DERIVATIONS

An introduction to non associative algebra
(or, Playing havoc with the product rule)

Part 7

Cohomology of non associative algebras A unified approach

Colloquium
Pacific Summer Unsolved Math Seminar Fullerton College

Bernard Russo

University of California, Irvine
July 25, 2013

History of these lectures

- PART I FEBRUARY 8, 2011 ALGEBRAS; DERIVATIONS
- PART II JULY 21, 2011 TRIPLE SYSTEMS; DERIVATIONS
- PART III FEBRUARY 28, 2012 MODULES; DERIVATIONS
- PART IV JULY 26, 2012 COHOMOLOGY (ASSOCIATIVE ALGEBRAS)
- PART V OCTOBER 25, 2012 THE SECOND COHOMOLOGY GROUP
- PART VI MARCH 7, 2013 COHOMOLOGY (LIE ALGEBRAS)
(today)
- PART VII JULY 25, 2013 COHOMOLOGY (JORDAN ALGEBRAS)

Outline

- Review of Algebras
- Derivations on matrix algebras
- Review of Cohomology
- First Cohomology Group (Derivations)
- Second Cohomology Group (Extensions)
(will be done in Part 8, Fall 2013 date TBA)

Introduction

I will present a unified approach to 1 and 2 dimensional cohomology of the three main types of algebras we have been studying, namely, associative algebras, Lie algebras and Jordan algebras.

The relevant definitions and examples from earlier talks in the series will be reviewed beforehand.

Contact will be made, through this new perspective, with some of the results on derivations and on extensions which were presented earlier in the series.

Review of Algebras-Axiomatic approach

AN ALGEBRA IS DEFINED TO BE A SET (ACTUALLY A VECTOR SPACE) WITH TWO BINARY OPERATIONS, CALLED ADDITION AND MULTIPLICATION

ADDITION IS DENOTED BY $a+b$ AND IS REQUIRED TO BE COMMUTATIVE $a+b=b+a$ AND ASSOCIATIVE $\quad(a+b)+c=a+(b+c)$

MULTIPLICATION IS DENOTED BY ab AND IS REQUIRED TO BE DISTRIBUTIVE WITH RESPECT TO ADDITION
$(a+b) c=a c+b c, \quad a(b+c)=a b+a c$

AN ALGEBRA IS SAID TO BE ASSOCIATIVE (RESP. COMMUTATIVE) IF THE MULTIPLICATION IS ASSOCIATIVE (RESP. COMMUTATIVE) (RECALL THAT ADDITION IS ALWAYS COMMUTATIVE AND ASSOCIATIVE)

Table 1 (FASHIONABLE) ALGEBRAS

commutative algebras $a b=b a$
associative algebras $a(b c)=(a b) c$
Lie algebras $\quad a^{2}=0,(a b) c+(b c) a+(c a) b=0$
Jordan algebras $a b=b a, a\left(a^{2} b\right)=a^{2}(a b)$

DERIVATIONS ON MATRIX ALGEBRAS

THE SET $M_{n}(\mathbf{R})$ of n by n MATRICES IS AN ALGEBRA UNDER MATRIX ADDITION $A+B$ AND
MATRIX MULTIPLICATION $A \times B$ WHICH IS ASSOCIATIVE BUT NOT COMMUTATIVE.

DEFINITION

A DERIVATION ON $M_{n}(\mathbf{R})$ WITH RESPECT TO MATRIX MULTIPLICATION IS A LINEAR PROCESS $\delta: \quad \delta(A+B)=\delta(A)+\delta(B)$ WHICH SATISFIES THE PRODUCT RULE

$$
\delta(A \times B)=\delta(A) \times B+A \times \delta(B)
$$

PROPOSITION

FIX A MATRIX A in $M_{n}(\mathbf{R})$ AND DEFINE

$$
\delta_{A}(X)=A \times X-X \times A .
$$

THEN δ_{A} IS A DERIVATION WITH RESPECT TO MATRIX MULTIPLICATION (WHICH CAN BE NON-ZERO)

THEOREM (1942 Hochschild)

EVERY DERIVATION ON $M_{n}(\mathbf{R})$ WITH RESPECT TO MATRIX MULTIPLICATION IS OF THE FORM δ_{A} FOR SOME A IN $M_{n}(\mathbf{R})$.

THE BRACKET PRODUCT ON THE SET OF MATRICES

DEFINITION

THE BRACKET PRODUCT ON THE SET $M_{n}(\mathbf{R})$ OF MATRICES IS DEFINED BY

$$
[X, Y]=X \times Y-Y \times X
$$

THE SET $M_{n}(\mathbf{R})$ of n by n MATRICES IS AN ALGEBRA UNDER MATRIX ADDITION AND BRACKET MULTIPLICATION, WHICH IS NOT ASSOCIATIVE AND NOT COMMUTATIVE.

DEFINITION

A DERIVATION ON $M_{n}(\mathbf{R})$ WITH RESPECT TO BRACKET MULTIPLICATION IS A LINEAR PROCESS δ WHICH SATISFIES THE PRODUCT RULE

$$
\delta([A, B])=[\delta(A), B]+[A, \delta(B)] .
$$

PROPOSITION

FIX A MATRIX A in $M_{n}(\mathbf{R})$ AND DEFINE

$$
\delta_{A}(X)=[A, X]=A \times X-X \times A .
$$

THEN δ_{A} IS A DERIVATION WITH RESPECT TO BRACKET MULTIPLICATION

THEOREM

EVERY DERIVATION ON $M_{n}(\mathbf{R})$ WITH RESPECT TO BRACKET MULTIPLICATION IS OF THE FORM δ_{A} FOR SOME A IN $M_{n}(\mathbf{R})$.

THE CIRCLE PRODUCT ON THE SET OF MATRICES

DEFINITION

THE CIRCLE PRODUCT ON THE SET $M_{n}(\mathbf{R})$ OF MATRICES IS DEFINED BY

$$
X \circ Y=(X \times Y+Y \times X) / 2
$$

THE SET $M_{n}(\mathbf{R})$ of n by n MATRICES IS AN ALGEBRA UNDER MATRIX ADDITION AND CIRCLE MULTIPLICATION, WHICH IS COMMUTATIVE BUT NOT ASSOCIATIVE.

DEFINITION

A DERIVATION ON $M_{n}(\mathbf{R})$ WITH RESPECT TO CIRCLE MULTIPLICATION IS A LINEAR PROCESS δ WHICH SATISFIES THE PRODUCT RULE

$$
\delta(A \circ B)=\delta(A) \circ B+A \circ \delta(B)
$$

PROPOSITION

FIX A MATRIX A in $M_{n}(\mathbf{R})$ AND DEFINE

$$
\delta_{A}(X)=A \times X-X \times A .
$$

THEN δ_{A} IS A DERIVATION WITH RESPECT TO CIRCLE MULTIPLICATION

```
THEOREM (1972-Sinclair)
EVERY DERIVATION ON }\mp@subsup{M}{n}{}(\mathbf{R})\mathrm{ WITH RESPECT TO CIRCLE MULTIPLICATION IS OF THE FORM \(\delta_{A}\) FOR SOME \(A\) IN \(M_{n}(\mathbf{R})\).
```

REMARK (1937-Jacobson)
THE ABOVE PROPOSITION AND THEOREM NEED TO BE MODIFIED FOR THE SUBALGEBRA (WITH RESPECT TO CIRCLE MULTIPLICATION) OF SYMMETRIC MATRICES.

Table $2 M_{n}(\mathrm{R})$ (ALGEBRAS)

matrix	bracket	circle
$a b=a \times b$	$[a, b]=a b-b a$	$a \circ b=a b+b a$
Th. 2	Th.3	Th.4
$\delta_{a}(x)$	$\delta_{a}(x)$	$\delta_{a}(x)$
$=$	$=$	$=$
$a x-x a$	$a x-x a$	$a x-x a$

Review of Cohomology

NOTATION

n is a positive integer, $n=1,2, \cdots$
f is a function of n variables
F is a function of $n+1$ variables ($n+2$ variables?)
$x_{1}, x_{2}, \cdots, x_{n+1}$ belong to an algebra A
$f\left(y_{1}, \ldots, y_{n}\right)$ and $F\left(y_{1}, \cdots, y_{n+1}\right)$ also belong to A

The basic formula of homological algebra

$F\left(x_{1}, \ldots, x_{n}, x_{n+1}\right)=$
$x_{1} f\left(x_{2}, \ldots, x_{n+1}\right)$
$-f\left(x_{1} x_{2}, x_{3}, \ldots, x_{n+1}\right)$
$+f\left(x_{1}, x_{2} x_{3}, x_{4}, \ldots, x_{n+1}\right)$
$-\cdots$
$\pm f\left(x_{1}, x_{2}, \ldots, x_{n} x_{n+1}\right)$
$\mp f\left(x_{1}, \ldots, x_{n}\right) x_{n+1}$

HIERARCHY

$x_{1}, x_{2}, \ldots, x_{n}$ are points (or vectors)
f and F are functions-they take points to points
T, defined by $T(f)=F$ is a transformation-takes functions to functions points x_{1}, \ldots, x_{n+1} and $f\left(y_{1}, \ldots, y_{n}\right)$ will belong to an algebra A functions f will be either constant, linear or multilinear (hence so will F) transformation T is linear

SHORT FORM OF THE FORMULA

$$
\begin{gathered}
(T f)\left(x_{1}, \ldots, x_{n}, x_{n+1}\right) \\
=x_{1} f\left(x_{2}, \ldots, x_{n+1}\right) \\
+\sum_{j=1}^{n}(-1)^{j} f\left(x_{1}, \ldots, x_{j} x_{j+1}, \ldots, x_{n+1}\right) \\
+(-1)^{n+1} f\left(x_{1}, \ldots, x_{n}\right) x_{n+1}
\end{gathered}
$$

FIRST CASES

$n=0$
If f is any constant function from A to A, say, $f(x)=b$ for all x in A, where b is a fixed element of A, we have, consistent with the basic formula, a linear function $T_{0}(f):$

$$
T_{0}(f)\left(x_{1}\right)=x_{1} b-b x_{1}
$$

$n=1$
If f is a linear function from A to A, then $T_{1}(f)$ is a bilinear function

$$
T_{1}(f)\left(x_{1}, x_{2}\right)=x_{1} f\left(x_{2}\right)-f\left(x_{1} x_{2}\right)+f\left(x_{1}\right) x_{2}
$$

$n=2$
If f is a bilinear function from $A \times A$ to A, then $T_{2}(f)$ is a trilinear function

$$
\begin{gathered}
T_{2}(f)\left(x_{1}, x_{2}, x_{3}\right)= \\
x_{1} f\left(x_{2}, x_{3}\right)-f\left(x_{1} x_{2}, x_{3}\right)+f\left(x_{1}, x_{2} x_{3}\right)-f\left(x_{1}, x_{2}\right) x_{3}
\end{gathered}
$$

FIRST COHOMOLOGY GROUP

Kernel and Image of a linear transformation

$G: X \rightarrow Y$
Since X and Y are vector spaces, they are in particular, commutative groups.
Kernel of G (also called nullspace of G) is
ker $G=\{x \in X: G(x)=0\}$
This is a subgroup of X
Image of G is $\operatorname{im} G=\{G(x): x \in X\}$
This is a subgroup of Y

```
\[
\underline{G}=T_{0}
\]
\[
X=A \text { (the algebra) }
\]
\[
Y=L(A) \text { (all linear transformations on } A)
\]
\[
T_{0}(f)\left(x_{1}\right)=x_{1} b-b x_{1}
\]
\[
\left.\operatorname{ker} T_{0}=\{b \in A: x b-b x=0 \text { for all } x \in A\} \text { (center of } A\right)
\]
\[
\text { im } T_{0}=\text { the set of all linear maps of } A \text { of the form } x \mapsto x b-b x,
\]
\[
\text { in other words, the set of all inner derivations of } A
\]
\[
\text { ker } T_{0} \text { is a subgroup of } A
\]
\[
\text { im } T_{0} \text { is a subgroup of } L(A)
\]
```

$G=T_{1}$
$X=L(A)($ linear transformations on $A)$
$Y=L^{2}(A)$ (bilinear transformations on $A \times A$)
$T_{1}(f)\left(x_{1}, x_{2}\right)=x_{1} f\left(x_{2}\right)-f\left(x_{1} x_{2}\right)+f\left(x_{1}\right) x_{2}$
ker $T_{1}=\left\{f \in L(A): T_{1} f\left(x_{1}, x_{2}\right)=0\right.$ for all $\left.x_{1}, x_{2} \in A\right\}=$ the set of all derivations of A
$\operatorname{im} T_{1}=$ the set of all bilinear maps of $A \times A$ of the form

$$
\left(x_{1}, x_{2}\right) \mapsto x_{1} f\left(x_{2}\right)-f\left(x_{1} x_{2}\right)+f\left(x_{1}\right) x_{2},
$$

for some linear function $f \in L(A)$. ker T_{1} is a subgroup of $L(A)$ $\operatorname{im} T_{1}$ is a subgroup of $L^{2}(A)$

$$
\begin{aligned}
& L^{0}(A) \xrightarrow{T_{0}} L(A) \xrightarrow{T_{1}} L^{2}(A) \xrightarrow{T_{2}} L^{3}(A) \cdots \\
& \text { FACTS: } T_{1} \circ T_{0}=0 \\
& T_{2} \circ T_{1}=0 \\
& \cdots \\
& T_{n+1} \circ T_{n}=0
\end{aligned}
$$

Therefore

```
im}\mp@subsup{T}{n}{}\subset\mathrm{ ker }\mp@subsup{T}{n+1}{}\subset\mp@subsup{L}{}{n}(A
```

and therefore $\operatorname{im} T_{n}$ is a subgroup of ker T_{n+1}
$\operatorname{im} T_{0} \subset \operatorname{ker} T_{1}$
says
Every inner derivation is a derivation
im $T_{1} \subset \operatorname{ker} T_{2}$
says
for every linear map f, the bilinear map F defined by

$$
F\left(x_{1}, x_{2}\right)=x_{1} f\left(x_{2}\right)-f\left(x_{1} x_{2}\right)+f\left(x_{1}\right) x_{2}
$$

satisfies the equation

$$
\begin{gathered}
x_{1} F\left(x_{2}, x_{3}\right)-F\left(x_{1} x_{2}, x_{3}\right)+ \\
F\left(x_{1}, x_{2} x_{3}\right)-F\left(x_{1}, x_{2}\right) x_{3}=0
\end{gathered}
$$

for every $x_{1}, x_{2}, x_{3} \in A$.

The cohomology groups of A are defined as the quotient groups

$$
H^{n}(A)=\frac{\operatorname{ker} T_{n}}{\operatorname{im} T_{n-1}}
$$

$(n=1,2, \ldots)$

Thus

$$
\begin{gathered}
H^{1}(A)=\frac{\text { ker } T_{1}}{\operatorname{im} T_{0}}=\frac{\text { derivations }}{\text { inner derivations }} \\
H^{2}(A)=\frac{\text { ker } T_{2}}{\operatorname{im} T_{1}}=?
\end{gathered}
$$

The theorem that every derivation of $M_{n}(\mathbf{R})$ is inner (that is, of the form δ_{a} for some $\left.a \in M_{n}(\mathbf{R})\right)$ can now be restated as:
"the cohomology group $H^{1}\left(M_{n}(\mathbf{R})\right)$ is the trivial one element group"

COHOMOLOGY OF LIE ALGEBRAS

GO TO PART 6, PAGES 57-74
http://staffwww.fullcoll.edu/dclahane/colloquium/russotalk030713.pdf

COHOMOLOGY OF JORDAN ALGEBRAS

$$
n=0
$$

ASSOCIATIVE

$f: A \rightarrow A$ is a constant function, say $f(x)=b$ for all x
$T_{0}(f): A \rightarrow A$ is a linear function
$T_{0}(f)\left(x_{1}\right)=x_{1} b-b x_{1}$

LIE

$f: A \rightarrow A$ is a constant function, say $f(x)=b$ for all x
$T_{0}(f): A \rightarrow A$ is a linear function
$T_{0}(f)\left(x_{1}\right)=\left[b, x_{1}\right]$

JORDAN

$f \in A \times A$ is an ordered pair, say $f=(a, b)$
$T_{0}(f): A \rightarrow A$ is a linear function $T_{0}(f)\left(x_{1}\right)=a \circ\left(b \circ x_{1}\right)-b \circ\left(a \circ x_{1}\right)$

$$
n=1
$$

ASSOCIATIVE

$f: A \rightarrow A$ is a linear function
$T_{1}(f): A \times A \rightarrow A$ is a bilinear function
$T_{1}(f)\left(x_{1}, x_{2}\right)=x_{1} f\left(x_{2}\right)-f\left(x_{1} x_{2}\right)+f\left(x_{1}\right) x_{2}$

LIE

$f: A \rightarrow A$ is a linear function
$T_{1}(f): A \times A \rightarrow A$ is a skew-symmetric bilinear function
$T_{1}(f)\left(x_{1}, x_{2}\right)=-\left[f\left(x_{2}\right), x_{1}\right]+\left[f\left(x_{1}\right), x_{2}\right]-f\left(\left[x_{1}, x_{2}\right]\right)$

JORDAN

$f: A \rightarrow A$ is a linear function
$T_{1}(f): A \times A \rightarrow A$ is a symmetric bilinear function
$T_{1}(f)\left(x_{1}, x_{2}\right)=x_{1} \circ f\left(x_{2}\right)-f\left(x_{1} \circ x_{2}\right)+f\left(x_{1}\right) \circ x_{2}$

$$
n=2
$$

ASSOCIATIVE

$f: A \times A \rightarrow A$ is a bilinear function
$T_{2}(f): A \times A \times A \rightarrow A$ is a trilinear function
$T_{2}(f)\left(x_{1}, x_{2}, x_{3}\right)=x_{1} f\left(x_{2}, x_{3}\right)-f\left(x_{1} x_{2}, x_{3}\right)-f\left(x_{1}, x_{2} x_{3}\right)+f\left(x_{1}, x_{2}\right) x_{3}$

LIE

$f: A \times A \rightarrow A$ is a skew-symmetric bilinear function
$T_{2}(f): A \times A \times A \rightarrow A$ is a skew-symmetric trilinear function

$$
\begin{aligned}
T_{2}(f)\left(x_{1}, x_{2}, x_{3}\right) & =\left[f\left(x_{2}, x_{3}\right), x_{1}\right]-\left[f\left(x_{1}, x_{3}\right), x_{2}\right]+\left[f\left(x_{1}, x_{2}\right), x_{3}\right] \\
& -f\left(x_{3},\left[x_{1}, x_{2}\right]\right)+f\left(x_{2},\left[x_{1}, x_{3}\right]\right)-f\left(x_{1},\left[x_{2}, x_{3}\right]\right)
\end{aligned}
$$

CLOSING

INTERPRETATION OF COHOMOLOGY GROUPS

FIRST COHOMOLOGY GROUP
DERIVATIONS (AND INNER DERIVATIONS)

```
SECOND COHOMOLOGY GROUP EXTENSIONS ( AND SPLIT EXTENSIONS)
```


VANISHING THEOREMS

FOR EACH CLASS OF ALGEBRAS (ASSOCIATIVE, LIE, JORDAN), UNDER WHAT CONDITIONS IS $H^{n}(A)=0$, ESPECIALLY FOR $n=1,2$

