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Outline

e Jordan Derivations
e Jordan Weak*-Amenability

e Jordan 2-cocycles

NOTE: Jordan can mean Jordan algebra or Jordan triple
(depending on my fancy)
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Building on earlier work of Kadison, Sakai proved that very derivation 6 : M — M
of a von Neumann algebra into itself is inner (1966).

0(ab) = ad(b) +d(a)b , d(x) = ada(x) = ax — xa

Thus the first Hochschild cohomology group H*(M, M) vanishes for any von
Neumann algebra M.

Building on earlier work of Bunce and Paschke, Haagerup showed in 1983 that
every derivation 6 : M — M, of a von Neumann algebra into its predual is inner,
and as a consquence that every C*-algebra is weakly amenable. .

o(ab) = a.0(b) +d(a).b , I(x) = adp(x) = p.x — x.p
px(y) =), xply) = e(yx)

Thus the first Hochschild cohomology group H*(M, M,) vanishes for any von
Neumann algebra M.
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PROPOSITION 1 (special case of Upmeier 1980)

Let M be any von Neumann algebra. Then every Jordan derivation of M is an
inner Jordan derivation. Thus the first “Jordan cohomology group” H}(M, M)
vanishes for any von Neumann algebra M.

Earlier History
FD SS char 0: Jacobson 1949, 1951; char # 2: Harris 1959

Definition
When xj is an element in a Jordan Banach A-module, X, over a Jordan Banach
algebra 2, A, for each b € A, the mapping dx,» = [L(b), L(x0)] : A = X,

Bn(a) = (x00a) 0 b— (b0 a) 0 x0, (a€ A),

is a Jordan derivation. Finite sums of derivations of this form are called inner
Jordan derivations.

?For purposes of this talk, Jordan algebra means an associative algebra with the
product ao b = (ab + ba)/2, so for a Jordan derivation D(a?) = 2a o D(a) is enough.

Bernard Russo (UCI) Jordan cohomology for operator algebras 4 /23



Commutators in von Neumann algebras

Pearcy-Topping '69; Fack-delaHarpe 80

If M is a finite von Neumann algebra, then every element of M of central trace
zero is a finite sum of commutators

Halmos ’52,’54; Brown-Pearcy-Topping '68; Halpern '69

If M is properly infinite (no finite central projections), then every element of M is
a finite sum of commutators

Thus for any von Neumann algebra, we have M = Z(M) + [M, M], where Z(M)
is the center of M and [M, M] is the set of finite sums of commutators in M.

PROOF of PROPOSITION 1

Suppose ¢ is a Jordan derivation of M. Then ¢ is an associative derivation
(Sinclair) and by Kadison-Sakai, d(x) = ax — xa where a = z + Y [x;, yi] with
z € Z(M) and x;,y; € M. Since ad [x, y] = 4[L(x), L(y)]. ¢ is an inner Jordan
derivation. Q.E.D.
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PROPOSITION 2
(special case of Ho-Martinez-Peralta-Russo 2002)

Every Jordan triple derivation of M is an inner triple derivation. Thus
HY (M, M) =0

Earlier History
FD SS char 0: Meyberg 1972: Jordan Pair: Loos 1977, Kiihn-Rosendahl 1978

Definition
Let E be a Jordan triple? and let X be a triple E-module. For each b € E and
each xg € X, the mapping 6 = L(b, xp) — L(xo, b) : E — X, defined by

5(3) = {b7X07a}7{X07bva} (a6 E)7 (1)

is a triple derivation from E into X. Finite sums of derivations of the form
0(b, xp) are called inner triple derivations.

2For purposes of this talk, a Jordan triple is an associative *-algebra with the triple
product {a, b,c} = (ab*c + cb*a)/2 and a triple derivation satisfies
d{a, b,c} = {da, b,c} + {a,db,c} + {a, b,dc}
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LEMMA

Let A be a unital Banach *-algebra equipped with the ternary product given by

{a,b,c} = 1 (ab*c + cb*a) and the Jordan product ao b = (ab + ba)/2.

» Let D be an inner derivation, that is, D = ad a for some a in A.
Then D is a *-derivation whenever a* = —a. Conversely, if D is a
*_derivation, then a* = —a + z for some z in the center of A.

» Every triple derivation is the sum of a Jordan *-derivation and an inner triple
derivation.

PROOF of PROPOSITION 2

Suppose § is a self-adjoint Jordan derivation of M. Then § is an associative
derivation (Sinclair) and by Kadison-Sakai and the Lemma, §(x) = ax — xa where
a* + a = z is a self adjoint element of the center of M. Since
M = Z(M) + [M, M], where Z(M) denotes the center of M, we can therefore
write
a=27+> [b+ig, b+ ic]],
J

where b, bl, ¢;, ¢! are self adjoint elements of M and 2z’ € Z(M).
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It follows that

O=a"+a—z=(2) +2-z+2Y (g, b]+[bc])

so that ([, bj] + [by, ¢j]) belongs to the center of M. We now have

§=ada=ad Z [b;, 5] — [gi, 1) (2)

We have just seen that a self adjoint Jordan derivation § of M has the form (2).
A direct calculation shows that ¢ is equal to the inner triple derivation

J

Thus, every triple derivation is inner.
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Commutators in the predual of a von Neumann algebra

Theorem 1 Let M be a von Neumann algebra.

(a) If every Jordan derivation of M into M, is approximated in norm by
inner Jordan derivations, then M is finite.

(b) Conversely, if M is a finite von Neumann algebra acting on a
separable Hilbert space or if M is a finite factor, then every Jordan
derivation of M into M, is approximated in norm by inner Jordan
derivations.

Corollary (Cohomological characterization of finiteness)

If M acts on a separable Hilbert space, or if M is a factor, then M is finite if and
only if every Jordan derivation of M into M, is approximated in norm by inner
Jordan derivations.

Theorem 1 and its corollary hold with Jordan derivation replaced by Jordan triple
derivation
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Theorem 2 Let M be an infinite factor

The complex vector space of Jordan derivations of M into M,, modulo the
norm closure of the inner Jordan derivations, has dimension 1.

Corollary (Zero-One Law)

If M is a factor, the linear space of Jordan derivations into the predual, modulo
the norm closure of the inner Jordan derivations, has dimension 0 or 1: It is zero if
the factor is finite; and it is 1 if the factor is infinite.

Theorem 2 and its corollary hold with Jordan derivation replaced by Jordan triple
derivation

Theorems 1 and 2 and Propositions 3 and 4 which follow are joint work with
Robert Pluta
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Summary: If M is a factor,

o o (B3 Jordan Derivations into M.
M is infinite < NG —riostre of inner Jordan derivations into m, ~ ©

S Jordan Derivations into M, —
Mis finite < NorClosure of inner Jordan derivations into #, — °

Jordan triple Derivations into m.

W I (il & Norm closure of inner triple derivations into M, I
s Jordan triple Derivations into m. _
M'is finite < Norm closure of inner triple derivations into m, — ¢
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Which von Neumann algebras are Jordan weak*-amenable?
That is, every Jordan derivation into the predual is inner

Short answer: commutative, finite dimensional. Any others?

Proposition 3 Let M be a finite von Neumann algebra.

(a) If M acts on a separable Hilbert space or is a factor (hence admits
a faithful normal finite trace tr), and if tr=1(0) = [M., M], then M
is Jordan weak*-amenable. (Extended trace)

(b) If M is a factor and M is Jordan weak*-amenable, then
tr=1(0) = [M,, M].

Corollary

No factor of type /l; is Jordan weak*-amenable

Proposition 3 and its corollary hold with Jordan derivation replaced by Jordan
triple derivation
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If M is a finite von Neumann algebra of type /,, with n < oo, we can assume

M = L>=(Q, 1, Ma(C)) = Mn(L®(, 1)),

My = LY(Q, 1, Ma(C)s)) = Ma(L(Q, 1))

and
Z(M) = L*°(Q, u)1.

It is known that the center valued trace on M is given by

TR (x) = Zx,,)l , forx=[xj]eM

We thus define, for a finite von Neumann algebra of type /, which has a faithful

normal finite trace tr,

=S v forw =l e M.
1
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(a) If TR(x) = 0, then ¢ vanishes on the center Z(M) of M.

(b) ¥* = —t on Z(M) if and only if tr (¢)(w)) is purely imaginary for
almost every w.

¥(x)

[ 0)x(w) dulw) = [ tr (b)) due)
Q Q

|t 0 v @) die)

S X vlehnte) die)

| vl due)

k

/Q(Z Yik(w))f(w) dp(w) =0

proving (a). As for (b), use ¢(f -1) = [, f(w (w)) du(w).
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Proposition 4

Let M be a finite von Neumann algebra of type I, with n < oo, which admits a
faithful normal finite trace tr (equivalently, M is countably decomposable
= o-finite). Then M is Jordan weak*-amenable if and only if

TR™(0) = [M,, M].

Corollary

Let M be a finite von Neumann algebra of type /, admitting a faithful normal
finite trace tr. If tr =1(0) = [M,, M], then M is Jordan weak*-amenable.

Proposition 4 and its corollary hold with Jordan derivation replaced by Jordan
triple derivation

Problem

Is a finite von Neumann algebra of type | Jordan weak*-amenable? or triple
weak*-amenable? If M admits a faithful normal finite trace, is

TRY(0) = [M,, M]?
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Jordan 2-cocycles

Let M be a von Neumann algebra. A Hochschild 2-cocycle is a bilinear map
f:Mx M — M satisfying

af(b,c) — f(ab, c) + f(a, bc) — f(a,b)c =0 3)
EXAMPLE: Hochschild 2-coboundary

f(a, b) = au(b) — u(ab) + p(a)b , w: M — M linear

A Jordan 2-cocycle is a bilinear map f : M x M — M satisfying
f(a, b) = f(b, a) (symmetric)

f(a®,a0 b) + f(a, b) 0 a°> 4 f(a,a) o (ao b) (4)
—f(a®o b,a) — f(a*,b)oa— (f(a,a)ob)oa=0
EXAMPLE: Jordan 2-coboundary

f(a,b) =aopu(b) —pu(aob)+ua)ob, , w:M— M linear
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HY (M, M) = 1-cocycles _  derivations
’ 1-coboundaries ~ inner derivations

HY(M, M) = 2ordan t-cocycles_ _Jordan derivations
AN Jordan 1-coboundaries ~— inner Jordan derivations

2 _ 2-cocycles 2 _ Jordan 2-cocycles
H*(M, M) = 2-coboundaries ' H3(M, M) = Jordan 2-coboundaries

For almost all von Neumann algebras, H?(M, M) = 0. How about H3(M, M)? J

FD char 0: Albert 1947, Penico 1951; char # 2: Taft 1957 )
Two elegant approaches: Jordan classification; Lie algebras
One inelegant approach: solving linear equations J
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Linear algebra approach-Level 1

Let h be a Hochschild 1-cocycle, that is, a linear map h: M,(C) — M,(C)
satisfying h(ab) — ah(b) — h(a)b = 0. To show that there is an element x € M,(C)
such that h(a) = xa — ax, it is enough to prove this with a € {g;}. With

X = prqepq- (5)
P.q
and 7jjpq defined by
h(e;) Z Yiipq€pq> (6)

we arrive at the system of linear vector equations
Z Viipg€pq = Z 0qiXpq€pj — Z djpXpq€iq- (7)

with n? unknowns x;. Then any solution of (7) proves the result.
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Linear algebra approach-Level 2

Let h be a Hochschild 2-cocycle, that is, a bilinear map

h: Mp(C) x M,(C) — M,(C) satisfying

ah(b, c) — h(ab, c) + h(a, bc) — h(a, b)c = 0.

To show that there is a linear transformation i : M,(C) — M,(C) such that
h(a, b) = p(ab) — ap(b) — u(a)b, it is enough to prove that this holds with
a, b € {ej}, thatis

h(eij, exr) = djupleir) — ejpen) — pley)en- (8)

With ,u(e,-j) = Zk,l ikl €kl and Yijkipg defined by h(e,-j, ek/) = Zp,q Vijklpqg €pq >
we arrive at the system of n® linear equations

E Yijkipq€pq = E Ojkhilpg — E djplikipg€iq — § :5qk“UPqu” (9)
p.q P,q P.q p:q

with n* unknowns ;. Then any solution of (9) proves (8).
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Linear algebra approach-Level 3

Let M = M,(L>°(Q2)) be a finite von Neumann algebra of type /, with n = 2. Let
f be a Jordan 2-cocycle, that is, a symmetric bilinear map f : M x M — M with

f(a®,ab) + f(a, b)a* + f(a, a)(ab) — f(a’b,a) — f(a%, b)a— (f(a,a)b)a = 0. (10)

(To save space, ab denotes the Jordan product in the associative algebra M)

To show that there is a linear transformation . : M — M such that

F(a, b) = u(ab) — a(b) — p(a)b, (11)

it is enough to prove, for a, b € Z(M),

f(ae,-j, bek,) = jku(abe,-,) — ae,-ju(bek,) — ,u(ae,-j)bek/. (12)
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With /L(ae,-j) = Zk,,u,-jk,(a)ek, and v,jklpq(a, b) € Z(M) defined by

f(aejj, bew) = Z’Yijk/pq(a, b)epq,
P.q

we arrive at the system of n® linear vector equations with 3n* unknowns
tijki(ab), pijwi(a)s pijwa (b)

2 Z Yijkipg (3, b)€pg = Jjk Z Hitpg(ab)epq

p.q p.q

- Z Sjphiking(b)e€ig + Sighikipg (b)ep;)

- Z b(Sqktijpg(@)ep + diptiijpg(a)exq)-

Then any solution of (14) proves (12) and hence (11).
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Some properties of Jordan 2-cocycles

Proposition

Every symmetric Hochschild 2-cocycle is a Jordan 2-cocycle.

Recall that every Jordan derivation on a semisimple Banach algebra is a derivation
(Sinclair). If every Jordan 2-cocycle was a Hochschild 2-cocycle, GAME OVER
Proposition Let M be a von Neumann algebra.

(a) Let f: M x M — M be defined by f(a,b) =aocb. Then f is a
Jordan 2-cocycle with values in M, which is not a Hochschild
2-cocycle unless M is commutative.

(b) If M is finite with trace tr, then f : M x M — M, defined by
f(a, b)(x) =tr((ao b)x) is a Jordan 2-cocycle with values in M,
which is not a Hochschild 2-cocycle unless M is commutative.

Proposition

Let f be a Jordan 2-cocycle on the von Neumann algebra M. Then
f(1,x) = xf(1,1) for every x € M and f(1,1) belongs to the center of M.
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Recall the definition of Jordan 2-cocycle
f(a®,aob) + f(a,b) 0 a® + f(a,a)o(acb) (15)
—f(a*o b,a) — f(a*,b)oa— (f(a,a)ob)oa=0
Proof of part (a) of the second proposition
Let f(a, b) = ac b. The equation (15) reduces to
a*o(aob)+(acb)oa’+a’o(aoh)—(aob)oa—(a®ob)oa—(a®ob)oa,

which is zero by the Jordan axiom, so f is a Jordan 2-cocycle.
If this f were a Hochschild 2-cocycle, we would have

c(aob)—(ca)ob+co(ab)—(coa)b=0,

which reduces to [[c, b], a] = 0 and therefore [M, M] C Z(M) (the center of M).
Since M = Z(M) + [M, M], M is commutative. This proves (a).

Merci!
Fin

Bernard Russo (UCI) Jordan cohomology for operator algebras 23 /23



