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Abstract

I will talk about Tingley’s problem for finite dimensional JC*-triples, basically
rectangular matrices. Part 1 was about Tingley’s problem for finite dimensional
C*-algebras, basically square matrices. The main ingredient for the latter was the
use of unitary matrices. In rectangular matrices there are no unitaries, so a new
idea is needed. It was provided by Polo and Peralta.

Reference: Polo-Peralta
Francisco J. Fernandez-Polo and Antonio M. Peralta
Low rank compact operators and Tingley’s problem (preprint 2016)
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Review of Part 1

Notation

If X is a Banach space with norm ‖ · ‖, its unit ball and unit sphere are

B = B(X ) = {x ∈ X : ‖x‖ ≤ 1}

S = S(X ) = {x ∈ X : ‖x‖ = 1}

Mazur-Ulam 1932

If f ;X 7→ X ′ is a surjective isometry (not assumed linear), then f is linear (or
more precisely, affine)

Mankiewicz 1972

If f : B → B ′ is a surjective isometry, then f extends to a linear (or affine)
surjective isometry from X to X ′.
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Example 1

An isometry that is not linear or affine (Hint: it is not onto):
X = R,X ′ = R2,‖(x , y)‖ = max{|x |, |y |}, f (x) = (x , x) if x ≥ 0, f (x) = (x ,−x)
if x < 0.

Question (Tingley’s problem)

If f : S → S ′ is a surjective isometry, is f the restriction to S of a linear (or affine)
transformation? Not known at this time even for dimension 2.

Theorem (Tingley 1987)

Suppose that S and S ′ are the unit spheres of finite dimensional Banach spaces X
and X ′. If f : S → S ′ is a surjective isometry, then f (−x) = −f (x) for all x ∈ S

Example 2

X = R, ‖x‖ = |x |, S = {−1, 1}
There are four functions f : S → S , two of which are surjective.

To make progress, give X some more structure.
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The main result of Part 1

Theorem (Tanaka 2017)

Let A1 and A2 be finite dimensional C*-algebras. Suppose that
f : S(A1)→ S(A2) is a surjective isometry. Then there is a real linear surjective
isometry φ : A1 → A2 such that φ(a) = f (a) for every a ∈ S(A1)

A finite dimensional C*-algebra A is a finite direct sum of full matrix algebras:

A ∼ Mn1(C)⊕Mn2(C)⊕ · · ·Mnk (C)

(dimA = n21 + n22 + · · · n2k)
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One of the main tools for Part 1

Theorem (Hatori-Molnar 2014) (isometries of unitaries)

Let U(n) be the set of unitary n × n matrices. The map φ : U(n)→ U(n) is a
surjective isometry if and only if there is a unitary w ∈ U(n) such that either

φ(a) = φ(1)waw∗ for all a ∈ U(n)

or
φ(a) = φ(1)watw∗ for all a ∈ U(n).
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Some lemmas from part 1
(convex subsets of unit sphere) Tanaka 2016, 2017

Lemma 1
Let X be a Banach space. Suppose that C is a maximal convex subset of the unit
sphere S(X ) of X . Then C is a norm exposed face of B(X ).

Convex set, extreme point, face, exposed point, exposed face

Lemma 2

Let X and Y be Banach spaces, and let T : S(X )→ S(Y ) be a surjective
isometry. Then C is a maximal convex subset of S(X ) if and only if T (C ) is that
of S(Y ). (So by Lemma 1, faces are mapped into faces.)

Lemma 3

Let A1 and A2 be finite dimensional C*-algebras. Suppose that
T : S(A1)→ S(A2) is a surjective isometry. Then T is locally affine, that is, if
a, b, ta + (1− t)b ∈ S(A1) for some t ∈ (0, 1), then sa + (1− s)b ∈ S(A1) for all
s ∈ [0, 1], and

T (sa + (1− s)b) = sT (a) + (1− s)T (b), s ∈ [0, 1].
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faces in the unit ball

Theorem

Every closed face of B(Mn(C)) is associated with a unique partial isometry
v ∈ Mn(C) such that

F = v + (1− vv∗)B(Mn(C))(1− v∗v) = {a ∈ Mn(C) : av∗ = vv∗}.

More generally

Every closed face of B(Mm,n(C)) is associated with a unique partial isometry
v ∈ Mm,n(C) such that

F = v + (1− vv∗)B(Mm,n(C))(1− v∗v) = {a ∈ Mn(C) : av∗ = vv∗}.

The same is true if Mm,n(C) is replaced by any Cartan factor.
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Part 2 begins here

Recall

A finite dimensional C*-algebra A is a finite direct sum of full matrix algebras:

A ∼ Mn1(C)⊕Mn2(C)⊕ · · ·Mnk (C)

(dimA = n21 + n22 + · · · n2k)

A finite dimensional JC*-triple is a finite direct sum of Cartan factors:

A ∼ C1 ⊕ C2 · · · ⊕ Ck

Cartan factors

Type 1: Mm,n(C), dimension mn, rank min{m, n}
Type 2: An(C) (anti-symmetric), dimension (n − 1)n/2), rank [n/2]
Type 3: Sn(C) (symmetric), dimension (n + 1)n/2, rank n
Type 4: Spn (spin factors), dimension n, rank 2
Type 5: M1,2(O), dimension 16, rank 2 (O = Octonions)
Type 6: M3(O)h, dimension 27, rank 3 (O = Octonions)
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Theorem (Polo-Peralta Theorem 4.7)

Let A1 and A2 be finite dimensional JC*-triples. Suppose that f : S(A1)→ S(A2)
is a surjective isometry. Then there is a real linear surjective isometry
φ : A1 → A2 such that φ(a) = f (a) for every a ∈ S(A1)

This is just one step in the proof of

Theorem (Polo-Peralta Theorem 2.5)

Let f : S(A)→ S(B) be a surjective isometry between the unit spheres of two
weakly compact JB∗-triples. Then there is a surjective real linear isometry
T : A→ B satisfying T (x) = f (x) for every x ∈ S(A).

For Theorem 4.7, it suffices to assume that A1 and A2 are Cartan factors, now
called C and C ′

We first dispose of the case when the rank of C is 1 (see the next page)

For C with rank ≥ 2, the proof is by induction on the dimension of C .
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Rank 1 case

Guanggui Ding: Science in China 45 2002 pp 479-483

“The 1-Lipschitz mapping between the unit spheres of two Hilbert spaces can be
extended to a real linear isometry of the whole space”

Theorem
Let E and F be inner-product spaces and V a mapping from the unit sphere
S1(E ) into S1(F ). If −V (S1(E )) ⊂ V (S1(E )) and

‖V (x1)− V (x2)‖ ≤ ‖x1 − x2‖, for all x1, x2 ∈ S1(E ),

then V can be extended to a real-linear isometric mapping of E into F ,
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Let f : S(C )→ S(C ′) be a surjective isometry where C and C ′ are Cartan factors.

We need to prove that there is a real linear surjective isometry φ : C → C ′ such
that φ(a) = f (a) for every a ∈ S(C )

The statement is true if dimC = 1

We assume that the statement is true for all Cartan factors of dimension ≤ n and
suppose C has dimension n + 1 and rank ≥ 2.

Polo-Peralta Lemma 3.6

If e is a minimal partial isometry in C , then f (e) is a minimal partial isometry in
C ′, and either f (ie) = if (e) or f (ie) = −if (e)

Polo-Peralta Corollary 3.13

• If f (ie) = if (e) then f (iu) = if (u) for all minimal partial isometries u in C
• If f (ie) = −if (e) then f (iu) = −if (u) for all minimal partial isometries u in C .
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Idea for Lemma 3.6
If e is a minimal partial isometry in C , then

F = e + (1− ee∗)B(C )(1− e∗e)

is a face in B(C ). Since f maps faces to faces,

f (F ) = v + (1− vv∗)B(C ′)(1− v∗v)

for some partial isometry v ∈ C ′. It follows (details omitted) that v is minimal,
f (e) = v , and f (ie) = ±if (e).

Corollary 3.13

details omitted
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Polo-Peralta Proposition 2.1(c)

There is a surjective real linear isometryTe : C0(e)→ C0(f (e)) satisfying
Te(x) = f (x) for all x ∈ S(C0(e)).

Polo-Peralta Lemma 3.14

If e is a minimal partial isometry in C , then f (S(C1(e))) = S(C1(f (e)))

Since dimC1(e) ≤ n and C1(e) is a Cartan factor, by the induction hypothesis, we
have a surjective real-linear isometry T1 : C1(e)→ C1(f (e)) satisfying
T1(x) = f (x) for all x ∈ S(C1(e)).
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Define a real linear mapping T : C → C ′ by

Tx = T (λe + x1 + x0) = λf (e) + T1(x1) + Te(x0),

for x = λe + x1 + x0 ∈ C2(e) + C1(e) + C0(e)

Polo-Peralta Theorem 4.5

Tu = f (u) for every minimal partial isometry in C

Polo-Peralta Proposition 2.1(c), continued

Tx = f (x) for every x ∈ S(C )

Q. E. D.

Bernard Russo (UCI) Maps which preserve equality of distance. Must they be linear? (Part 2) 15 / 15


