

Jordan cohomology for operator algebras

Great Plains Operator Theory Symposium
Kansas State University, Manhattan, KS

Bernard Russo

University of California, Irvine

May 30, 2014

Outline

- Jordan Derivations
- Jordan Weak*-Amenability
- Jordan 2-cocycles

NOTE: Jordan can mean Jordan algebra or Jordan triple
(depending on my fancy)

Building on earlier work of Kadison, Sakai proved that every derivation $\delta : M \rightarrow M$ of a von Neumann algebra into itself is inner (1966).

$$\delta(ab) = a\delta(b) + \delta(a)b \quad , \quad \delta(x) = \text{ad } a(x) = ax - xa$$

Thus the first Hochschild cohomology group $H^1(M, M)$ vanishes for any von Neumann algebra M .

Building on earlier work of Bunce and Paschke, Haagerup showed in 1983 that every derivation $\delta : M \rightarrow M_*$ of a von Neumann algebra into its predual is inner, and as a consequence that every C^* -algebra is weakly amenable. .

$$\begin{aligned} \delta(ab) &= a.\delta(b) + \delta(a).b \quad , \quad \delta(x) = \text{ad } \varphi(x) = \varphi.x - x.\varphi \\ \varphi.x(y) &= \varphi(xy) \quad , \quad x.\varphi(y) = \varphi(yx) \end{aligned}$$

Thus the first Hochschild cohomology group $H^1(M, M_*)$ vanishes for any von Neumann algebra M .

PROPOSITION 1 (special case of Upmeier 1980)

Let M be any von Neumann algebra. Then every Jordan derivation of M is an inner Jordan derivation. Thus the first “Jordan cohomology group” $H_J^1(M, M)$ vanishes for any von Neumann algebra M .

Earlier History

FD SS char 0: **Jacobson** 1949, 1951; char $\neq 2$: **Harris** 1959

Definition

When x_0 is an element in a Jordan Banach A -module, X , over a Jordan Banach algebra ^a, A , for each $b \in A$, the mapping $\delta_{x_0, b} = [L(b), L(x_0)] : A \rightarrow X$,

$$\delta_{x_0, b}(a) := (x_0 \circ a) \circ b - (b \circ a) \circ x_0, \quad (a \in A),$$

is a Jordan derivation. Finite sums of derivations of this form are called **inner Jordan derivations**.

^aFor purposes of this talk, Jordan algebra means an associative algebra with the product $a \circ b = (ab + ba)/2$, so for a Jordan derivation $D(a^2) = 2a \circ D(a)$ is enough.

Commutators in von Neumann algebras

Pearcy-Topping '69; Fack-delaHarpe '80

If M is a finite von Neumann algebra, then every element of M of central trace zero is a finite sum of commutators

Halmos '52, '54; Brown-Pearcy-Topping '68; Halpern '69

If M is properly infinite (no finite central projections), then every element of M is a finite sum of commutators

Thus for any von Neumann algebra, we have $M = Z(M) + [M, M]$, where $Z(M)$ is the center of M and $[M, M]$ is the set of finite sums of commutators in M .

PROOF of PROPOSITION 1

Suppose δ is a Jordan derivation of M . Then δ is an associative derivation (Sinclair) and by Kadison-Sakai, $\delta(x) = ax - xa$ where $a = z + \sum [x_i, y_i]$ with $z \in Z(M)$ and $x_i, y_i \in M$. Since $\text{ad } [x, y] = 4[L(x), L(y)]$, δ is an inner Jordan derivation. Q.E.D.

PROPOSITION 2

(special case of Ho-Martinez-Peralta-Russo 2002)

Every Jordan triple derivation of M is an inner triple derivation. Thus $H_t^1(M, M) = 0$

Earlier History

FD SS char 0: **Meyberg** 1972: Jordan Pair: **Loos** 1977, **Kühn-Rosendahl** 1978

Definition

Let E be a Jordan triple^a and let X be a triple E -module. For each $b \in E$ and each $x_0 \in X$, the mapping $\delta = L(b, x_0) - L(x_0, b) : E \rightarrow X$, defined by

$$\delta(a) = \{b, x_0, a\} - \{x_0, b, a\} \quad (a \in E), \quad (1)$$

is a triple derivation from E into X . Finite sums of derivations of the form $\delta(b, x_0)$ are called **inner triple derivations**.

^aFor purposes of this talk, a Jordan triple is an associative $*$ -algebra with the triple product $\{a, b, c\} = (ab^*c + cb^*a)/2$ and a triple derivation satisfies $\delta\{a, b, c\} = \{\delta a, b, c\} + \{a, \delta b, c\} + \{a, b, \delta c\}$

LEMMA

Let A be a unital Banach $*$ -algebra equipped with the ternary product given by $\{a, b, c\} = \frac{1}{2} (ab^*c + cb^*a)$ and the Jordan product $a \circ b = (ab + ba)/2$.

- ▶ Let D be an inner derivation, that is, $D = ad a$ for some a in A . Then D is a $*$ -derivation whenever $a^* = -a$. Conversely, if D is a $*$ -derivation, then $a^* = -a + z$ for some z in the center of A .
- ▶ Every triple derivation is the sum of a Jordan $*$ -derivation and an inner triple derivation.

PROOF of PROPOSITION 2

Suppose δ is a self-adjoint Jordan derivation of M . Then δ is an associative derivation (Sinclair) and by Kadison-Sakai and the Lemma, $\delta(x) = ax - xa$ where $a^* + a = z$ is a self adjoint element of the center of M . Since $M = Z(M) + [M, M]$, where $Z(M)$ denotes the center of M , we can therefore write

$$a = z' + \sum_j [b_j + ic_j, b'_j + ic'_j],$$

where b_j, b'_j, c_j, c'_j are self adjoint elements of M and $z' \in Z(M)$.

It follows that

$$0 = a^* + a - z = (z')^* + z' - z + 2i \sum_j ([c_j, b'_j] + [b_j, c'_j])$$

so that $\sum_j ([c_j, b'_j] + [b_j, c'_j])$ belongs to the center of M . We now have

$$\delta = \text{ad } a = \text{ad } \sum_j ([b_j, b'_j] - [c_j, c'_j]) \quad (2)$$

We have just seen that a self adjoint Jordan derivation δ of M has the form (2). A direct calculation shows that δ is equal to the inner triple derivation

$$\sum_j (L(b_j, 2b'_j) - L(2b'_j, b_j) - L(c_j, 2c'_j) + L(2c'_j, c_j)).$$

Thus, every triple derivation is inner.

Commutators in the predual of a von Neumann algebra

Theorem 1 Let M be a von Neumann algebra.

- (a) If every Jordan derivation of M into M_* is approximated in norm by inner Jordan derivations, then M is finite.
- (b) Conversely, if M is a finite von Neumann algebra acting on a separable Hilbert space or if M is a finite factor, then every Jordan derivation of M into M_* is approximated in norm by inner Jordan derivations.

Corollary (Cohomological characterization of finiteness)

If M acts on a separable Hilbert space, or if M is a factor, then M is finite if and only if every Jordan derivation of M into M_* is approximated in norm by inner Jordan derivations.

Theorem 1 and its corollary hold with Jordan derivation replaced by Jordan triple derivation

Theorem 2 Let M be an infinite factor

The complex vector space of Jordan derivations of M into M_* , modulo the norm closure of the inner Jordan derivations, has dimension 1.

Corollary (Zero-One Law)

If M is a factor, the linear space of Jordan derivations into the predual, modulo the norm closure of the inner Jordan derivations, has dimension 0 or 1: It is zero if the factor is finite; and it is 1 if the factor is infinite.

Theorem 2 and its corollary hold with Jordan derivation replaced by Jordan triple derivation

Theorems 1 and 2 and Propositions 3 and 4 which follow are joint work with Robert Pluta

Summary: If M is a factor,

$$M \text{ is infinite} \Leftrightarrow \frac{\text{Jordan Derivations into } M_*}{\text{Norm closure of inner Jordan derivations into } M_*} \sim \mathbb{C}$$

$$M \text{ is finite} \Leftrightarrow \frac{\text{Jordan Derivations into } M_*}{\text{Norm closure of inner Jordan derivations into } M_*} = 0$$

$$M \text{ is infinite} \Leftrightarrow \frac{\text{Jordan triple Derivations into } M_*}{\text{Norm closure of inner triple derivations into } M_*} \sim \mathbb{R}$$

$$M \text{ is finite} \Leftrightarrow \frac{\text{Jordan triple Derivations into } M_*}{\text{Norm closure of inner triple derivations into } M_*} = 0$$

Which von Neumann algebras are Jordan weak*-amenable? That is, every Jordan derivation into the predual is inner

Short answer: commutative, finite dimensional. Any others?

Proposition 3 Let M be a finite von Neumann algebra.

- (a) If M acts on a separable Hilbert space or is a factor (hence admits a faithful normal finite trace tr), and if $\text{tr}^{-1}(0) = [M_*, M]$, then M is Jordan weak*-amenable. (Extended trace)
- (b) If M is a factor and M is Jordan weak*-amenable, then $\text{tr}^{-1}(0) = [M_*, M]$.

Corollary

No factor of type II_1 is Jordan weak*-amenable

Proposition 3 and its corollary hold with Jordan derivation replaced by Jordan triple derivation

If M is a finite von Neumann algebra of type I_n , with $n < \infty$, we can assume

$$M = L^\infty(\Omega, \mu, M_n(\mathbb{C})) = M_n(L^\infty(\Omega, \mu)),$$

$$M_* = L^1(\Omega, \mu, M_n(\mathbb{C})_*) = M_n(L^1(\Omega, \mu))$$

and

$$Z(M) = L^\infty(\Omega, \mu)1.$$

It is known that the center valued trace on M is given by

$$\text{TR}(x) = \frac{1}{n} \left(\sum_1^n x_{ii} \right) 1 \quad , \quad \text{for } x = [x_{ij}] \in M$$

We thus define, for a finite von Neumann algebra of type I_n which has a faithful normal finite trace tr ,

$$\text{TR}(\psi) = \frac{1}{n} \left(\sum_1^n \psi_{ii} \right) \text{tr} \quad , \quad \text{for } \psi = [\psi_{ij}] \in M_*.$$

- (a) If $\text{TR}(\psi) = 0$, then ψ vanishes on the center $Z(M)$ of M .
- (b) $\psi^* = -\psi$ on $Z(M)$ if and only if $\text{tr}(\psi(\omega))$ is purely imaginary for almost every ω .

$$\begin{aligned}
 \psi(x) &= \int_{\Omega} \langle \psi(\omega), x(\omega) \rangle d\mu(\omega) = \int_{\Omega} \text{tr}(\psi(\omega)x(\omega)) d\mu(\omega) \\
 &= \int_{\Omega} \text{tr}\left(\left[\sum_k \psi_{ik}(\omega)x_{kj}(\omega)\right]\right) d\mu(\omega) \\
 &= \int_{\Omega} \left(\sum_i \sum_k \psi_{ik}(\omega)x_{ki}(\omega)\right) d\mu(\omega) \\
 &= \int_{\Omega} \left(\sum_k \psi_{kk}(\omega)x_{kk}(\omega)\right) d\mu(\omega) \\
 &= \int_{\Omega} \left(\sum_k \psi_{kk}(\omega)\right) f(\omega) d\mu(\omega) = 0
 \end{aligned}$$

proving (a). As for (b), use $\psi(f \cdot 1) = \int_{\Omega} f(\omega) \text{tr}(\psi(\omega)) d\mu(\omega)$.

Proposition 4

Let M be a finite von Neumann algebra of type I_n with $n < \infty$, which admits a faithful normal finite trace tr (equivalently, M is countably decomposable = σ -finite). Then M is Jordan weak*-amenable if and only if

$$\text{TR}^{-1}(0) = [M_*, M].$$

Corollary

Let M be a finite von Neumann algebra of type I_n admitting a faithful normal finite trace tr . If $\text{tr}^{-1}(0) = [M_*, M]$, then M is Jordan weak*-amenable.

Proposition 4 and its corollary hold with Jordan derivation replaced by Jordan triple derivation

Problem

Is a finite von Neumann algebra of type I Jordan weak*-amenable? or triple weak*-amenable? If M admits a faithful normal finite trace, is

$$\text{TR}^{-1}(0) = [M_*, M]?$$

Jordan 2-cocycles

Let M be a von Neumann algebra. A **Hochschild 2-cocycle** is a bilinear map $f : M \times M \rightarrow M$ satisfying

$$af(b, c) - f(ab, c) + f(a, bc) - f(a, b)c = 0 \quad (3)$$

EXAMPLE: **Hochschild 2-coboundary**

$$f(a, b) = a\mu(b) - \mu(ab) + \mu(a)b \quad , \quad \mu : M \rightarrow M \text{ linear}$$

A **Jordan 2-cocycle** is a bilinear map $f : M \times M \rightarrow M$ satisfying

$$f(a, b) = f(b, a) \text{ (symmetric)}$$

$$\begin{aligned} & f(a^2, a \circ b) + f(a, b) \circ a^2 + f(a, a) \circ (a \circ b) \\ & - f(a^2 \circ b, a) - f(a^2, b) \circ a - (f(a, a) \circ b) \circ a = 0 \end{aligned} \quad (4)$$

EXAMPLE: **Jordan 2-coboundary**

$$f(a, b) = a \circ \mu(b) - \mu(a \circ b) + \mu(a) \circ b, \quad , \quad \mu : M \rightarrow M \text{ linear}$$

$$H^1(M, M) = \frac{1\text{-cocycles}}{1\text{-coboundaries}} = \frac{\text{derivations}}{\text{inner derivations}}$$

$$H_J^1(M, M) = \frac{\text{Jordan 1-cocycles}}{\text{Jordan 1-coboundaries}} = \frac{\text{Jordan derivations}}{\text{inner Jordan derivations}}$$

$$H^2(M, M) = \frac{2\text{-cocycles}}{2\text{-coboundaries}} \quad , \quad H_J^2(M, M) = \frac{\text{Jordan 2-cocycles}}{\text{Jordan 2-coboundaries}}$$

For almost all von Neumann algebras, $H^2(M, M) = 0$. How about $H_J^2(M, M)$?

FD char 0: **Albert** 1947, **Penico** 1951; char $\neq 2$: **Taft** 1957

Two elegant approaches: Jordan classification; Lie algebras

One inelegant approach: solving linear equations

Linear algebra approach-Level 1

Let h be a Hochschild 1-cocycle, that is, a linear map $h : M_n(\mathbb{C}) \rightarrow M_n(\mathbb{C})$ satisfying $h(ab) - ah(b) - h(a)b = 0$. To show that there is an element $x \in M_n(\mathbb{C})$ such that $h(a) = xa - ax$, it is enough to prove this with $a \in \{e_{ij}\}$. With

$$x = \sum_{p,q} x_{pq} e_{pq}. \quad (5)$$

and γ_{ijpq} defined by

$$h(e_{ij}) = \sum_{p,q} \gamma_{ijpq} e_{pq}, \quad (6)$$

we arrive at the system of linear vector equations

$$\sum_{p,q} \gamma_{ijpq} e_{pq} = \sum_{p,q} \delta_{qi} x_{pq} e_{pj} - \sum_{p,q} \delta_{jp} x_{pq} e_{iq}. \quad (7)$$

with n^2 unknowns x_{ij} . Then any solution of (7) proves the result.

Linear algebra approach-Level 2

Let h be a Hochschild 2-cocycle, that is, a bilinear map

$h : M_n(\mathbb{C}) \times M_n(\mathbb{C}) \rightarrow M_n(\mathbb{C})$ satisfying

$$ah(b, c) - h(ab, c) + h(a, bc) - h(a, b)c = 0.$$

To show that there is a linear transformation $\mu : M_n(\mathbb{C}) \rightarrow M_n(\mathbb{C})$ such that $h(a, b) = \mu(ab) - a\mu(b) - \mu(a)b$, it is enough to prove that this holds with $a, b \in \{e_{ij}\}$, that is

$$h(e_{ij}, e_{kl}) = \delta_{jk}\mu(e_{il}) - e_{ij}\mu(e_{kl}) - \mu(e_{ij})e_{kl}. \quad (8)$$

With $\mu(e_{ij}) = \sum_{k,l} \mu_{ijkl} e_{kl}$ and γ_{ijklpq} defined by $h(e_{ij}, e_{kl}) = \sum_{p,q} \gamma_{ijklpq} e_{pq}$, we arrive at the system of n^6 linear equations

$$\sum_{p,q} \gamma_{ijklpq} e_{pq} = \sum_{p,q} \delta_{jk}\mu_{ilpq} - \sum_{p,q} \delta_{jp}\mu_{klpq} e_{iq} - \sum_{p,q} \delta_{qk}\mu_{ijpq} e_{pl}, \quad (9)$$

with n^4 unknowns μ_{ijkl} . Then any solution of (9) proves (8).

Linear algebra approach-Level 3

Let $M = M_2(L^\infty(\Omega))$ be a finite von Neumann algebra of type I_n with $n = 2$. Let f be a Jordan 2-cocycle, that is, a symmetric bilinear map $f : M \times M \rightarrow M$ with

$$f(a^2, ab) + f(a, b)a^2 + f(a, a)(ab) - f(a^2b, a) - f(a^2, b)a - (f(a, a)b)a = 0. \quad (10)$$

(To save space, ab denotes the Jordan product in the associative algebra M)

To show that there is a linear transformation $\mu : M \rightarrow M$ such that

$$f(a, b) = \mu(ab) - a\mu(b) - \mu(a)b, \quad (11)$$

it is enough to prove, for $a, b \in Z(M)$,

$$f(ae_{ij}, be_{kl}) = \delta_{jk}\mu(abe_{il}) - ae_{ij}\mu(be_{kl}) - \mu(ae_{ij})be_{kl}. \quad (12)$$

With $\mu(ae_{ij}) = \sum_{k,l} \mu_{ijkl}(a)e_{kl}$ and $\gamma_{ijklpq}(a, b) \in Z(M)$ defined by

$$f(ae_{ij}, be_{kl}) = \sum_{p,q} \gamma_{ijklpq}(a, b)e_{pq}, \quad (13)$$

we arrive at the system of n^6 linear vector equations with $3n^4$ unknowns $\mu_{ijkl}(ab), \mu_{ijkl}(a), \mu_{ijkl}(b)$

$$\begin{aligned} 2 \sum_{p,q} \gamma_{ijklpq}(a, b)e_{pq} &= \delta_{jk} \sum_{p,q} \mu_{ilpq}(ab)e_{pq} \\ &\quad - \sum_{p,q} a(\delta_{jp}\mu_{klpq}(b)e_{iq} + \delta_{iq}\mu_{klpq}(b)e_{pj}) \\ &\quad - \sum_{p,q} b(\delta_{qk}\mu_{ijpq}(a)e_{pl} + \delta_{lp}\mu_{ijpq}(a)e_{kq}). \end{aligned} \quad (14)$$

Then any solution of (14) proves (12) and hence (11).

Some properties of Jordan 2-cocycles

Proposition

Every symmetric Hochschild 2-cocycle is a Jordan 2-cocycle.

Recall that every Jordan derivation on a semisimple Banach algebra is a derivation (Sinclair). If every Jordan 2-cocycle was a Hochschild 2-cocycle, GAME OVER

Proposition Let M be a von Neumann algebra.

- (a) Let $f : M \times M \rightarrow M$ be defined by $f(a, b) = a \circ b$. Then f is a Jordan 2-cocycle with values in M , which is not a Hochschild 2-cocycle unless M is commutative.
- (b) If M is finite with trace tr , then $f : M \times M \rightarrow M_*$ defined by $f(a, b)(x) = \text{tr}((a \circ b)x)$ is a Jordan 2-cocycle with values in M_* , which is not a Hochschild 2-cocycle unless M is commutative.

Proposition

Let f be a Jordan 2-cocycle on the von Neumann algebra M . Then $f(1, x) = xf(1, 1)$ for every $x \in M$ and $f(1, 1)$ belongs to the center of M .

Recall the definition of Jordan 2-cocycle

$$\begin{aligned} f(a^2, a \circ b) + f(a, b) \circ a^2 + f(a, a) \circ (a \circ b) \\ - f(a^2 \circ b, a) - f(a^2, b) \circ a - (f(a, a) \circ b) \circ a = 0 \end{aligned} \tag{15}$$

Proof of part (a) of the second proposition

Let $f(a, b) = a \circ b$. The equation (15) reduces to

$$a^2 \circ (a \circ b) + (a \circ b) \circ a^2 + a^2 \circ (a \circ b) - (a^2 \circ b) \circ a - (a^2 \circ b) \circ a - (a^2 \circ b) \circ a,$$

which is zero by the Jordan axiom, so f is a Jordan 2-cocycle.

If this f were a Hochschild 2-cocycle, we would have

$$c(a \circ b) - (ca) \circ b + c \circ (ab) - (c \circ a)b = 0,$$

which reduces to $[[c, b], a] = 0$ and therefore $[M, M] \subset Z(M)$ (the center of M). Since $M = Z(M) + [M, M]$, M is commutative. This proves (a).

Merci!

Fin