsets of X whose union is X

- $\{1,2,3,4,5\}=\{1,3,5\} \cup\{2,4\}$
- $\{1,2,3,4,5\}=\{1\} \cup\{2\} \cup\{3,5\} \cup\{4\}$
- $\mathbf{R}=\mathbf{Q} \cup(\mathbf{R}-\mathbf{Q})$
- $\mathbf{R}=\cdots \cup[-2,-1) \cup[-1,0) \cup[0,1) \cup \cdots$

A binary relation on the set X is a subset R of $X \times X$. For each ordered pair

$$
(x, y) \in X \times X,
$$

x is said to be related to y if $(x, y) \in R$.

- $R=\{(x, y) \in \mathbf{R} \times \mathbf{R}: x<y\}$
- $R=\{(x, y) \in \mathbf{R} \times \mathbf{R}: y=\sin x\}$
- For a partition $X=\cup_{i} X_{i}$ of a set X, let $R=\left\{(x, y) \in X \times X: x, y \in X_{i}\right.$ for some $\left.i\right\}$

An equivalence relation on a set X is a relation $R \subset X \times X$ satisfying
reflexive $(x, x) \in R$
symmetric $(x, y) \in R \Rightarrow(y, x) \in R$
transitive $(x, y),(y, z) \in R \Rightarrow(x, z) \in R$
There is a one to one correspondence between equivalence relations on a set X and partitions of that set.

NOTATION

- If R is an equivalence relation we denote $(x, y) \in R$ by $x \sim y$.
- The equivalence class containing x is denoted by $[x]$. Thus

$$
[x]=\{y \in X: x \sim y\} .
$$

EXAMPLES

- equality: $R=\{(x, x): x \in X\}$
- equivalence class of fractions
= rational number:

$$
R=\left\{\left(\frac{a}{b}, \frac{c}{d}\right): a, b, c, d \in \mathbf{Z}, b \neq 0, d \neq 0, a d=b c\right\}
$$

- equipotent sets: X and Y are equivalent if there exists a function $f: X \rightarrow Y$ which is one to one and onto.
- half open interval of length one:

$$
R=\{(x, y) \in \mathbf{R} \times \mathbf{R}: x-y \text { is an integer }\}
$$

- integers modulo n :
$R=\{(x, y) \in \mathbf{N} \times \mathbf{N}: x-y$ is divisible by $n\}$

THIS PAGE PURPOSELY LEFT BLANK

PART 2 OF TODAY'S TALK (continued)

A group is a set G together with an operation (called multiplication) which associates with each ordered pair x, y of elements of G a third element in G (called their product and written $x y$) in such a manner that

- multiplication is associative: $(x y) z=x(y z)$
- there exists an element e in G, called the identity element with the property that

$$
x e=e x=x \text { for all } x
$$

- to each element x, there corresponds another element in G, called the inverse of x and written x^{-1}, with the property that

$$
x x^{-1}=x^{-1} x=e
$$

TYPES OF GROUPS

- commutative groups: $x y=y x$
- finite groups $\left\{g_{1}, g_{2}, \cdots, g_{n}\right\}$
- infinite groups $\left\{g_{1}, g_{2}, \cdots, g_{n}, \cdots\right\}$
- cyclic groups $\left\{e, a, a^{2}, a^{3}, \ldots\right\}$

EXAMPLES

1. $\mathbf{R},+, 0, x^{-1}=-x$
2. positive real numbers, $\times, 1, x^{-1}=1 / x$
3. \mathbf{R}^{n},vector addition, $(0, \cdots, 0)$,

$$
\left(\mathrm{x}_{1}, \cdots, x_{n}\right)^{-1}=\left(-x_{1}, \cdots,-x_{n}\right)
$$

4. $\mathcal{C},+, 0, f^{-1}=-f$
5. $\{0,1,2, \cdots, m-1\}$, addition modulo $m, 0$, $k^{-1}=m-k$
6. permutations (=one to one onto functions), composition, identity permutation, inverse permutation
7. $M_{n}(\mathbf{R}),+, 0, \mathrm{~A}^{-1}=\left[-a_{i j}\right]$
8. non-singular matrices, matrix multiplication, identity matrix, matrix inverse

Which of these are commutative, finite, infinite?

We shall consider only commutative groups and we shall denote the multiplication by + , the identity by 0 , and inverse by -. No confusion should result.

> ALERT
> Counterintuitively, a very important (commutative) group is a group with one element

Let H be a subgroup of a commutative group G. That is, H is a subset of G and is a group under the same $+, 0,-$ as G.

Define an equivalence relations on G as follows: $x \sim y$ if $x-y \in H$.

The set of equivalence classes is a group under the definition of addition given by

$$
[x]+[y]=[x+y] .
$$

This group is denoted by G / H and is called the quotient group of G by H.

Special cases:

$$
\begin{aligned}
H & =\{e\} ; G / H=G \text { (isomorphic) } \\
H & =G ; G / H=\{e\} \text { (isomorphic) }
\end{aligned}
$$

EXAMPLES

1. $G=\mathbf{R},+, 0, x^{-1}=-x$;

$$
H=\mathbf{Z} \text { or } H=\mathbf{Q}
$$

2. \mathbf{R}^{n}, vector addition, $(0, \cdots, 0)$,
$\left(\mathrm{X}_{1}, \cdots, x_{n}\right)^{-1}=\left(-x_{1}, \cdots,-x_{n}\right) ;$ $H=\mathbf{Z}^{n}$ or $H=\mathbf{Q}^{n}$
3. $\mathcal{C},+, 0, f^{-1}=-f$;
$H=\mathcal{D}$ or $H=$ polynomials
4. $M_{n}(\mathbf{R}),+, 0, \mathrm{~A}^{-1}=\left[-a_{i j}\right]$;
$H=$ symmetric matrices, or $H=$ anti-symmetric matrices

THIS PAGE PURPOSELY LEFT BLANK

PART 3 OF TODAY'S TALK

The basic formula of homological algebra

$$
\begin{gathered}
F\left(x_{1}, \ldots, x_{n}, x_{n+1}\right)= \\
x_{1} f\left(x_{2}, \ldots, x_{n+1}\right) \\
-f\left(x_{1} x_{2}, x_{3}, \ldots, x_{n+1}\right) \\
+f\left(x_{1}, x_{2} x_{3}, x_{4}, \ldots, x_{n+1}\right) \\
-\ldots \\
\pm f\left(x_{1}, x_{2}, \ldots, x_{n} x_{n+1}\right) \\
\mp f\left(x_{1}, \ldots, x_{n}\right) x_{n+1}
\end{gathered}
$$

OBSERVATIONS

- n is a positive integer, $n=1,2, \cdots$
- f is a function of n variables
- F is a function of $n+1$ variables
- $x_{1}, x_{2}, \cdots, x_{n+1}$ belong an algebra A
- $f\left(y_{1}, \ldots, y_{n}\right)$ and $F\left(y_{1}, \cdots, y_{n+1}\right)$ also belong to A

HIERARCHY

- $x_{1}, x_{2}, \ldots, x_{n}$ are points (or vectors)
- f and F are functions- they take points to points
- T, defined by $T(f)=F$ is a transformationtakes functions to functions
- points x_{1}, \ldots, x_{n+1} and $f\left(y_{1}, \ldots, y_{n}\right)$ will belong to an algebra A
- functions f will be either constant, linear or multilinear (hence so will F)
- transformation T is linear

SHORT FORM OF THE FORMULA

$$
\begin{gathered}
(T f)\left(x_{1}, \ldots, x_{n}, x_{n+1}\right) \\
=x_{1} f\left(x_{2}, \ldots, x_{n+1}\right) \\
+\sum_{j=1}^{n}(-1)^{j} f\left(x_{1}, \ldots, x_{j} x_{j+1}, \ldots, x_{n+1}\right) \\
+(-1)^{n+1} f\left(x_{1}, \ldots, x_{n}\right) x_{n+1}
\end{gathered}
$$

FIRST CASES

$$
\underline{n}=0
$$

If f is any constant function from A to A, say, $f(x)=b$ for all x in A, where b is a fixed element of A, we have, consistent with the basic formula,

$$
T_{0}(f)\left(x_{1}\right)=x_{1} b-b x_{1}
$$

$$
\underline{n}=1
$$

If f is a linear map from A to A, then

$$
T_{1}(f)\left(x_{1}, x_{2}\right)=x_{1} f\left(x_{2}\right)-f\left(x_{1} x_{2}\right)+f\left(x_{1}\right) x_{2}
$$

$$
\underline{n}=2
$$

If f is a bilinear map from $A \times A$ to A, then

$$
\begin{gathered}
T_{2}(f)\left(x_{1}, x_{2}, x_{3}\right)= \\
x_{1} f\left(x_{2}, x_{3}\right)-f\left(x_{1} x_{2}, x_{3}\right) \\
+f\left(x_{1}, x_{2} x_{3}\right)-f\left(x_{1}, x_{2}\right) x_{3}
\end{gathered}
$$

Kernel and Image of a linear transformation

- $G: X \rightarrow Y$

Since X and Y are vector spaces, they are in particular, commutative groups.

- Kernel of G (also called nullspace of G) is
ker $G=\{x \in X: G(x)=0\}$
This is a subgroup of X
- Image of G is
$\operatorname{im} G=\{G(x): x \in X\}$
This is a subgroup of Y

What is the kernel of D on \mathcal{D} ?
What is the image of D on \mathcal{D} ?
(Hint: Second Fundamental theorem of calculus)

$$
\text { We now let } G=T_{0}, T_{1}, T_{2}
$$

$$
\underline{G}=T_{0}
$$

$$
\begin{gathered}
X=A \text { (the algebra) } \\
Y=L(A)(\text { all linear transformations on } A) \\
T_{0}(f)\left(x_{1}\right)=x_{1} b-b x_{1} \\
\operatorname{ker} T_{0}=\{b \in A: x b-b x=0 \text { for all } x \in A\} \\
\quad(\text { center of } A)
\end{gathered}
$$

$\operatorname{im} T_{0}=$ the set of all linear maps of A of the form $x \mapsto x b-b x$,
in other words, the set of all inner derivations of A
$\operatorname{ker} T_{0}$ is a subgroup of A
$\operatorname{im} T_{0}$ is a subgroup of $L(A)$

$$
\underline{G}=T_{1}
$$

$X=L(A)$ (linear transformations on A)

$Y=L^{2}(A)$ (bilinear transformations on $A \times A$)

$$
\begin{gathered}
T_{1}(f)\left(x_{1}, x_{2}\right)=x_{1} f\left(x_{2}\right)-f\left(x_{1} x_{2}\right)+f\left(x_{1}\right) x_{2} \\
\operatorname{ker} T_{1}=\left\{f \in L(A): T_{1} f\left(x_{1}, x_{2}\right)=\right. \\
\left.0 \text { for all } x_{1}, x_{2} \in A\right\}=\text { the set of all } \\
\text { derivations of } A
\end{gathered}
$$

$\operatorname{im} T_{1}=$ the set of all bilinear maps of $A \times A$ of the form
$\left(x_{1}, x_{2}\right) \mapsto x_{1} f\left(x_{2}\right)-f\left(x_{1} x_{2}\right)+f\left(x_{1}\right) x_{2}$,
for some linear function $f \in L(A)$.
$\operatorname{ker} T_{1}$ is a subgroup of $L(A)$
$\operatorname{im} T_{1}$ is a subgroup of $L^{2}(A)$

$$
L^{0}(A) \xrightarrow{T_{0}} L(A) \xrightarrow{T_{1}} L^{2}(A) \xrightarrow{T_{2}} L^{3}(A) \cdots
$$

FACTS:

- $T_{1} \circ T_{0}=0$
- $T_{2} \circ T_{1}=0$
- $T_{n+1} \circ T_{n}=0$

Therefore

$$
\begin{gathered}
\operatorname{im} T_{n} \subset \operatorname{ker} T_{n+1} \subset L^{n}(A) \\
\text { and }
\end{gathered}
$$

$\operatorname{im} T_{n}$ is a subgroup of $\operatorname{ker} T_{n+1}$

- $\operatorname{im} T_{0} \subset \operatorname{ker} T_{1}$
says
Every inner derivation is a derivation
- $\operatorname{im} T_{1} \subset \operatorname{ker} T_{2}$
says
for every linear map f, the bilinear map F defined by

$$
F\left(x_{1}, x_{2}\right)=x_{1} f\left(x_{2}\right)-f\left(x_{1} x_{2}\right)+f\left(x_{1}\right) x_{2}
$$

satisfies the equation

$$
\begin{gathered}
x_{1} F\left(x_{2}, x_{3}\right)-F\left(x_{1} x_{2}, x_{3}\right)+ \\
F\left(x_{1}, x_{2} x_{3}\right)-F\left(x_{1}, x_{2}\right) x_{3}=0
\end{gathered}
$$

for every $x_{1}, x_{2}, x_{3} \in A$.

The cohomology groups of A are defined as the quotient groups

$$
\begin{gathered}
H^{n}(A)=\frac{\operatorname{ker} T_{n}}{\operatorname{im} T_{n-1}} \\
(n=1,2, \ldots)
\end{gathered}
$$

Thus

$$
H^{1}(A)=\frac{\operatorname{ker} T_{1}}{\operatorname{im} T_{0}}=\frac{\text { derivations }}{\text { inner derivations }}
$$

$$
H^{2}(A)=\frac{\operatorname{ker} T_{2}}{\operatorname{im} T_{1}}=\frac{?}{?}
$$

The theorem that every derivation of $M_{n}(\mathbf{R})$ is inner (that is, of the form δ_{a} for some $\left.a \in M_{n}(\mathbf{R})\right)$ can now be restated as: "the cohomology group $H^{1}\left(M_{n}(\mathbf{R})\right)$ is the trivial one element group"

$$
\underline{G}=T_{2}
$$

$X=L^{2}(A)$ (bilinear transformations on $A \times A$)

$$
\begin{gathered}
Y=L^{3}(A) \text { (trilinear transformations on } \\
A \times A \times A)
\end{gathered}
$$

$$
\begin{gathered}
T_{2}(f)\left(x_{1}, x_{2}, x_{3}\right)=x_{1} f\left(x_{2}, x_{3}\right)-f\left(x_{1} x_{2}, x_{3}\right)+ \\
f\left(x_{1}, x_{2} x_{3}\right)-f\left(x_{1}, x_{2}\right) x_{3} \\
\operatorname{ker} T_{2}=\left\{f \in L(A): T_{2} f\left(x_{1}, x_{2}, x_{3}\right)=\right. \\
\left.0 \text { for all } x_{1}, x_{2}, x_{3} \in A\right\}=?
\end{gathered}
$$

$\operatorname{im} T_{2}=$ the set of all trilinear maps h of $A \times A \times A$ of the form*

$$
\begin{aligned}
& h\left(x_{1}, x_{2}, x_{3}\right)=x_{1} f\left(x_{2}, x_{3}\right)-f\left(x_{1} x_{2}, x_{3}\right) \\
& \quad+f\left(x_{1}, x_{2} x_{3}\right)-f\left(x_{1}, x_{2}\right) x_{3}
\end{aligned}
$$

for some bilinear function $f \in L^{2}(A)$. $\operatorname{ker} T_{2}$ is a subgroup of $L^{2}(A)$ $\operatorname{im} T_{2}$ is a subgroup of $L^{3}(A)$
*we do not use im T_{2} in what follows

THIS PAGE PURPOSELY LEFT BLANK

PART 4 OF TODAY'S TALK

INTERPRETATION OF THE SECOND
COHOMOLOGY GROUP
(ASSOCIATIVE ALGEBRAS)

THIS PAGE PURPOSELY LEFT BLANK

Homomorphisms of groups

$$
\begin{aligned}
f: G_{1} & \rightarrow G_{2} \text { is a homomorphism if } \\
f(x+y) & =f(x)+f(y)
\end{aligned}
$$

- $f\left(G_{1}\right)$ is a subgroup of G_{2}
- $\operatorname{ker} f$ is a subgroup of G_{1}
- $G_{1} / \operatorname{ker} f$ is isomorphic to $f\left(G_{1}\right)$
(isomorphism $=$
one to one and onto homomorphism)

Homomorphisms of algebras

$h: A_{1} \rightarrow A_{2}$ is a homomorphism if

$$
h(x+y)=h(x)+h(y)
$$

and

$$
h(x y)=h(x) h(y)
$$

- $h\left(A_{1}\right)$ is a subalgebra of A_{2}
- ker h is a subalgebra of A_{1} (actually, an ideal ${ }^{\dagger}$ in A_{1})
- $A_{1} / \operatorname{ker} h$ is isomorphic to $h\left(A_{1}\right)$
(isomorphism $=$ one to one and onto homomorphism)
${ }^{\dagger}$ An ideal in an algebra A is a subalgebra I with the property that $A I \cup I A \subset I$, that is, $x a, a x \in I$ whenever $x \in I$ and $a \in A$

EXTENSIONS

Let A be an algebra. Let M be another algebra which contains an ideal I and let $g: M \rightarrow A$ be a homomorphism.

$$
\begin{aligned}
& \text { In symbols, } \\
& I \xrightarrow[G]{M \xrightarrow{g} A}
\end{aligned}
$$

This is called an extension of A by I if

- $\operatorname{ker} g=I$
- $\operatorname{im} g=A$

It follows that M / I is isomorphic to A

EXAMPLE 1

Let A be an algebra.

Define an algebra $M=A \oplus A$ to be the set $A \times A$ with addition

$$
(a, x)+(b, y)=(a+b, x+y)
$$

and product

$$
(a, x)(b, y)=(a b, x y)
$$

- $\{0\} \times A$ is an ideal in M
- $(\{0\} \times A)^{2} \neq 0$
- $g: M \rightarrow A$ defined by $g(a, x)=a$ is a homomorphism
- M is an extension of $\{0\} \times A$ by A.

EXAMPLE 2

Let A be an algebra and let

$$
h \in \operatorname{ker} T_{2} \subset L^{2}(A) .
$$

Recall that this means that for all

$$
\begin{gathered}
x_{1}, x_{2}, x_{3} \in A, \\
x_{1} f\left(x_{2}, x_{3}\right)-f\left(x_{1} x_{2}, x_{3}\right) \\
+f\left(x_{1}, x_{2} x_{3}\right)-f\left(x_{1}, x_{2}\right) x_{3}=0
\end{gathered}
$$

Define an algebra M_{h} to be the set $A \times A$ with addition

$$
(a, x)+(b, y)=(a+b, x+y)
$$

and the product

$$
(a, x)(b, y)=(a b, a y+x b+h(a, b))
$$

Because $h \in \operatorname{ker} T_{2}$, this algebra is ASSOCIATIVE! whenever A is associative.

THE PLOT THICKENS

- $\{0\} \times A$ is an ideal in M_{h}
- $(\{0\} \times A)^{2}=0$
- $g: M_{h} \rightarrow A$ defined by $g(a, x)=a$ is a homomorphism
- M_{h} is an extension of $\{0\} \times A$ by A.

EQUIVALENCE OF EXTENSIONS

Extensions

$$
\begin{aligned}
& I 乌 M \xrightarrow{g} A \\
& I \hookrightarrow M^{\text {and }} \xrightarrow{g^{\prime}} A
\end{aligned}
$$

are said to be equivalent if

such that

- $\psi(x)=x$ for all $x \in I$
- $g=g^{\prime} \circ \psi$
(Is this an equivalence relation?)

EXAMPLE 2-continued

$$
\text { Let } h_{1}, h_{2} \in \operatorname{ker} T_{2} \text {. }
$$

We then have two extensions of A by $\{0\} \times A$, namely

$$
\begin{gathered}
\{0\} \times A \xrightarrow[G]{ } M_{h_{1}} \xrightarrow{g_{1}} A \\
\text { and } \\
\{0\} \times A 乌 M_{h_{2}} \xrightarrow{g_{2}} A
\end{gathered}
$$

Now suppose that h_{1} is equivalent \ddagger to h_{2},

$$
h_{1}-h_{2}=T_{1} f \text { for some } f \in L(A)
$$

- The above two extensions are equivalent.
- We thus have a mapping from $H^{2}(A, A)$ into the set of equivalence classes of extensions of A by the ideal $\{0\} \times A$
${ }^{\ddagger}$ This is the same as saying that $\left[h_{1}\right]=\left[h_{2}\right]$ as elements of $H^{2}(A, A)=\operatorname{ker} T_{2} / \operatorname{im} T_{1}$

THIS PAGE PURPOSELY LEFT BLANK

PART 5 OF TODAY'S TALK

COHOMOLOGY OF LIE ALGEBRAS

The basic formula of homological algebra (ASSOCIATIVE ALGEBRAS)

$$
\begin{gathered}
F\left(x_{1}, \ldots, x_{n}, x_{n+1}\right)= \\
x_{1} f\left(x_{2}, \ldots, x_{n+1}\right) \\
-f\left(x_{1} x_{2}, x_{3}, \ldots, x_{n+1}\right) \\
+f\left(x_{1}, x_{2} x_{3}, x_{4}, \ldots, x_{n+1}\right) \\
-\cdots \\
\pm f\left(x_{1}, x_{2}, \ldots, x_{n} x_{n+1}\right) \\
\mp f\left(x_{1}, \ldots, x_{n}\right) x_{n+1}
\end{gathered}
$$

OBSERVATIONS

- n is a positive integer, $n=1,2, \cdots$
- f is a function of n variables
- F is a function of $n+1$ variables
- $x_{1}, x_{2}, \cdots, x_{n+1}$ belong an algebra A
- $f\left(y_{1}, \ldots, y_{n}\right)$ and $F\left(y_{1}, \cdots, y_{n+1}\right)$ also belong to A

The basic formula of homological algebra (LIE ALGEBRAS)

$$
\begin{gathered}
F\left(x_{1}, \ldots, x_{n}, x_{n+1}\right)= \\
\pm\left[f\left(x_{2}, \ldots, x_{n+1}\right), x_{1}\right] \\
\mp\left[f\left(x_{1}, x_{3}, \ldots, x_{n+1}\right), x_{2}\right] \\
\ldots \\
+\left[f\left(x_{1}, x_{2}, \ldots, x_{n-1}, x_{n}\right), x_{n+1}\right] \\
+ \\
-f\left(x_{3}, x_{4}, \ldots, x_{n+1},\left[x_{1}, x_{2}\right]\right) \\
+f\left(x_{2}, x_{4}, \ldots, x_{n+1},\left[x_{1}, x_{3}\right]\right) \\
-f\left(x_{2}, x_{3}, \ldots, x_{n+1},\left[x_{1}, x_{4}\right]\right) \\
\ldots \\
\pm f\left(x_{2}, x_{3}, \ldots, x_{n},\left[x_{1}, x_{n+1}\right]\right) \\
+ \\
-f\left(x_{1}, x_{4}, \ldots, x_{n+1},\left[x_{2}, x_{3}\right]\right) \\
+f\left(x_{1}, x_{3}, \ldots, x_{n+1},\left[x_{2}, x_{4}\right]\right) \\
-f\left(x_{1}, x_{3}, \ldots, x_{n+1},\left[x_{2}, x_{5}\right]\right) \\
\ldots \\
\pm f\left(x_{1}, x_{3}, \ldots, x_{n},\left[x_{2}, x_{n+1}\right]\right) \\
\quad+ \\
\ldots \\
\quad+ \\
-f\left(x_{1}, x_{2}, \ldots,\right. \\
\left.x_{n-1},\left[x_{n}, x_{n+1}\right]\right)
\end{gathered}
$$

HIERARCHY (ASSOCIATIVE ALGEBRAS)

- $x_{1}, x_{2}, \ldots, x_{n}$ are points (or vectors)
- f and F are functions-they take points to points
- T, defined by $T(f)=F$ is a transformationtakes functions to functions
- points x_{1}, \ldots, x_{n+1} and $f\left(y_{1}, \ldots, y_{n}\right)$ will belong to an ASSOCIATIVE algebra A
- functions f will be either constant, linear or multilinear (hence so will F)
- transformation T is linear

HIERARCHY (LIE ALGEBRAS)

- $x_{1}, x_{2}, \ldots, x_{n}$ are points (or vectors)
- f and F are functions-they take points to points
- T, defined by $T(f)=F$ is a transformationtakes functions to functions
- points x_{1}, \ldots, x_{n+1} and $f\left(y_{1}, \ldots, y_{n}\right)$ will belong to a LIE algebra A
- functions f will be either constant, linear or SKEW-SYMMETRIC multilinear (hence so will F)
- transformation T is linear

SHORT FORM OF THE FORMULA

 (ASSOCIATIVE ALGEBRAS)$$
\begin{gathered}
(T f)\left(x_{1}, \ldots, x_{n}, x_{n+1}\right) \\
=x_{1} f\left(x_{2}, \ldots, x_{n+1}\right) \\
+\sum_{j=1}^{n}(-1)^{j} f\left(x_{1}, \ldots, x_{j} x_{j+1}, \ldots, x_{n+1}\right) \\
+(-1)^{n+1} f\left(x_{1}, \ldots, x_{n}\right) x_{n+1}
\end{gathered}
$$

FIRST CASES

$$
\underline{n}=0
$$

If f is any constant function from A to A, say, $f(x)=b$ for all x in A, where b is a fixed element of A, we have, consistent with the basic formula,

$$
T_{0}(f)\left(x_{1}\right)=x_{1} b-b x_{1}
$$

SHORT FORM OF THE FORMULA (LIE ALGEBRAS)
$(T f)\left(x_{1}, \ldots, x_{n}, x_{n+1}\right)$
$=\sum_{j=1}^{n+1}(-1)^{n+1-j}\left[f\left(x_{1}, \ldots, \widehat{x}_{j}, \ldots, x_{n+1}\right), x_{j}\right]$
$+\sum_{j<k=2}^{n+1}(-1)^{j+k} f\left(x_{1}, \ldots, \widehat{x}_{j}, \ldots, \widehat{x}_{k},, \ldots,\left[x_{j}, x_{k}\right]\right)$
FIRST CASES

$$
\underline{n}=0
$$

If f is any constant function from A to A, say, $f(x)=b$ for all x in A, where b is a fixed element of A, we have, consistent with the basic formula,

$$
T_{0}(f)\left(x_{1}\right)=\left[b, x_{1}\right]
$$

ASSOCIATIVE ALGEBRAS

$$
\underline{n}=1
$$

If f is a linear map from A to A, then

$$
T_{1}(f)\left(x_{1}, x_{2}\right)=x_{1} f\left(x_{2}\right)-f\left(x_{1} x_{2}\right)+f\left(x_{1}\right) x_{2}
$$

$$
\underline{n}=2
$$

If f is a bilinear map from $A \times A$ to A, then

$$
\begin{gathered}
T_{2}(f)\left(x_{1}, x_{2}, x_{3}\right)= \\
x_{1} f\left(x_{2}, x_{3}\right)-f\left(x_{1} x_{2}, x_{3}\right) \\
+f\left(x_{1}, x_{2} x_{3}\right)-f\left(x_{1}, x_{2}\right) x_{3}
\end{gathered}
$$

LIE ALGEBRAS

$$
\underline{n}=1
$$

If f is a linear map from A to A, then

$$
T_{1}(f)\left(x_{1}, x_{2}\right)=-\left[f\left(x_{2}\right), x_{1}\right]+\left[f\left(x_{1}\right), x_{2}\right]-f\left(\left[x_{1}, x_{2}\right]\right)
$$

$$
\underline{n}=2
$$

If f is a skew-symmetric bilinear map from $A \times A$ to A, then

$$
\begin{gathered}
T_{2}(f)\left(x_{1}, x_{2}, x_{3}\right)= \\
{\left[f\left(x_{2}, x_{3}\right), x_{1}\right]-\left[f\left(x_{1}, x_{3}\right), x_{2}\right]+\left[f\left(x_{1}, x_{2}\right), x_{3}\right]} \\
-f\left(x_{3},\left[x_{1}, x_{2}\right]\right)+f\left(x_{2},\left[x_{1}, x_{3}\right]\right)-f\left(x_{1},\left[x_{2}, x_{3}\right]\right)
\end{gathered}
$$

Kernel and Image of a linear transformation

- $G: X \rightarrow Y$

Since X and Y are vector spaces, they are in particular, commutative groups.

- Kernel of G (also called nullspace of G) is
ker $G=\{x \in X: G(x)=0\}$
This is a subgroup of X
- Image of G is
$\operatorname{im} G=\{G(x): x \in X\}$
This is a subgroup of Y

We now let $G=T_{0}, T_{1}, T_{2}$
(ASSOCIATIVE ALGEBRAS)

Kernel and Image of a linear transformation

- $G: X \rightarrow Y$

Since X and Y are vector spaces, they are in particular, commutative groups.

- Kernel of G (also called nullspace of G) is
ker $G=\{x \in X: G(x)=0\}$
This is a subgroup of X
- Image of G is
$\operatorname{im} G=\{G(x): x \in X\}$
This is a subgroup of Y

$$
\begin{aligned}
& \text { We now let } G=T_{0}, T_{1}, T_{2} \\
& \text { (LIE ALGEBRAS) }
\end{aligned}
$$

$$
\underline{G}=T_{0}
$$

(ASSOCIATIVE ALGEBRAS)

$$
\begin{gathered}
X=A \text { (the algebra) } \\
Y=L(A)(\text { all linear transformations on } A) \\
T_{0}(f)\left(x_{1}\right)=x_{1} b-b x_{1} \\
\operatorname{ker} T_{0}=\{b \in A: x b-b x=0 \text { for all } x \in A\} \\
\quad(\text { center of } A)
\end{gathered}
$$

$\operatorname{im} T_{0}=$ the set of all linear maps of A of the form $x \mapsto x b-b x$,
in other words, the set of all inner derivations of A
$\operatorname{ker} T_{0}$ is a subgroup of A $\operatorname{im} T_{0}$ is a subgroup of $L(A)$

$$
\underline{G}=T_{0}
$$

(LIE ALGEBRAS)

$X=A$ (the algebra)
$Y=L(A)$ (all linear transformations on A)

$$
T_{0}(f)\left(x_{1}\right)=\left[b, x_{1}\right]
$$

$$
\operatorname{ker} T_{0}=\{b \in A:[b, x]=0 \text { for all } x \in A\}
$$ (center of A)

$\operatorname{im} T_{0}=$ the set of all linear maps of A of the form $x \mapsto[b, x]$,
in other words, the set of all inner derivations of A
$\operatorname{ker} T_{0}$ is a subgroup of A $\operatorname{im} T_{0}$ is a subgroup of $L(A)$

$$
\underline{G}=T_{1}
$$

(ASSOCIATIVE ALGEBRAS)

$X=L(A)$ (linear transformations on A)
$Y=L^{2}(A)$ (bilinear transformations on $A \times A$)

$$
\begin{gathered}
T_{1}(f)\left(x_{1}, x_{2}\right)=x_{1} f\left(x_{2}\right)-f\left(x_{1} x_{2}\right)+f\left(x_{1}\right) x_{2} \\
\operatorname{ker} T_{1}=\left\{f \in L(A): T_{1} f\left(x_{1}, x_{2}\right)=\right. \\
\left.0 \text { for all } x_{1}, x_{2} \in A\right\}=\text { the set of all } \\
\text { derivations of } A
\end{gathered}
$$

$\operatorname{im} T_{1}=$ the set of all bilinear maps of $A \times A$ of the form
$\left(x_{1}, x_{2}\right) \mapsto x_{1} f\left(x_{2}\right)-f\left(x_{1} x_{2}\right)+f\left(x_{1}\right) x_{2}$,
for some linear function $f \in L(A)$.
$\operatorname{ker} T_{1}$ is a subgroup of $L(A)$
$\operatorname{im} T_{1}$ is a subgroup of $L^{2}(A)$

$$
\underline{G}=T_{1}
$$

(LIE ALGEBRAS)

$X=L(A)$ (linear transformations on A)

 $Y=L^{2}(A)$ (bilinear transformations on $A \times A$)$$
\begin{gathered}
T_{1}(f)\left(x_{1}, x_{2}\right)=-\left[f\left(x_{2}\right), x_{1}\right]+\left[f\left(x_{1}\right), x_{2}\right]-f\left(\left[x_{1}, x_{2}\right]\right) \\
\operatorname{ker} T_{1}=\left\{f \in L(A): T_{1} f\left(x_{1}, x_{2}\right)=\right. \\
\left.0 \text { for all } x_{1}, x_{2} \in A\right\}=\text { the set of all } \\
\text { derivations of } A
\end{gathered}
$$

$\operatorname{im} T_{1}=$ the set of all bilinear maps of $A \times A$ of the form
$\left(x_{1}, x_{2}\right) \mapsto-\left[f\left(x_{2}\right), x_{1}\right]+\left[f\left(x_{1}\right), x_{2}\right]-f\left(\left[x_{1}, x_{2}\right]\right)$
for some linear function $f \in L(A)$.
$\operatorname{ker} T_{1}$ is a subgroup of $L(A)$
$\operatorname{im} T_{1}$ is a subgroup of $L^{2}(A)$

ASSOCIATIVE AND LIE ALGEBRAS

$$
L^{0}(A) \xrightarrow{T_{0}} L(A) \xrightarrow{T_{1}} L^{2}(A) \xrightarrow{T_{2}} L^{3}(A) \cdots
$$

FACTS:

- $T_{1} \circ T_{0}=0$
- $T_{2} \circ T_{1}=0$
- $T_{n+1} \circ T_{n}=0$
- ••

Therefore

$$
\begin{gathered}
\operatorname{im} T_{n} \subset \operatorname{ker} T_{n+1} \subset L^{n}(A) \\
\text { and }
\end{gathered}
$$

$\operatorname{im} T_{n}$ is a subgroup of $\operatorname{ker} T_{n+1}$

The cohomology groups of A are defined as the quotient groups

$$
\begin{gathered}
H^{n}(A)=\frac{\operatorname{ker} T_{n}}{\operatorname{im} T_{n-1}} \\
(n=1,2, \ldots)
\end{gathered}
$$

Thus

$$
H^{1}(A)=\frac{\operatorname{ker} T_{1}}{\operatorname{im} T_{0}}=\frac{\text { derivations }}{\text { inner derivations }}
$$

$$
H^{2}(A)=\frac{\operatorname{ker} T_{2}}{\operatorname{im} T_{1}}=\frac{?}{?}
$$

The theorem that every derivation of $M_{n}(\mathbf{R})$ is inner (that is, of the form δ_{a} for some $\left.a \in M_{n}(\mathbf{R})\right)$ can now be restated as: "the cohomology group $H^{1}\left(M_{n}(\mathbf{R})\right)$ is the trivial one element group"

$$
\underline{G}=T_{2}
$$

(ASSOCIATIVE ALGEBRAS)

$X=L^{2}(A)$ (bilinear transformations on $A \times A$)

$Y=L^{3}(A)$ (trilinear transformations on

 $A \times A \times A$)$$
\begin{gathered}
T_{2}(f)\left(x_{1}, x_{2}, x_{3}\right)=x_{1} f\left(x_{2}, x_{3}\right)-f\left(x_{1} x_{2}, x_{3}\right)+ \\
f\left(x_{1}, x_{2} x_{3}\right)-f\left(x_{1}, x_{2}\right) x_{3} \\
\operatorname{ker} T_{2}=\left\{f \in L(A): T_{2} f\left(x_{1}, x_{2}, x_{3}\right)=\right. \\
\left.0 \text { for all } x_{1}, x_{2}, x_{3} \in A\right\}=?
\end{gathered}
$$

$\operatorname{im} T_{2}=$ the set of all trilinear maps h of $A \times A \times A$ of the form ${ }^{\S}$

$$
\begin{gathered}
h\left(x_{1}, x_{2}, x_{3}\right)=x_{1} f\left(x_{2}, x_{3}\right)-f\left(x_{1} x_{2}, x_{3}\right) \\
+f\left(x_{1}, x_{2} x_{3}\right)-f\left(x_{1}, x_{2}\right) x_{3},
\end{gathered}
$$

for some bilinear function $f \in L^{2}(A)$. $\operatorname{ker} T_{2}$ is a subgroup of $L^{2}(A)$ $\operatorname{im} T_{2}$ is a subgroup of $L^{3}(A)$
${ }^{\text {§ }}$ we do not use im T_{2} in what follows

$$
\underline{G}=T_{2}
$$

(LIE ALGEBRAS)

$X=L_{s}^{2}(A)$ (skew symmetric bilinear transformations on $A \times A$)
 $Y=L_{s}^{3}(A)$ (skew symmetric trilinear transformations on $A \times A \times A$)

$$
\begin{gathered}
T_{2}(f)\left(x_{1}, x_{2}, x_{3}\right)= \\
{\left[f\left(x_{2}, x_{3}\right), x_{1}\right]-\left[f\left(x_{1}, x_{3}\right), x_{2}\right]+\left[f\left(x_{1}, x_{2}\right), x_{3}\right]} \\
-f\left(x_{3},\left[x_{1}, x_{2}\right]\right)+f\left(x_{2},\left[x_{1}, x_{3}\right]\right)-f\left(x_{1},\left[x_{2}, x_{3}\right]\right) \\
\operatorname{ker} T_{2}=\left\{f \in L(A): T_{2} f\left(x_{1}, x_{2}, x_{3}\right)=\right. \\
\left.0 \text { for all } x_{1}, x_{2}, x_{3} \in A\right\}=? \\
\operatorname{ker} T_{2} \text { is a subgroup of } L^{2}(A) \\
\operatorname{im} T_{2} \text { is a subgroup of } L^{3}(A)
\end{gathered}
$$

$\Phi_{\text {we do }}$ not use $\operatorname{im} T_{2}$ in what follows

THIS PAGE PURPOSELY LEFT BLANK

Cohomology groups were defined in various contexts as follows

- associative algebras (1945)
- Lie algebras (1952)
- Lie triple systems $(1961,2002)$
- Jordan algebras (1971)
- associative triple systems (1976)
- Jordan triple systems (1982)

GRADUS AD PARNASSUM (COHOMOLOGY)

1. Verify that there is a one to one correspondence between partitions of a set X and equivalence relations on that set.
Precisely, show that

- If $X=\cup X_{i}$ is a partition of X, then $R:=$ $\left\{(x, y) \times X: x, y \in X_{i}\right.$ for some $\left.i\right\}$ is an equivalence relation whose equivalence classes are the subsets X_{i}.
- If R is an equivalence relation on X with equivalence classes X_{i}, then $X=\cup X_{i}$ is a partition of X.

2. Verify that $T_{n+1} \circ T_{n}=0$ for $n=0,1,2$. Then prove it for all $n \geq 3$.
3. Show that if $f: G_{1} \rightarrow G_{2}$ is a homomorphism of groups, then $G_{1} / \operatorname{ker} f$ is isomorphic to $f\left(G_{1}\right)$
Hint: Show that the map $[x] \mapsto f(x)$ is an isomorphism of $G_{1} / \operatorname{ker} f$ onto $f\left(G_{1}\right)$
4. Show that if $h: A_{1} \rightarrow A_{2}$ is a homomorphism of algebras, then $A_{1} /$ ker h is isomorphic to $h\left(A_{1}\right)$
Hint: Show that the map $[x] \mapsto h(x)$ is an isomorphism of $A_{1} /$ ker h onto $h\left(A_{1}\right)$
5. Show that the algebra M_{h} in Example 2 is associative.
Hint: You use the fact that A is associative AND the fact that, since $h \in \operatorname{ker} T_{2}$, $h(a, b) c+h(a b . c)=a h(b, c)+h(a, b c)$
6. Show that equivalence of extensions is actually an equivalence relation. Hint:

- reflexive: $\psi: M \rightarrow M$ is the identity map
- symmetric: replace $\psi: M \rightarrow M^{\prime}$ by its inverse $\psi^{-1}: M^{\prime} \rightarrow M$
- transitive: given $\psi: M \rightarrow M^{\prime}$ and ψ^{\prime} : $M^{\prime} \rightarrow M^{\prime \prime}$ let $\psi^{\prime \prime}=\psi^{\prime} \circ \psi: M \rightarrow M^{\prime \prime}$

7. Show that in example 2 , if h_{1} and h_{2} are equivalent bilinear maps, that is, $h_{1}-h_{2}=$ $T_{1} f$ for some linear map f, then $M_{h_{1}}$ and $M_{h_{2}}$ are equivalent extensions of $\{0\} \times A$ by A. Hint: $\psi: M_{h_{1}} \rightarrow M_{h_{2}}$ is defined by

$$
\psi(a, x)=(a, x+f(a))
$$

