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REVIEW OF PART I—ALGEBRAS

AXIOMATIC APPROACH

AN ALGEBRA IS DEFINED TO BE A SET

(ACTUALLY A VECTOR SPACE) WITH

TWO BINARY OPERATIONS, CALLED

ADDITION AND MULTIPLICATION



ADDITION IS DENOTED BY

a + b

AND IS REQUIRED TO BE

COMMUTATIVE AND ASSOCIATIVE

a + b = b + a, (a + b) + c = a + (b + c)

MULTIPLICATION IS DENOTED BY

ab

AND IS REQUIRED TO BE DISTRIBUTIVE

WITH RESPECT TO ADDITION

(a + b)c = ac + bc, a(b + c) = ab + ac



AN ALGEBRA IS SAID TO BE

ASSOCIATIVE (RESP. COMMUTATIVE) IF

THE MULTIPLICATION IS ASSOCIATIVE

(RESP. COMMUTATIVE)

(RECALL THAT ADDITION IS ALWAYS

COMMUTATIVE AND ASSOCIATIVE)



Table 2

ALGEBRAS

commutative algebras

ab = ba

associative algebras

a(bc) = (ab)c

Lie algebras

a2 = 0

(ab)c + (bc)a + (ca)b = 0

Jordan algebras

ab = ba

a(a2b) = a2(ab)



DERIVATIONS ON THE SET OF

MATRICES

THE SET Mn(R) of n by n MATRICES IS

AN ALGEBRA UNDER

MATRIX ADDITION

A + B

AND

MATRIX MULTIPLICATION

A×B

WHICH IS ASSOCIATIVE BUT NOT

COMMUTATIVE.



DEFINITION 2

A DERIVATION ON Mn(R) WITH

RESPECT TO MATRIX MULTIPLICATION

IS A LINEAR PROCESS δ WHICH

SATISFIES THE PRODUCT RULE

δ(A×B) = δ(A)×B + A× δ(B)

.

PROPOSITION 2

FIX A MATRIX A in Mn(R) AND DEFINE

δA(X) = A×X −X ×A.

THEN δA IS A DERIVATION WITH

RESPECT TO MATRIX MULTIPLICATION

(WHICH CAN BE NON-ZERO)



THEOREM 2
(1942 Hochschild)

EVERY DERIVATION ON Mn(R) WITH
RESPECT TO MATRIX MULTIPLICATION

IS OF THE FORM δA FOR SOME A IN
Mn(R).

Gerhard Hochschild (1915–2010)

(Photo 1968)
Gerhard Paul Hochschild was an American
mathematician who worked on Lie groups,
algebraic groups, homological algebra and

algebraic number theory.



(Photo 1976)

(Photo 1981)



THE BRACKET PRODUCT ON THE

SET OF MATRICES

THE BRACKET PRODUCT ON THE SET

Mn(R) OF MATRICES IS DEFINED BY

[X, Y ] = X × Y − Y ×X

THE SET Mn(R) of n by n MATRICES IS

AN ALGEBRA UNDER MATRIX ADDITION

AND BRACKET MULTIPLICATION,

WHICH IS NOT ASSOCIATIVE AND NOT

COMMUTATIVE.



DEFINITION 3

A DERIVATION ON Mn(R) WITH

RESPECT TO BRACKET MULTIPLICATION

IS A LINEAR PROCESS δ WHICH

SATISFIES THE PRODUCT RULE

δ([A, B]) = [δ(A), B] + [A, δ(B)]

.

PROPOSITION 3

FIX A MATRIX A in Mn(R) AND DEFINE

δA(X) = [A, X] = A×X −X ×A.

THEN δA IS A DERIVATION WITH

RESPECT TO BRACKET

MULTIPLICATION



THEOREM 3

(1942 Hochschild, Zassenhaus)

EVERY DERIVATION ON Mn(R) WITH

RESPECT TO BRACKET

MULTIPLICATION IS OF THE FORM δA

FOR SOME A IN Mn(R).

Hans Zassenhaus (1912–1991)

Hans Julius Zassenhaus was a German

mathematician, known for work in many parts

of abstract algebra, and as a pioneer of

computer algebra.



Gerhard Hochschild (1915–2010)

(Photo 1986)

(Photo 2003)



THE CIRCLE PRODUCT ON THE SET

OF MATRICES

THE CIRCLE PRODUCT ON THE SET

Mn(R) OF MATRICES IS DEFINED BY

X ◦ Y = (X × Y + Y ×X)/2

THE SET Mn(R) of n by n MATRICES IS

AN ALGEBRA UNDER MATRIX ADDITION

AND CIRCLE MULTIPLICATION, WHICH IS

COMMUTATIVE BUT NOT ASSOCIATIVE.



DEFINITION 4

A DERIVATION ON Mn(R) WITH

RESPECT TO CIRCLE MULTIPLICATION

IS A LINEAR PROCESS δ WHICH

SATISFIES THE PRODUCT RULE

δ(A ◦B) = δ(A) ◦B + A ◦ δ(B)

PROPOSITION 4

FIX A MATRIX A in Mn(R) AND DEFINE

δA(X) = A×X −X ×A.

THEN δA IS A DERIVATION WITH

RESPECT TO CIRCLE MULTIPLICATION



THEOREM 4

(1972-Sinclair)

EVERY DERIVATION ON Mn(R) WITH

RESPECT TO CIRCLE MULTIPLICATION

IS OF THE FORM δA FOR SOME A IN

Mn(R).

REMARK

(1937-Jacobson)

THE ABOVE PROPOSITION AND

THEOREM NEED TO BE MODIFIED FOR

THE SUBALGEBRA (WITH RESPECT TO

CIRCLE MULTIPLICATION) OF

SYMMETRIC MATRICES.



Alan M. Sinclair (retired)

Nathan Jacobson (1910–1999)

Nathan Jacobson was an American
mathematician who was recognized as one of
the leading algebraists of his generation, and
he was also famous for writing more than a

dozen standard monographs.



Table 1

Mn(R) (ALGEBRAS)

matrix bracket circle
ab = a× b [a, b] = ab− ba a ◦ b = ab + ba

Th. 2 Th.3 Th.4
δa(x) δa(x) δa(x)
= = =

ax− xa ax− xa ax− xa



GRADUS AD PARNASSUM

PART I—ALGEBRAS

1. Prove Proposition 2

2. Prove Proposition 3

3. Prove Proposition 4

4. Let A, B are two fixed matrices in Mn(R).

Show that the linear process

δA,B(X) = A ◦ (B ◦X)−B ◦ (A ◦X)

is a derivation of Mn(R) with respect to

circle multiplication.

(cf. Remark following Theorem 4)

5. Show that Mn(R) is a Lie algebra with re-

spect to bracket multiplication. In other

words, show that the two axioms for Lie al-

gebras in Table 2 are satisfied if ab denotes

[a, b] = ab−ba (a and b denote matrices and

ab denotes matrix multiplication)



6. Show that Mn(R) is a Jordan algebra with

respect to circle multiplication. In other

words, show that the two axioms for Jor-

dan algebras in Table 2 are satisfied if ab

denotes a◦b = ab+ba (a and b denote matri-

ces and ab denotes matrix multiplication—

forget about dividing by 2)

7. (Extra credit)

Let us write δa,b for the linear process δa,b(x) =

a(bx) − b(ax) in a Jordan algebra. Show

that δa,b is a derivation of the Jordan al-

gebra by following the outline below. (cf.

Homework problem 4 above.)

(a) In the Jordan algebra axiom

u(u2v) = u2(uv),

replace u by u+w to obtain the two equa-

tions

2u((uw)v) + w(u2v) = 2(uw)(uv) + u2(wv)

(1)

and (correcting the misprint in part I)

u(w2v)+2w((uw)v) = w2(uv)+2(uw)(wv).



(Hint: Consider the “degree” of w on each

side of the equation resulting from the sub-

stitution)

(b) In (1), interchange v and w and sub-

tract the resulting equation from (1) to ob-

tain the equation

2u(δv,w(u)) = δv,w(u2). (2)

(c) In (2), replace u by x+ y to obtain the

equation

δv,w(xy) = yδv,w(x) + xδv,w(y),

which is the desired result.

END OF REVIEW OF PART I



BEGINNING OF PART II

IN THESE TALKS, I AM MOSTLY

INTERESTED IN NONASSOCIATIVE

ALGEBRAS (PART I) AND

NONASSOCIATIVE TRIPLE SYSTEMS

(PART II), ALTHOUGH THEY MAY OR

MAY NOT BE COMMUTATIVE.

(ASSOCIATIVE AND COMMUTATIVE

HAVE TO BE INTERPRETED

APPROPRIATELY FOR THE TRIPLE

SYSTEMS CONSIDERED WHICH ARE

NOT ACTUALLY ALGEBRAS)



DERIVATIONS ON RECTANGULAR

MATRICES

MULTIPLICATION DOES NOT MAKE

SENSE ON Mm,n(R) if m 6= n.

NOT TO WORRY!

WE CAN FORM A TRIPLE PRODUCT

X × Y t × Z

(TRIPLE MATRIX MULTIPLICATION)

COMMUTATIVE AND ASSOCIATIVE

DON’T MAKE SENSE HERE. RIGHT?

WRONG!!

(X × Y t × Z)×At ×B = X × Y t × (Z ×At ×B)



DEFINITION 5

A DERIVATION ON Mm,n(R) WITH

RESPECT TO

TRIPLE MATRIX MULTIPLICATION

IS A LINEAR PROCESS δ WHICH

SATISFIES THE (TRIPLE) PRODUCT

RULE

δ(A×Bt × C) =

δ(A)×Bt × C + A× δ(B)t × C + A×Bt × δ(C)

PROPOSITION 5

FOR TWO MATRICES A, B in Mm,n(R),

DEFINE δA,B(X) =

A×Bt×X +X×Bt×A−B×At×X−X×At×B

THEN δA,B IS A DERIVATION WITH

RESPECT TO TRIPLE MATRIX

MULTIPLICATION



THEOREM 8∗

EVERY DERIVATION ON Mm,n(R) WITH

RESPECT TO TRIPLE MATRIX

MULTIPLICATION IS A SUM OF

DERIVATIONS OF THE FORM δA,B.

REMARK

THESE RESULTS HOLD TRUE AND ARE

OF INTEREST FOR THE CASE m = n.

∗Theorems 5,6,7 are in part I



TRIPLE BRACKET MULTIPLICATION

LET’S GO BACK FOR A MOMENT TO

SQUARE MATRICES AND THE BRACKET

MULTIPLICATION.

MOTIVATED BY THE LAST REMARK,

WE DEFINE THE TRIPLE BRACKET

MULTIPLICATION TO BE [[X, Y ], Z]

DEFINITION 6

A DERIVATION ON Mn(R) WITH

RESPECT TO

TRIPLE BRACKET MULTIPLICATION

IS A LINEAR PROCESS δ WHICH

SATISFIES THE TRIPLE PRODUCT RULE

δ([[A, B], C]) =

[[δ(A), B], C] + [[A, δ(B)], C] + [[A, B], δ(C)]



PROPOSITION 6

FIX TWO MATRICES A, B IN Mn(R) AND

DEFINE δA,B(X) = [[A, B], X]

THEN δA,B IS A DERIVATION WITH

RESPECT TO TRIPLE BRACKET

MULTIPLICATION.

THEOREM 9

EVERY DERIVATION OF Mn(R) WITH

RESPECT TO TRIPLE BRACKET

MULTIPLICATION IS A SUM OF

DERIVATIONS OF THE FORM δA,B.



TRIPLE CIRCLE MULTIPLICATION

LET’S RETURN TO RECTANGULAR

MATRICES AND FORM THE TRIPLE

CIRCLE MULTIPLICATION

(A×Bt × C + C ×Bt ×A)/2

For sanity’s sake, let us write this as

{A, B, C} = (A×Bt × C + C ×Bt ×A)/2

DEFINITION 7

A DERIVATION ON Mm,n(R) WITH

RESPECT TO

TRIPLE CIRCLE MULTIPLICATION

IS A LINEAR PROCESS δ WHICH

SATISFIES THE TRIPLE PRODUCT RULE

δ({A,B,C})=
{δ(A), B, C}+ {A, δ(B), C}+ {A, B, δ(C)}



PROPOSITION 7

FIX TWO MATRICES A, B IN Mm,n(R) AND

DEFINE

δA,B(X) = {A, B, X} − {B, A, X}

THEN δA,B IS A DERIVATION WITH

RESPECT TO TRIPLE CIRCLE

MULTIPLICATION.

THEOREM 10

EVERY DERIVATION OF Mm,n(R) WITH

RESPECT TO TRIPLE CIRCLE

MULTIPLICATION IS A SUM OF

DERIVATIONS OF THE FORM δA,B.



IT IS TIME FOR ANOTHER SUMMARY

OF THE PRECEDING

Table 3

Mm,n(R) (TRIPLE SYSTEMS)

triple triple triple
matrix bracket circle

abtc [[a, b], c] abtc + cbta
Th. 8 Th.9 Th.10
δa,b(x) δa,b(x) δa,b(x)

= = =
abtx abx abtx

+xbta +xba +xbta
−batx −bax −batx
−xatb −xab −xatb
(sums) (sums) (sums)

(m = n)



LET’S PUT ALL THIS NONSENSE
TOGETHER

Table 1 Mn(R) (ALGEBRAS)

matrix bracket circle
ab = a× b [a, b] = ab− ba a ◦ b = ab + ba

Th. 2 Th.3 Th.4
δa(x) δa(x) δa(x)
= = =

ax− xa ax− xa ax− xa

Table 3 Mm,n(R) (TRIPLE SYSTEMS)

triple triple triple
matrix bracket circle

abtc [[a, b], c] abtc + cbta
Th. 8 Th.9 Th.10
δa,b(x) δa,b(x) δa,b(x)

= = =
abtx abx abtx

+xbta +xba +xbta
−batx −bax −batx
−xatb −xab −xatb
(sums) (sums) (sums)

(m = n)

HEY! IT IS NOT SO NONSENSICAL!



AXIOMATIC APPROACH FOR TRIPLE

SYSTEMS

AN TRIPLE SYSTEM IS DEFINED TO BE

A SET (ACTUALLY A VECTOR SPACE)

WITH ONE BINARY OPERATION,

CALLED ADDITION AND ONE TERNARY

OPERATION CALLED

TRIPLE MULTIPLICATION



ADDITION IS DENOTED BY

a + b

AND IS REQUIRED TO BE

COMMUTATIVE AND ASSOCIATIVE

a + b = b + a, (a + b) + c = a + (b + c)

TRIPLE MULTIPLICATION IS DENOTED

abc

AND IS REQUIRED TO BE LINEAR IN

EACH VARIABLE

(a + b)cd = acd + bcd

a(b + c)d = abd + acd

ab(c + d) = abc + abd



SIMPLE BUT IMPORTANT EXAMPLES

OF TRIPLE SYSTEMS CAN BE FORMED

FROM ANY ALGEBRA

IF ab DENOTES THE ALGEBRA

PRODUCT, JUST DEFINE A TRIPLE

MULTIPLICATION TO BE (ab)c

LET’S SEE HOW THIS WORKS IN THE

ALGEBRAS WE INTRODUCED IN PART I

C,D; fgh = (fg)h

(Mn(R),×); abc = a× b× c or a× bt × c

(Mn(R), [, ]); abc = [[a, b], c]

(Mn(R), ◦); abc = (a ◦ b) ◦ c (NO GO!)



A TRIPLE SYSTEM IS SAID TO BE

ASSOCIATIVE (RESP. COMMUTATIVE) IF

THE MULTIPLICATION IS ASSOCIATIVE

(RESP. COMMUTATIVE)

(RECALL THAT ADDITION IS ALWAYS

COMMUTATIVE AND ASSOCIATIVE)

IN THE TRIPLE CONTEXT THIS MEANS

THE FOLLOWING

ASSOCIATIVE

ab(cde) = (abc)de = a(bcd)e

OR ab(cde) = (abc)de = a(dcb)e

COMMUTATIVE: abc = cba

THE TRIPLE SYSTEMS C, D AND

(Mn(R),×) ARE EXAMPLES OF

ASSOCIATIVE TRIPLE SYSTEMS.

C AND D ARE EXAMPLES OF

COMMUTATIVE TRIPLE SYSTEMS.



AXIOMATIC APPROACH FOR TRIPLE

SYSTEMS

THE AXIOM WHICH CHARACTERIZES

TRIPLE MATRIX MULTIPLICATION IS

(abc)de = ab(cde) = a(dcb)e

THESE ARE CALLED

ASSOCIATIVE TRIPLE SYSTEMS

or

HESTENES ALGEBRAS



Magnus Hestenes (1906–1991)

Magnus Rudolph Hestenes was an American

mathematician. Together with Cornelius

Lanczos and Eduard Stiefel, he invented the

conjugate gradient method.



THE AXIOMS WHICH CHARACTERIZE

TRIPLE BRACKET MULTIPLICATION ARE

aab = 0

abc + bca + cab = 0

de(abc) = (dea)bc + a(deb)c + ab(dec)

THESE ARE CALLED

LIE TRIPLE SYSTEMS

(NATHAN JACOBSON, MAX KOECHER)



Max Koecher (1924–1990)

Max Koecher was a German mathematician.
His main research area was the theory of
Jordan algebras, where he introduced the

KantorKoecherTits construction.

Nathan Jacobson (1910–1999)



THE AXIOMS WHICH CHARACTERIZE
TRIPLE CIRCLE MULTIPLICATION ARE

abc = cba

de(abc) = (dea)bc− a(edb)c + ab(dec)

THESE ARE CALLED
JORDAN TRIPLE SYSTEMS

Kurt Meyberg (living)

Ottmar Loos + Erhard Neher
(both living)



YET ANOTHER SUMMARY

Table 4

TRIPLE SYSTEMS

associative triple systems

(abc)de = ab(cde) = a(dcb)e

Lie triple systems

aab = 0

abc + bca + cab = 0

de(abc) = (dea)bc + a(deb)c + ab(dec)

Jordan triple systems

abc = cba

de(abc) = (dea)bc− a(edb)c + ab(dec)



FINAL THOUGHT

THE PHYSICAL UNIVERSE SEEMS TO BE

ASSOCIATIVE.

HOW THEN, DO YOU EXPLAIN THE

FOLLOWING PHENOMENON?

THEOREM 13†

(1985 FRIEDMAN-RUSSO)

THE RANGE OF A CONTRACTIVE

PROJECTION ON Mn(R) (ASSOCIATIVE)

IS A JORDAN TRIPLE SYSTEM‡

(NON-ASSOCIATIVE).

†Theorems 11,12 are in part I
‡In some triple product



Yaakov Friedman (b. 1948)

Yaakov Friedman is director of research at

Jerusalem College of Technology.



BEING MATHEMATICIANS, WE

NATURALLY WONDERED ABOUT A

CONVERSE:

THEOREM 14

(2008 NEAL-RUSSO)

A LINEAR SUBSPACE OF Mn(R) WHICH IS

A JORDAN TRIPLE SYSTEM IN SOME

TRIPLE PRODUCT IS THE RANGE OF A

CONTRACTIVE PROJECTION ON Mn(R)..



Matthew Neal (b. 1972)

Conference on Jordan Algebras

Oberwolfach, Germany 2000



GRADUS AD PARNASSUM

PART II—TRIPLE SYSTEMS

1. Prove Proposition 5

(Use the notation 〈abc〉 for abtc)

2. Prove Proposition 6

(Use the notation [abc] for [[a, b], c])

3. Prove Proposition 7

(Use the notation {abc} for abtc + cbta)

4. Show that Mn(R) is a Lie triple system

with respect to triple bracket multiplica-

tion. In other words, show that the three

axioms for Lie triple systems in Table 4

are satisfied if abc denotes [[a, b], c] = (ab−
ba)c−c(ab−ba) (a, b and c denote matrices)

(Use the notation [abc] for [[a, b], c])

5. Show that Mm,n(R) is a Jordan triple sys-

tem with respect to triple circle multipli-

cation. In other words, show that the two

axioms for Jordan triple systems in Table

4 are satisfied if abc denotes abtc+cbta (a, b

and c denote matrices)

(Use the notation {abc} for abtc + cbta)



6. Let us write δa,b for the linear process

δa,b(x) = abx

in a Lie triple system. Show that δa,b is a

derivation of the Lie triple system by using

the axioms for Lie triple systems in Table 4.

(Use the notation [abc] for the triple prod-

uct in any Lie triple system, so that, for

example, δa,b(x) is denoted by [abx])

7. Let us write δa,b for the linear process

δa,b(x) = abx− bax

in a Jordan triple system. Show that δa,b is

a derivation of the Jordan triple system by

using the axioms for Jordan triple systems

in Table 4.

(Use the notation {abc} for the triple prod-

uct in any Jordan triple system, so that,

for example, δa,b(x) = {abx} − {bax})



8. On the Jordan algebra Mn(R) with the cir-
cle product a ◦ b = ab + ba, define a triple
product

{abc} = (a ◦ b) ◦ c + (c ◦ b) ◦ a− (a ◦ c) ◦ b.

Show that Mn(R) is a Jordan triple system
with this triple product.
Hint: show that {abc} = 2a×b×c+2c×b×a

9. On the vector space Mn(R), define a triple
product 〈abc〉 = abc (matrix multiplication
without the transpose in the middle). For-
mulate the definition of a derivation of the
resulting triple system, and state and prove
a result corresponding to Proposition 5. Is
this triple system associative?

10. In an associative algebra, define a triple
product 〈abc〉 to be (ab)c. Show that the
algebra becomes an associative triple sys-
tem with this triple product.

11. In an associative triple system with triple
product denoted 〈abc〉, define a binary prod-
uct ab to be 〈aub〉, where u is a fixed el-
ement. Show that the triple system be-
comes an associative algebra with this prod-
uct.



12. In a Lie algebra with product denoted by

[a, b], define a triple product [abc] to be

[[a, b], c]. Show that the Lie algebra be-

comes a Lie triple system with this triple

product.

13. Let A be an algebra (associative, Lie, or

Jordan; it doesn’t matter). Show that the

set D := Der (A) of all derivations of A is a

Lie subalgebra of End (A). That is D is a

linear subspace of the vector space of linear

transformations on A, and if D1, D2 ∈ D,

then D1D2 −D2D1 ∈ D.

14. Let A be a triple system (associative, Lie,

or Jordan; it doesn’t matter). Show that

the set D := Der (A) of derivations of A is

a Lie subalgebra of End (A). That is D is a

linear subspace of the vector space of linear

transformations on A, and if D1, D2 ∈ D,

then D1D2 −D2D1 ∈ D.

END OF PART II



GRADUS AD PARNASSUM

PART III

ALGEBRAS AND TRIPLE SYSTEMS

(SNEAK PREVIEW)

1. In an arbitrary Jordan triple system, with

triple product denoted by {abc}, define a

triple product by

[abc] = {abc} − {bac}.

Show that the Jordan triple system be-

comes a Lie triple system with this new

triple product.

2. In an arbitrary associative triple system,

with triple product denoted by 〈abc〉, de-

fine a triple product by

[xyz] = 〈xyz〉 − 〈yxz〉 − 〈zxy〉+ 〈zyx〉.

Show that the associative triple system be-

comes a Lie triple system with this new

triple product.



3. In an arbitrary Jordan algebra, with prod-

uct denoted by xy, define a triple product

by [xyz] = x(yz) − y(xz). Show that the

Jordan algebra becomes a Lie triple sys-

tem with this new triple product.

4. In an arbitrary Jordan triple system, with

triple product denoted by {abc}, fix an ele-

ment y and define a binary product by

ab = {ayb}.

Show that the Jordan triple system be-

comes a Jordan algebra with this (binary)

product.

5. In an arbitrary Jordan algebra with multipli-

cation denoted by ab, define a triple prod-

uct

{abc} = (ab)c + (cb)a− (ac)b.

Show that the Jordan algebra becomes a

Jordan triple system with this triple prod-

uct. (cf. Problem 8)



6. Show that every Lie triple system, with

triple product denoted [abc] is a subspace

of some Lie algebra, with product denoted

[a, b], such that [abc] = [[a, b], c].

7. Find out what a semisimple associative al-

gebra is and prove that every derivation

of a finite dimensional semisimple associa-

tive algebra is inner, that is, of the form

x 7→ ax−xa for some fixed a in the algebra.

8. Find out what a semisimple Lie algebra is

and prove that every derivation of a finite

dimensional semisimple Lie algebra is inner,

that is, of the form x 7→ [a, x] for some fixed

a in the algebra.

9. Find out what a semisimple Jordan alge-

bra is and prove that every derivation of

a finite dimensional semisimple Jordan al-

gebra is inner, that is, of the form x 7→∑n
i=1(ai(bix) − bi(aix)) for some fixed ele-

ments a1, . . . , an and b1, . . . , bn in the alge-

bra.



10. Find out what a semisimple associative triple

system is and prove that every derivation

of a finite dimensional semisimple associa-

tive triple system is inner, that is, of the

form x 7→
∑n

i=1(〈aibix〉 − 〈biaix〉) for some

fixed elements a1, . . . , an and b1, . . . , bn in

the associative triple system.

11. Find out what a semisimple Lie triple sys-

tem is and prove that every derivation of

a finite dimensional semisimple Lie triple

system is inner, that is, of the form x 7→∑n
i=1[aibix] for some fixed elements a1, . . . , an

and b1, . . . , bn in the Lie triple system.

12. Find out what a semisimple Jordan triple

system is and prove that every derivation

of a finite dimensional semisimple Jordan

triple system is inner, that is, of the form

x 7→
∑n

i=1({aibix} − {biaix}) for some fixed

elements a1, . . . , an and b1, . . . , bn in the Jor-

dan triple system.


