Maps which preserve equality of distance. Must they be linear? (Part 2)

Colloquium
Fullerton College

Bernard Russo
University of California, Irvine

March 15, 2018

Abstract

I will talk about Tingley's problem for finite dimensional JC*-triples, basically rectangular matrices. Part 1 was about Tingley's problem for finite dimensional C*-algebras, basically square matrices. The main ingredient for the latter was the use of unitary matrices. In rectangular matrices there are no unitaries, so a new idea is needed. It was provided by Polo and Peralta.

Reference: Polo-Peralta

Francisco J. Fernandez-Polo and Antonio M. Peralta
Low rank compact operators and Tingley's problem (preprint 2016)

Review of Part 1

Notation

If X is a Banach space with norm $\|\cdot\|$, its unit ball and unit sphere are

$$
\begin{aligned}
& B=B(X)=\{x \in X:\|x\| \leq 1\} \\
& S=S(X)=\{x \in X:\|x\|=1\}
\end{aligned}
$$

Mazur-Ulam 1932

If $f ; X \mapsto X^{\prime}$ is a surjective isometry (not assumed linear), then f is linear (or more precisely, affine)

Mankiewicz 1972

If $f: B \rightarrow B^{\prime}$ is a surjective isometry, then f extends to a linear (or affine) surjective isometry from X to X^{\prime}.

Example 1

An isometry that is not linear or affine (Hint: it is not onto):
$X=\mathbb{R}, X^{\prime}=\mathbb{R}^{2},\|(x, y)\|=\max \{|x|,|y|\}, f(x)=(x, x)$ if $x \geq 0, f(x)=(x,-x)$ if $x<0$.

Question (Tingley's problem)

If $f: S \rightarrow S^{\prime}$ is a surjective isometry, is f the restriction to S of a linear (or affine) transformation? Not known at this time even for dimension 2.

Theorem (Tingley 1987)

Suppose that S and S^{\prime} are the unit spheres of finite dimensional Banach spaces X and X^{\prime}. If $f: S \rightarrow S^{\prime}$ is a surjective isometry, then $f(-x)=-f(x)$ for all $x \in S$

Example 2

$X=\mathbb{R},\|x\|=|x|, S=\{-1,1\}$
There are four functions $f: S \rightarrow S$, two of which are surjective.

To make progress, give X some more structure.

The main result of Part 1

Theorem (Tanaka 2017)

Let A_{1} and A_{2} be finite dimensional C^{*}-algebras. Suppose that $f: S\left(A_{1}\right) \rightarrow S\left(A_{2}\right)$ is a surjective isometry. Then there is a real linear surjective isometry $\phi: A_{1} \rightarrow A_{2}$ such that $\phi(a)=f(a)$ for every $a \in S\left(A_{1}\right)$

A finite dimensional C^{*}-algebra A is a finite direct sum of full matrix algebras:

$$
A \sim M_{n_{1}}(\mathbb{C}) \oplus M_{n_{2}}(\mathbb{C}) \oplus \cdots M_{n_{k}}(\mathbb{C})
$$

$\left(\operatorname{dim} A=n_{1}^{2}+n_{2}^{2}+\cdots n_{k}^{2}\right)$

One of the main tools for Part 1

Theorem (Hatori-Molnar 2014) (isometries of unitaries)

Let $U(n)$ be the set of unitary $n \times n$ matrices. The map $\phi: U(n) \rightarrow U(n)$ is a surjective isometry if and only if there is a unitary $w \in U(n)$ such that either

$$
\phi(a)=\phi(1) \text { waw }^{*} \text { for all } a \in U(n)
$$

or

$$
\phi(a)=\phi(1) w a^{t} w^{*} \text { for all } a \in U(n) .
$$

Some lemmas from part 1

(convex subsets of unit sphere) Tanaka 2016, 2017

Lemma 1

Let X be a Banach space. Suppose that C is a maximal convex subset of the unit sphere $S(X)$ of X. Then C is a norm exposed face of $B(X)$.

Convex set, extreme point, face, exposed point, exposed face

Lemma 2

Let X and Y be Banach spaces, and let $T: S(X) \rightarrow S(Y)$ be a surjective isometry. Then C is a maximal convex subset of $S(X)$ if and only if $T(C)$ is that of $S(Y)$. (So by Lemma 1, faces are mapped into faces.)

Lemma 3

Let A_{1} and A_{2} be finite dimensional C^{*}-algebras. Suppose that
$T: S\left(A_{1}\right) \rightarrow S\left(A_{2}\right)$ is a surjective isometry. Then T is locally affine, that is, if $a, b, t a+(1-t) b \in S\left(A_{1}\right)$ for some $t \in(0,1)$, then $s a+(1-s) b \in S\left(A_{1}\right)$ for all $s \in[0,1]$, and

$$
T(s a+(1-s) b)=s T(a)+(1-s) T(b), \quad s \in[0,1] .
$$

faces in the unit ball

Theorem

Every closed face of $B\left(M_{n}(\mathbb{C})\right)$ is associated with a unique partial isometry $v \in M_{n}(\mathbb{C})$ such that

$$
F=v+\left(1-v v^{*}\right) B\left(M_{n}(\mathbb{C})\right)\left(1-v^{*} v\right)=\left\{a \in M_{n}(\mathbb{C}): a v^{*}=v v^{*}\right\}
$$

More generally

Every closed face of $B\left(M_{m, n}(\mathbb{C})\right)$ is associated with a unique partial isometry $v \in M_{m, n}(\mathbb{C})$ such that

$$
F=v+\left(1-v v^{*}\right) B\left(M_{m, n}(\mathbb{C})\right)\left(1-v^{*} v\right)=\left\{a \in M_{n}(\mathbb{C}): a v^{*}=v v^{*}\right\}
$$

The same is true if $M_{m, n}(\mathbb{C})$ is replaced by any Cartan factor.

Part 2 begins here

Recall

A finite dimensional C^{*}-algebra A is a finite direct sum of full matrix algebras:

$$
A \sim M_{n_{1}}(\mathbb{C}) \oplus M_{n_{2}}(\mathbb{C}) \oplus \cdots M_{n_{k}}(\mathbb{C})
$$

$\left(\operatorname{dim} A=n_{1}^{2}+n_{2}^{2}+\cdots n_{k}^{2}\right)$

A finite dimensional JC*-triple is a finite direct sum of Cartan factors:

$$
A \sim C_{1} \oplus C_{2} \cdots \oplus C_{k}
$$

Cartan factors

Type 1: $M_{m, n}(\mathbb{C})$, dimension $m n$, rank $\min \{m, n\}$
Type 2: $A_{n}(\mathbb{C})$ (anti-symmetric), dimension $\left.(n-1) n / 2\right)$, rank [$n / 2$]
Type 3: $S_{n}(\mathbb{C})$ (symmetric), dimension $(n+1) n / 2$, rank n
Type 4: $S p_{n}$ (spin factors), dimension n, rank 2
Type 5: $M_{1,2}(\mathcal{O})$, dimension 16 , rank $2(\mathcal{O}=$ Octonions $)$
Type 6: $M_{3}(\mathcal{O})_{h}$, dimension 27, rank $3(\mathcal{O}=$ Octonions)

Theorem (Polo-Peralta Theorem 4.7)

Let A_{1} and A_{2} be finite dimensional JC*-triples. Suppose that $f: S\left(A_{1}\right) \rightarrow S\left(A_{2}\right)$ is a surjective isometry. Then there is a real linear surjective isometry
$\phi: A_{1} \rightarrow A_{2}$ such that $\phi(a)=f(a)$ for every $a \in S\left(A_{1}\right)$
This is just one step in the proof of

Theorem (Polo-Peralta Theorem 2.5)

Let $f: S(A) \rightarrow S(B)$ be a surjective isometry between the unit spheres of two weakly compact JB*-triples. Then there is a surjective real linear isometry $T: A \rightarrow B$ satisfying $T(x)=f(x)$ for every $x \in S(A)$.

For Theorem 4.7, it suffices to assume that A_{1} and A_{2} are Cartan factors, now called C and C^{\prime}

We first dispose of the case when the rank of C is 1 (see the next page)

For C with rank ≥ 2, the proof is by induction on the dimension of C.

Rank 1 case

Guanggui Ding: Science in China 452002 pp 479-483

"The 1-Lipschitz mapping between the unit spheres of two Hilbert spaces can be extended to a real linear isometry of the whole space"

Theorem

Let E and F be inner-product spaces and V a mapping from the unit sphere $S_{1}(E)$ into $S_{1}(F)$. If $-V\left(S_{1}(E)\right) \subset V\left(S_{1}(E)\right)$ and

$$
\left\|V\left(x_{1}\right)-V\left(x_{2}\right)\right\| \leq\left\|x_{1}-x_{2}\right\|, \text { for all } x_{1}, x_{2} \in S_{1}(E)
$$

then V can be extended to a real-linear isometric mapping of E into F,

Let $f: S(C) \rightarrow S\left(C^{\prime}\right)$ be a surjective isometry where C and C^{\prime} are Cartan factors.

We need to prove that there is a real linear surjective isometry $\phi: C \rightarrow C^{\prime}$ such that $\phi(a)=f(a)$ for every $a \in S(C)$

The statement is true if $\operatorname{dim} C=1$

We assume that the statement is true for all Cartan factors of dimension $\leq n$ and suppose C has dimension $n+1$ and rank ≥ 2.

Polo-Peralta Lemma 3.6

If e is a minimal partial isometry in C, then $f(e)$ is a minimal partial isometry in C^{\prime}, and either $f(i e)=i f(e)$ or $f(i e)=-i f(e)$

Polo-Peralta Corollary 3.13

- If $f(i e)=$ if (e) then $f(i u)=i f(u)$ for all minimal partial isometries u in C
- If $f(i e)=-i f(e)$ then $f(i u)=-i f(u)$ for all minimal partial isometries u in C.

Idea for Lemma 3.6

If e is a minimal partial isometry in C, then

$$
F=e+\left(1-e e^{*}\right) B(C)\left(1-e^{*} e\right)
$$

is a face in $B(C)$. Since f maps faces to faces,

$$
f(F)=v+\left(1-v v^{*}\right) B\left(C^{\prime}\right)\left(1-v^{*} v\right)
$$

for some partial isometry $v \in C^{\prime}$. It follows (details omitted) that v is minimal, $f(e)=v$, and $f(i e)= \pm i f(e)$.

Corollary 3.13

details omitted

Polo-Peralta Proposition 2.1(c)

There is a surjective real linear isometry $T_{e}: C_{0}(e) \rightarrow C_{0}(f(e))$ satisfying $T_{e}(x)=f(x)$ for all $x \in S\left(C_{0}(e)\right)$.

Polo-Peralta Lemma 3.14

If e is a minimal partial isometry in C, then $f\left(S\left(C_{1}(e)\right)\right)=S\left(C_{1}(f(e))\right)$

Since $\operatorname{dim} C_{1}(e) \leq n$ and $C_{1}(e)$ is a Cartan factor, by the induction hypothesis, we have a surjective real-linear isometry $T_{1}: C_{1}(e) \rightarrow C_{1}(f(e))$ satisfying $T_{1}(x)=f(x)$ for all $x \in S\left(C_{1}(e)\right)$.

Define a real linear mapping $T: C \rightarrow C^{\prime}$ by

$$
T x=T\left(\lambda e+x_{1}+x_{0}\right)=\lambda f(e)+T_{1}\left(x_{1}\right)+T_{e}\left(x_{0}\right),
$$

for $x=\lambda e+x_{1}+x_{0} \in C_{2}(e)+C_{1}(e)+C_{0}(e)$

Polo-Peralta Theorem 4.5

$T u=f(u)$ for every minimal partial isometry in C

Polo-Peralta Proposition 2.1(c), continued

$T x=f(x)$ for every $x \in S(C)$
Q. E. D.

