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PART I: REVIEW OF ALGEBRAS

AXIOMATIC APPROACH

AN ALGEBRA IS DEFINED TO BE A SET

(ACTUALLY A VECTOR SPACE) WITH

TWO BINARY OPERATIONS, CALLED

ADDITION AND MULTIPLICATION

ADDITION IS DENOTED BY

a+ b

AND IS REQUIRED TO BE

COMMUTATIVE AND ASSOCIATIVE

a+ b = b+ a, (a+ b) + c = a+ (b+ c)



MULTIPLICATION IS DENOTED BY

ab

AND IS REQUIRED TO BE DISTRIBUTIVE

WITH RESPECT TO ADDITION

(a+ b)c = ac+ bc, a(b+ c) = ab+ ac

AN ALGEBRA IS SAID TO BE

ASSOCIATIVE (RESP. COMMUTATIVE) IF

THE MULTIPLICATION IS ASSOCIATIVE

(RESP. COMMUTATIVE)

(RECALL THAT ADDITION IS ALWAYS

COMMUTATIVE AND ASSOCIATIVE)



Table 2

ALGEBRAS

commutative algebras

ab = ba

associative algebras

a(bc) = (ab)c

Lie algebras

a2 = 0

(ab)c+ (bc)a+ (ca)b = 0

Jordan algebras

ab = ba

a(a2b) = a2(ab)
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DERIVATIONS ON THE SET OF

MATRICES

THE SET Mn(R) of n by n MATRICES IS

AN ALGEBRA UNDER

MATRIX ADDITION

A+B

AND

MATRIX MULTIPLICATION

A×B

WHICH IS ASSOCIATIVE BUT NOT

COMMUTATIVE.



DEFINITION 2

A DERIVATION ON Mn(R) WITH

RESPECT TO MATRIX MULTIPLICATION

IS A LINEAR PROCESS δ WHICH

SATISFIES THE PRODUCT RULE

δ(A×B) = δ(A)×B +A× δ(B)

.

PROPOSITION 2

FIX A MATRIX A in Mn(R) AND DEFINE

δA(X) = A×X −X ×A.

THEN δA IS A DERIVATION WITH

RESPECT TO MATRIX MULTIPLICATION

(WHICH CAN BE NON-ZERO)



THEOREM 2
(1942 Hochschild)

EVERY DERIVATION ON Mn(R) WITH
RESPECT TO MATRIX MULTIPLICATION

IS OF THE FORM δA FOR SOME A IN
Mn(R).

Gerhard Hochschild (1915–2010)

(Photo 1968)
Gerhard Paul Hochschild was an American
mathematician who worked on Lie groups,
algebraic groups, homological algebra and

algebraic number theory.
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THE BRACKET PRODUCT ON THE

SET OF MATRICES

THE BRACKET PRODUCT ON THE SET

Mn(R) OF MATRICES IS DEFINED BY

[X,Y ] = X × Y − Y ×X

THE SET Mn(R) of n by n MATRICES IS

AN ALGEBRA UNDER MATRIX ADDITION

AND BRACKET MULTIPLICATION,

WHICH IS NOT ASSOCIATIVE AND NOT

COMMUTATIVE.



DEFINITION 3

A DERIVATION ON Mn(R) WITH

RESPECT TO BRACKET MULTIPLICATION

IS A LINEAR PROCESS δ WHICH

SATISFIES THE PRODUCT RULE

δ([A,B]) = [δ(A), B] + [A, δ(B)]

.

PROPOSITION 3

FIX A MATRIX A in Mn(R) AND DEFINE

δA(X) = [A,X] = A×X −X ×A.

THEN δA IS A DERIVATION WITH

RESPECT TO BRACKET

MULTIPLICATION



THEOREM 3

(1942 Hochschild, Zassenhaus)
EVERY DERIVATION ON Mn(R) WITH

RESPECT TO BRACKET
MULTIPLICATION IS OF THE FORM δA

FOR SOME A IN Mn(R).

Hans Zassenhaus (1912–1991)

Hans Julius Zassenhaus was a German
mathematician, known for work in many parts

of abstract algebra, and as a pioneer of
computer algebra.
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THE CIRCLE PRODUCT ON THE SET

OF MATRICES

THE CIRCLE PRODUCT ON THE SET

Mn(R) OF MATRICES IS DEFINED BY

X ◦ Y = (X × Y + Y ×X)/2

THE SET Mn(R) of n by n MATRICES IS

AN ALGEBRA UNDER MATRIX ADDITION

AND CIRCLE MULTIPLICATION, WHICH IS

COMMUTATIVE BUT NOT ASSOCIATIVE.



DEFINITION 4

A DERIVATION ON Mn(R) WITH

RESPECT TO CIRCLE MULTIPLICATION

IS A LINEAR PROCESS δ WHICH

SATISFIES THE PRODUCT RULE

δ(A ◦B) = δ(A) ◦B +A ◦ δ(B)

PROPOSITION 4

FIX A MATRIX A in Mn(R) AND DEFINE

δA(X) = A×X −X ×A.

THEN δA IS A DERIVATION WITH

RESPECT TO CIRCLE MULTIPLICATION



THEOREM 4

(1972-Sinclair)

EVERY DERIVATION ON Mn(R) WITH

RESPECT TO CIRCLE MULTIPLICATION

IS OF THE FORM δA FOR SOME A IN

Mn(R).

REMARK

(1937-Jacobson)

THE ABOVE PROPOSITION AND

THEOREM NEED TO BE MODIFIED FOR

THE SUBALGEBRA (WITH RESPECT TO

CIRCLE MULTIPLICATION) OF

SYMMETRIC MATRICES.



Alan M. Sinclair (retired)

Nathan Jacobson (1910–1999)

Nathan Jacobson was an American
mathematician who was recognized as one of
the leading algebraists of his generation, and
he was also famous for writing more than a

dozen standard monographs.



Table 1

Mn(R) (ALGEBRAS)

matrix bracket circle
ab = a× b [a, b] = ab− ba a ◦ b = ab+ ba

Th. 2 Th.3 Th.4
δa(x) δa(x) δa(x)

= = =
ax− xa ax− xa ax− xa
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PART 2 OF TODAY’S TALK

A partition of a set X is a disjoint class {Xi}
of non-empty subsets of X whose union is X

• {1,2,3,4,5} = {1,3,5} ∪ {2,4}
• {1,2,3,4,5} = {1} ∪ {2} ∪ {3,5} ∪ {4}
• R = Q ∪ (R−Q)

• R = · · · ∪ [−2,−1) ∪ [−1,0) ∪ [0,1) ∪ · · ·

A binary relation on the set X is a subset R

of X ×X. For each ordered pair

(x, y) ∈ X ×X,

x is said to be related to y if (x, y) ∈ R.

• R = {(x, y) ∈ R×R : x < y}
• R = {(x, y) ∈ R×R : y = sinx}
• For a partition X = ∪iXi of a set X, let

R = {(x, y) ∈ X ×X : x, y ∈ Xi for some i}



An equivalence relation on a set X is a

relation R ⊂ X ×X satisfying

reflexive (x, x) ∈ R
symmetric (x, y) ∈ R⇒ (y, x) ∈ R
transitive (x, y), (y, z) ∈ R⇒ (x, z) ∈ R

There is a one to one correspondence

between equivalence relations on a set X and

partitions of that set.

NOTATION

• If R is an equivalence relation we denote

(x, y) ∈ R by x ∼ y.

• The equivalence class containing x is de-

noted by [x]. Thus

[x] = {y ∈ X : x ∼ y}.



EXAMPLES

• equality: R = {(x, x) : x ∈ X}
• equivalence class of fractions

= rational number:

R = {(
a

b
,
c

d
) : a, b, c, d ∈ Z, b 6= 0, d 6= 0, ad = bc}

• equipotent sets: X and Y are equivalent if

there exists a function f : X → Y which is

one to one and onto.

• half open interval of length one:

R = {(x, y) ∈ R×R : x− y is an integer}
• integers modulo n:

R = {(x, y) ∈ N×N : x− y is divisible by n}
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PART 2 OF TODAY’S TALK

(continued)

A group is a set G together with an operation

(called multiplication) which associates with

each ordered pair x, y of elements of G a third

element in G (called their product and written

xy) in such a manner that

• multiplication is associative: (xy)z = x(yz)

• there exists an element e in G, called the

identity element with the property that

xe = ex = x for all x

• to each element x, there corresponds an-

other element in G, called the inverse of x

and written x−1, with the property that

xx−1 = x−1x = e

TYPES OF GROUPS

• commutative groups: xy = yx

• finite groups {g1, g2, · · · , gn}
• infinite groups {g1, g2, · · · , gn, · · ·}
• cyclic groups {e, a, a2, a3, . . .}



EXAMPLES

1. R,+,0, x−1 = −x

2. positive real numbers, ×,1, x−1 = 1/x

3. Rn,vector addition,(0, · · · ,0),

(x1, · · · , xn)−1 = (−x1, · · · ,−xn)

4. C,+,0, f−1 = −f

5. {0,1,2, · · · ,m − 1}, addition modulo m, 0,

k−1 = m− k

6. permutations (=one to one onto functions),

composition, identity permutation, inverse

permutation

7. Mn(R),+,0,A−1 = [−aij]

8. non-singular matrices, matrix multiplication,

identity matrix, matrix inverse

Which of these are commutative, finite,

infinite?



We shall consider only commutative groups

and we shall denote the multiplication by +,

the identity by 0, and inverse by -.

No confusion should result.

ALERT

Counterintuitively, a very important

(commutative) group is a group with one

element



Let H be a subgroup of a commutative group

G. That is, H is a subset of G and is a group

under the same +,0,- as G.

Define an equivalence relations on G as

follows: x ∼ y if x− y ∈ H.

The set of equivalence classes is a group

under the definition of addition given by

[x] + [y] = [x+ y].

This group is denoted by G/H and is called

the quotient group of G by H.

Special cases:

H = {e}; G/H = G (isomorphic)

H = G; G/H = {e} (isomorphic)



EXAMPLES

1. G = R,+,0, x−1 = −x;

H = Z or H = Q

2. Rn,vector addition,(0, · · · ,0),

(x1, · · · , xn)−1 = (−x1, · · · ,−xn);

H = Zn or H = Qn

3. C,+,0, f−1 = −f ;

H = D or H = polynomials

4. Mn(R),+,0,A−1 = [−aij];

H =symmetric matrices, or

H =anti-symmetric matrices
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PART 3 OF TODAY’S TALK

The basic formula of homological algebra

F (x1, . . . , xn, xn+1) =

x1f(x2, . . . , xn+1)

−f(x1x2, x3, . . . , xn+1)

+f(x1, x2x3, x4, . . . , xn+1)

− · · ·
±f(x1, x2, . . . , xnxn+1)

∓f(x1, . . . , xn)xn+1

OBSERVATIONS

• n is a positive integer, n = 1,2, · · ·
• f is a function of n variables

• F is a function of n+ 1 variables

• x1, x2, · · · , xn+1 belong an algebra A

• f(y1, . . . , yn) and F (y1, · · · , yn+1) also be-

long to A



HIERARCHY

• x1, x2, . . . , xn are points (or vectors)

• f and F are functions—they take points to

points

• T , defined by T (f) = F is a transformation—

takes functions to functions

• points x1, . . . , xn+1 and f(y1, . . . , yn) will be-

long to an algebra A

• functions f will be either constant, linear

or multilinear (hence so will F )

• transformation T is linear



SHORT FORM OF THE FORMULA

(Tf)(x1, . . . , xn, xn+1)

= x1f(x2, . . . , xn+1)

+
n∑

j=1

(−1)jf(x1, . . . , xjxj+1, . . . , xn+1)

+(−1)n+1f(x1, . . . , xn)xn+1

FIRST CASES

n = 0

If f is any constant function from A to A,

say, f(x) = b for all x in A, where b is a fixed

element of A, we have, consistent with the

basic formula,

T0(f)(x1) = x1b− bx1



n = 1

If f is a linear map from A to A, then

T1(f)(x1, x2) = x1f(x2)− f(x1x2) + f(x1)x2

n = 2

If f is a bilinear map from A×A to A, then

T2(f)(x1, x2, x3) =

x1f(x2, x3)− f(x1x2, x3)

+f(x1, x2x3)− f(x1, x2)x3



Kernel and Image of a linear transformation

• G : X → Y

Since X and Y are vector spaces, they are
in particular, commutative groups.

• Kernel of G (also called nullspace of G)
is
kerG = {x ∈ X : G(x) = 0}

This is a subgroup of X

• Image of G is
imG = {G(x) : x ∈ X}

This is a subgroup of Y

What is the kernel of D on D?

What is the image of D on D?

(Hint: Second Fundamental theorem of
calculus)

We now let G = T0, T1, T2



G = T0

X = A (the algebra)

Y = L(A) (all linear transformations on A)

T0(f)(x1) = x1b− bx1

ker T0 = {b ∈ A : xb− bx = 0 for all x ∈ A}
(center of A)

imT0 = the set of all linear maps of A of the

form x 7→ xb− bx,

in other words, the set of all inner derivations

of A

ker T0 is a subgroup of A

imT0 is a subgroup of L(A)



G = T1

X = L(A) (linear transformations on A)

Y = L2(A) (bilinear transformations on A×A)

T1(f)(x1, x2) = x1f(x2)− f(x1x2) + f(x1)x2

ker T1 = {f ∈ L(A) : T1f(x1, x2) =

0 for all x1, x2 ∈ A} = the set of all

derivations of A

imT1 = the set of all bilinear maps of A×A
of the form

(x1, x2) 7→ x1f(x2)− f(x1x2) + f(x1)x2,

for some linear function f ∈ L(A).

ker T1 is a subgroup of L(A)

imT1 is a subgroup of L2(A)



L0(A)
T0−→ L(A)

T1−→ L2(A)
T2−→ L3(A) · · ·

FACTS:

• T1 ◦ T0 = 0

• T2 ◦ T1 = 0

• · · ·
• Tn+1 ◦ Tn = 0

• · · ·

Therefore

imTn ⊂ ker Tn+1 ⊂ Ln(A)

and

imTn is a subgroup of ker Tn+1



• imT0 ⊂ ker T1

says

Every inner derivation is a derivation

• imT1 ⊂ ker T2

says

for every linear map f , the bilinear map F

defined by

F (x1, x2) = x1f(x2)− f(x1x2) + f(x1)x2

satisfies the equation

x1F (x2, x3)− F (x1x2, x3)+

F (x1, x2x3)− F (x1, x2)x3 = 0

for every x1, x2, x3 ∈ A.



The cohomology groups of A are defined as

the quotient groups

Hn(A) =
ker Tn

imTn−1

(n = 1,2, . . .)

Thus

H1(A) =
ker T1

imT0
=

derivations

inner derivations

H2(A) =
ker T2

imT1
=

?

?

The theorem that every derivation of Mn(R)

is inner (that is, of the form δa for some

a ∈Mn(R)) can now be restated as:

”the cohomology group H1(Mn(R)) is the

trivial one element group”



G = T2

X = L2(A) (bilinear transformations on A×A)

Y = L3(A) (trilinear transformations on

A×A×A)

T2(f)(x1, x2, x3) = x1f(x2, x3)− f(x1x2, x3) +

f(x1, x2x3)− f(x1, x2)x3

ker T2 = {f ∈ L(A) : T2f(x1, x2, x3) =

0 for all x1, x2, x3 ∈ A} =?

imT2 = the set of all trilinear maps h of

A×A×A of the form∗

h(x1, x2, x3) = x1f(x2, x3)− f(x1x2, x3)

+f(x1, x2x3)− f(x1, x2)x3,

for some bilinear function f ∈ L2(A).

ker T2 is a subgroup of L2(A)

imT2 is a subgroup of L3(A)

∗we do not use imT2 in what follows
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PART 4 OF TODAY’S TALK

INTERPRETATION OF THE SECOND

COHOMOLOGY GROUP

(ASSOCIATIVE ALGEBRAS)
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Homomorphisms of groups

f : G1 → G2 is a homomorphism if

f(x+ y) = f(x) + f(y)

• f(G1) is a subgroup of G2

• ker f is a subgroup of G1

• G1/ker f is isomorphic to f(G1)

(isomorphism =

one to one and onto homomorphism)



Homomorphisms of algebras

h : A1 → A2 is a homomorphism if

h(x+ y) = h(x) + h(y)

and

h(xy) = h(x)h(y)

• h(A1) is a subalgebra of A2

• ker h is a subalgebra of A1

(actually, an ideal† in A1)

• A1/ker h is isomorphic to h(A1)

(isomorphism =

one to one and onto homomorphism)

†An ideal in an algebra A is a subalgebra I with the
property that AI ∪ IA ⊂ I, that is, xa, ax ∈ I whenever
x ∈ I and a ∈ A



EXTENSIONS

Let A be an algebra. Let M be another

algebra which contains an ideal I and let

g : M → A be a homomorphism.

In symbols,

I
⊂→M

g→ A

This is called an extension of A by I if

• ker g = I

• im g = A

It follows that M/I is isomorphic to A



EXAMPLE 1

Let A be an algebra.

Define an algebra M = A⊕A to be the set

A×A with addition

(a, x) + (b, y) = (a+ b, x+ y)

and product

(a, x)(b, y) = (ab, xy)

• {0} ×A is an ideal in M

• ({0} ×A)2 6= 0

• g : M → A defined by g(a, x) = a is a ho-

momorphism

• M is an extension of {0} ×A by A.



EXAMPLE 2

Let A be an algebra and let

h ∈ ker T2 ⊂ L2(A).

Recall that this means that for all

x1, x2, x3 ∈ A,

x1f(x2, x3)− f(x1x2, x3)

+f(x1, x2x3)− f(x1, x2)x3 = 0

Define an algebra Mh to be the set A×A
with addition

(a, x) + (b, y) = (a+ b, x+ y)

and the product

(a, x)(b, y) = (ab, ay + xb+ h(a, b))

Because h ∈ ker T2, this algebra is

ASSOCIATIVE!

whenever A is associative.



THE PLOT THICKENS

• {0} ×A is an ideal in Mh

• ({0} ×A)2 = 0

• g : Mh → A defined by g(a, x) = a is a

homomorphism

• Mh is an extension of {0} ×A by A.



EQUIVALENCE OF EXTENSIONS

Extensions

I
⊂→M

g→ A

and

I
⊂→M ′

g′→ A

are said to be equivalent if

there is an isomorphism ψ : M →M ′

such that

• ψ(x) = x for all x ∈ I

• g = g′ ◦ ψ

(Is this an equivalence relation?)



EXAMPLE 2—continued

Let h1, h2 ∈ ker T2.

We then have two extensions of A by {0} ×A,

namely

{0} ×A ⊂→Mh1

g1→ A

and

{0} ×A ⊂→Mh2

g2→ A

Now suppose that h1 is equivalent‡ to h2,

h1 − h2 = T1f for some f ∈ L(A)

• The above two extensions are equivalent.

• We thus have a mapping from H2(A,A)

into the set of equivalence classes of ex-

tensions of A by the ideal {0} ×A

‡This is the same as saying that [h1] = [h2] as elements
of H2(A,A) = ker T2/imT1
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PART 5 OF TODAY’S TALK

COHOMOLOGY OF LIE ALGEBRAS



The basic formula of homological algebra

(ASSOCIATIVE ALGEBRAS)

F (x1, . . . , xn, xn+1) =

x1f(x2, . . . , xn+1)

−f(x1x2, x3, . . . , xn+1)

+f(x1, x2x3, x4, . . . , xn+1)

− · · ·
±f(x1, x2, . . . , xnxn+1)

∓f(x1, . . . , xn)xn+1

OBSERVATIONS

• n is a positive integer, n = 1,2, · · ·
• f is a function of n variables

• F is a function of n+ 1 variables

• x1, x2, · · · , xn+1 belong an algebra A

• f(y1, . . . , yn) and F (y1, · · · , yn+1) also be-

long to A



The basic formula of homological algebra

(LIE ALGEBRAS)

F (x1, . . . , xn, xn+1) =

±[f(x2, . . . , xn+1), x1]

∓[f(x1, x3, . . . , xn+1), x2]

· · ·
+[f(x1, x2, . . . , xn−1, xn), xn+1]

+

−f(x3, x4, . . . , xn+1, [x1, x2])

+f(x2, x4, . . . , xn+1, [x1, x3])

−f(x2, x3, . . . , xn+1, [x1, x4])

· · ·
±f(x2, x3, . . . , xn, [x1, xn+1])

+

−f(x1, x4, . . . , xn+1, [x2, x3])

+f(x1, x3, . . . , xn+1, [x2, x4])

−f(x1, x3, . . . , xn+1, [x2, x5])

· · ·
±f(x1, x3, . . . , xn, [x2, xn+1])

+

· · ·
+

−f(x1, x2, . . . , xn−1, [xn, xn+1])



HIERARCHY

(ASSOCIATIVE ALGEBRAS)

• x1, x2, . . . , xn are points (or vectors)

• f and F are functions—they take points to

points

• T , defined by T (f) = F is a transformation—

takes functions to functions

• points x1, . . . , xn+1 and f(y1, . . . , yn) will be-

long to an ASSOCIATIVE algebra A

• functions f will be either constant, linear

or multilinear (hence so will F )

• transformation T is linear



HIERARCHY

(LIE ALGEBRAS)

• x1, x2, . . . , xn are points (or vectors)

• f and F are functions—they take points to

points

• T , defined by T (f) = F is a transformation—

takes functions to functions

• points x1, . . . , xn+1 and f(y1, . . . , yn) will be-

long to a LIE algebra A

• functions f will be either constant, linear or

SKEW-SYMMETRIC multilinear (hence

so will F )

• transformation T is linear



SHORT FORM OF THE FORMULA

(ASSOCIATIVE ALGEBRAS)

(Tf)(x1, . . . , xn, xn+1)

= x1f(x2, . . . , xn+1)

+
n∑

j=1

(−1)jf(x1, . . . , xjxj+1, . . . , xn+1)

+(−1)n+1f(x1, . . . , xn)xn+1

FIRST CASES

n = 0

If f is any constant function from A to A,

say, f(x) = b for all x in A, where b is a fixed

element of A, we have, consistent with the

basic formula,

T0(f)(x1) = x1b− bx1



SHORT FORM OF THE FORMULA

(LIE ALGEBRAS)

(Tf)(x1, . . . , xn, xn+1)

=
n+1∑
j=1

(−1)n+1−j[f(x1, . . . , x̂j, . . . , xn+1), xj]

+
n+1∑
j<k=2

(−1)j+kf(x1, . . . , x̂j, . . . , x̂k, , . . . , [xj, xk])

FIRST CASES

n = 0

If f is any constant function from A to A,

say, f(x) = b for all x in A, where b is a fixed

element of A, we have, consistent with the

basic formula,

T0(f)(x1) = [b, x1]



ASSOCIATIVE ALGEBRAS

n = 1

If f is a linear map from A to A, then

T1(f)(x1, x2) = x1f(x2)− f(x1x2) + f(x1)x2

n = 2

If f is a bilinear map from A×A to A, then

T2(f)(x1, x2, x3) =

x1f(x2, x3)− f(x1x2, x3)

+f(x1, x2x3)− f(x1, x2)x3



LIE ALGEBRAS

n = 1

If f is a linear map from A to A, then

T1(f)(x1, x2) = −[f(x2), x1]+[f(x1), x2]−f([x1, x2])

n = 2

If f is a skew-symmetric bilinear map from

A×A to A, then

T2(f)(x1, x2, x3) =

[f(x2, x3), x1]− [f(x1, x3), x2] + [f(x1, x2), x3]

−f(x3, [x1, x2]) + f(x2, [x1, x3])− f(x1, [x2, x3])



Kernel and Image of a linear

transformation

• G : X → Y

Since X and Y are vector spaces, they are

in particular, commutative groups.

• Kernel of G (also called nullspace of G)

is

kerG = {x ∈ X : G(x) = 0}

This is a subgroup of X

• Image of G is

imG = {G(x) : x ∈ X}

This is a subgroup of Y

We now let G = T0, T1, T2

(ASSOCIATIVE ALGEBRAS)



Kernel and Image of a linear

transformation

• G : X → Y

Since X and Y are vector spaces, they are

in particular, commutative groups.

• Kernel of G (also called nullspace of G)

is

kerG = {x ∈ X : G(x) = 0}

This is a subgroup of X

• Image of G is

imG = {G(x) : x ∈ X}

This is a subgroup of Y

We now let G = T0, T1, T2

(LIE ALGEBRAS)



G = T0

(ASSOCIATIVE ALGEBRAS)

X = A (the algebra)

Y = L(A) (all linear transformations on A)

T0(f)(x1) = x1b− bx1

ker T0 = {b ∈ A : xb− bx = 0 for all x ∈ A}
(center of A)

imT0 = the set of all linear maps of A of the

form x 7→ xb− bx,

in other words, the set of all inner derivations

of A

ker T0 is a subgroup of A

imT0 is a subgroup of L(A)



G = T0

(LIE ALGEBRAS)

X = A (the algebra)

Y = L(A) (all linear transformations on A)

T0(f)(x1) = [b, x1]

ker T0 = {b ∈ A : [b, x] = 0 for all x ∈ A}
(center of A)

imT0 = the set of all linear maps of A of the

form x 7→ [b, x],

in other words, the set of all inner derivations

of A

ker T0 is a subgroup of A

imT0 is a subgroup of L(A)



G = T1

(ASSOCIATIVE ALGEBRAS)

X = L(A) (linear transformations on A)

Y = L2(A) (bilinear transformations on A×A)

T1(f)(x1, x2) = x1f(x2)− f(x1x2) + f(x1)x2

ker T1 = {f ∈ L(A) : T1f(x1, x2) =

0 for all x1, x2 ∈ A} = the set of all

derivations of A

imT1 = the set of all bilinear maps of A×A
of the form

(x1, x2) 7→ x1f(x2)− f(x1x2) + f(x1)x2,

for some linear function f ∈ L(A).

ker T1 is a subgroup of L(A)

imT1 is a subgroup of L2(A)



G = T1

(LIE ALGEBRAS)

X = L(A) (linear transformations on A)

Y = L2(A) (bilinear transformations on A×A)

T1(f)(x1, x2) = −[f(x2), x1]+[f(x1), x2]−f([x1, x2])

ker T1 = {f ∈ L(A) : T1f(x1, x2) =

0 for all x1, x2 ∈ A} = the set of all

derivations of A

imT1 = the set of all bilinear maps of A×A
of the form

(x1, x2) 7→ −[f(x2), x1]+[f(x1), x2]−f([x1, x2])

for some linear function f ∈ L(A).

ker T1 is a subgroup of L(A)

imT1 is a subgroup of L2(A)



ASSOCIATIVE AND LIE ALGEBRAS

L0(A)
T0−→ L(A)

T1−→ L2(A)
T2−→ L3(A) · · ·

FACTS:

• T1 ◦ T0 = 0

• T2 ◦ T1 = 0

• · · ·
• Tn+1 ◦ Tn = 0

• · · ·

Therefore

imTn ⊂ ker Tn+1 ⊂ Ln(A)

and

imTn is a subgroup of ker Tn+1



The cohomology groups of A are defined as

the quotient groups

Hn(A) =
ker Tn

imTn−1

(n = 1,2, . . .)

Thus

H1(A) =
ker T1

imT0
=

derivations

inner derivations

H2(A) =
ker T2

imT1
=

?

?

The theorem that every derivation of Mn(R)

is inner (that is, of the form δa for some

a ∈Mn(R)) can now be restated as:

”the cohomology group H1(Mn(R)) is the

trivial one element group”



G = T2

(ASSOCIATIVE ALGEBRAS)

X = L2(A) (bilinear transformations on A×A)

Y = L3(A) (trilinear transformations on

A×A×A)

T2(f)(x1, x2, x3) = x1f(x2, x3)− f(x1x2, x3) +

f(x1, x2x3)− f(x1, x2)x3

ker T2 = {f ∈ L(A) : T2f(x1, x2, x3) =

0 for all x1, x2, x3 ∈ A} =?

imT2 = the set of all trilinear maps h of

A×A×A of the form§

h(x1, x2, x3) = x1f(x2, x3)− f(x1x2, x3)

+f(x1, x2x3)− f(x1, x2)x3,

for some bilinear function f ∈ L2(A).

ker T2 is a subgroup of L2(A)

imT2 is a subgroup of L3(A)

§we do not use imT2 in what follows



G = T2

(LIE ALGEBRAS)

X = L2
s(A) (skew symmetric bilinear

transformations on A×A)

Y = L3
s(A) (skew symmetric trilinear

transformations on A×A×A)

T2(f)(x1, x2, x3) =

[f(x2, x3), x1]− [f(x1, x3), x2] + [f(x1, x2), x3]

−f(x3, [x1, x2]) + f(x2, [x1, x3])− f(x1, [x2, x3])

ker T2 = {f ∈ L(A) : T2f(x1, x2, x3) =

0 for all x1, x2, x3 ∈ A} =?

ker T2 is a subgroup of L2(A)

imT2 is a subgroup¶ of L3(A)

¶we do not use imT2 in what follows
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Cohomology groups were defined in various

contexts as follows

• associative algebras (1945)

• Lie algebras (1952)

• Lie triple systems (1961,2002)

• Jordan algebras (1971)

• associative triple systems (1976)

• Jordan triple systems (1982)



GRADUS AD PARNASSUM

(COHOMOLOGY)

1. Verify that there is a one to one correspon-

dence between partitions of a set X and

equivalence relations on that set.

Precisely, show that

• If X = ∪Xi is a partition of X, then R :=

{(x, y) × X : x, y ∈ Xi for some i} is an

equivalence relation whose equivalence

classes are the subsets Xi.

• If R is an equivalence relation on X with

equivalence classes Xi, then X = ∪Xi is

a partition of X.

2. Verify that Tn+1 ◦ Tn = 0 for n = 0,1,2.

Then prove it for all n ≥ 3.

3. Show that if f : G1 → G2 is a homomor-

phism of groups, then G1/ker f is isomor-

phic to f(G1)

Hint: Show that the map [x] 7→ f(x) is an

isomorphism of G1/ker f onto f(G1)



4. Show that if h : A1 → A2 is a homomor-
phism of algebras, then A1/ker h is isomor-
phic to h(A1)
Hint: Show that the map [x] 7→ h(x) is an
isomorphism of A1/ker h onto h(A1)

5. Show that the algebra Mh in Example 2 is
associative.
Hint: You use the fact that A is associa-
tive AND the fact that, since h ∈ ker T2,
h(a, b)c+ h(ab.c) = ah(b, c) + h(a, bc)

6. Show that equivalence of extensions is ac-
tually an equivalence relation.
Hint:
• reflexive: ψ : M →M is the identity map
• symmetric: replace ψ : M → M ′ by its

inverse ψ−1 : M ′ →M

• transitive: given ψ : M → M ′ and ψ′ :
M ′ →M ′′ let ψ′′ = ψ′ ◦ ψ : M →M ′′

7. Show that in example 2, if h1 and h2 are
equivalent bilinear maps, that is, h1−h2 =
T1f for some linear map f , then Mh1

and
Mh2

are equivalent extensions of {0}×A by
A. Hint: ψ : Mh1

→Mh2
is defined by

ψ(a, x) = (a, x+ f(a))


