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Series 1
• PART I FEBRUARY 8, 2011 ALGEBRAS; DERIVATIONS

• PART II JULY 21, 2011 TRIPLE SYSTEMS; DERIVATIONS

• PART III FEBRUARY 28, 2012 MODULES; DERIVATIONS

• PART IV JULY 26, 2012 COHOMOLOGY (ASSOCIATIVE ALGEBRAS)

• PART V OCTOBER 25, 2012 THE SECOND COHOMOLOGY GROUP

• PART VI MARCH 7, 2013 COHOMOLOGY (LIE ALGEBRAS)

• PART VII JULY 25, 2013 COHOMOLOGY (JORDAN ALGEBRAS)

• PART VIII SEPTEMBER 17, 2013 VANISHING THEOREMS IN
DIMENSIONS 1 AND 2 (ASSOCIATIVE ALGEBRAS)

• PART IX FEBRUARY 18, 2014 VANISHING THEOREMS IN
DIMENSIONS 1 AND 2 (JORDAN ALGEBRAS)

Series 2
• PART I JULY 24, 2014 THE REMARKABLE CONNECTION
BETWEEN JORDAN ALGEBRAS AND LIE ALGEBRAS
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Outline

• Review of (matrix) Algebras and derivations on them
(From series 1, part 1)

• Two theorems relating different types of derivations

• Review of (matrix) triple systems and derivations on them
(From series 1, part 2)

• Two theorems on embedding triple systems into Lie algebras

Only the first two items were covered in the talk. The second two items will be
covered in the next lecture (Fall 2014), after a possible revision. However all four
items are included in this file.
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Introduction

I shall review the definitions of Lie algebra and Jordan algebra (from my talk on
February 8, 2011) and show the remarkable connection between them as reflected
in the following two (conflicting) quotations:

(Kevin McCrimmon 1978)

”If you open up a Lie algebra and look inside, 9 times out of 10 you will find a
Jordan algebra which makes it tick.”

(Max Koecher 1967)

”There are no Jordan algebras, there are only Lie algebras.”

The relevant definitions and examples from earlier talks in the series will be
reviewed beforehand.
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Review of Algebras—Axiomatic approach

AN ALGEBRA IS DEFINED TO BE A SET (ACTUALLY A VECTOR SPACE)
WITH TWO BINARY OPERATIONS, CALLED ADDITION AND
MULTIPLICATION

ADDITION IS DENOTED BY a + b AND IS REQUIRED TO BE
COMMUTATIVE a + b = b + a
AND ASSOCIATIVE (a + b) + c = a + (b + c)

MULTIPLICATION IS DENOTED BY ab AND IS REQUIRED TO BE
DISTRIBUTIVE WITH RESPECT TO ADDITION
(a + b)c = ac + bc, a(b + c) = ab + ac

AN ALGEBRA IS SAID TO BE ASSOCIATIVE (RESP. COMMUTATIVE) IF THE
MULTIPLICATION IS ASSOCIATIVE (RESP. COMMUTATIVE)
(RECALL THAT ADDITION IS ALWAYS COMMUTATIVE AND ASSOCIATIVE)
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Table 1 (FASHIONABLE) ALGEBRAS

commutative algebras ab = ba

associative algebras a(bc) = (ab)c

Lie algebras a2 = 0 , (ab)c + (bc)a + (ca)b = 0

Jordan algebras ab = ba, a(a2b) = a2(ab)
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DERIVATIONS ON MATRIX ALGEBRAS

THE SET Mn(R) of n by n MATRICES IS AN ALGEBRA UNDER
MATRIX ADDITION A + B

AND MATRIX MULTIPLICATION A× B
WHICH IS ASSOCIATIVE BUT NOT COMMUTATIVE.

For the Record:

[aij ] + [bij ] = [aij + bij ] [aij ]× [bij ] = [
∑n

k=1 aikbkj ]

DEFINITION

A DERIVATION ON Mn(R) WITH RESPECT TO MATRIX MULTIPLICATION
IS A LINEAR PROCESS δ: δ(A + B) = δ(A) + δ(B)
WHICH SATISFIES THE PRODUCT RULE

δ(A× B) = δ(A)× B + A× δ(B)

.
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PROPOSITION

FIX A MATRIX A in Mn(R) AND DEFINE

δA(X ) = A× X − X × A.

THEN δA IS A DERIVATION WITH RESPECT TO MATRIX MULTIPLICATION
(WHICH ARE CALLED INNER DERIVATIONS)

THEOREM (Noether,Wedderburn,Hochschild,Jacobson,
Kaplansky,Kadison,Sakai)

EVERY DERIVATION ON Mn(R) WITH RESPECT TO MATRIX
MULTIPLICATION IS INNER, THAT IS, OF THE FORM δA FOR SOME A IN
Mn(R).

We gave a proof of this theorem for n = 2 in part 8 of series 1.
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THE BRACKET PRODUCT ON THE SET OF
MATRICES

DEFINITION

THE BRACKET PRODUCT ON THE SET Mn(R) OF MATRICES IS
DEFINED BY

[X ,Y ] = X × Y − Y × X

THE SET Mn(R) of n by n MATRICES IS AN ALGEBRA UNDER MATRIX
ADDITION AND BRACKET MULTIPLICATION, WHICH IS NOT
ASSOCIATIVE AND NOT COMMUTATIVE.

DEFINITION

A DERIVATION ON Mn(R) WITH
RESPECT TO BRACKET MULTIPLICATION IS A LINEAR PROCESS δ

WHICH SATISFIES THE PRODUCT RULE

δ([A,B]) = [δ(A),B] + [A, δ(B)].
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PROPOSITION

FIX A MATRIX A in Mn(R) AND DEFINE

δA(X ) = [A,X ] = A× X − X × A.

THEN δA IS A DERIVATION WITH RESPECT TO BRACKET
MULTIPLICATION (STILL CALLED INNER DERIVATION).

THEOREM

EVERY DERIVATION ON Mn(R) WITH RESPECT TO BRACKET
MULTIPLICATION IS INNER, THAT IS, OF THE FORM δA FOR SOME A IN
Mn(R). a

aFull disclosure: this is actually not true. Check that the map X 7→ (trace of X )I is
a derivation which is not inner (I is the identity matrix). The correct statement is that
every derivation of a semisimple finite dimensional Lie algebra is inner. Mn(R) is a
semisimple associative algebra under matrix multiplication, a semisimple Jordan
algebra under circle multiplication, but not a semisimple Lie algebra under bracket
multiplication. Please ignore this footnote until you find out what semisimple means in
each context
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THE CIRCLE PRODUCT ON THE SET OF MATRICES

DEFINITION

THE CIRCLE PRODUCT ON THE SET Mn(R) OF MATRICES IS DEFINED
BY

X ◦ Y = (X × Y + Y × X )/2

THE SET Mn(R) of n by n MATRICES IS AN ALGEBRA UNDER MATRIX
ADDITION AND CIRCLE MULTIPLICATION, WHICH IS COMMUTATIVE BUT
NOT ASSOCIATIVE.

DEFINITION

A DERIVATION ON Mn(R) WITH RESPECT TO CIRCLE MULTIPLICATION
IS A LINEAR PROCESS δ WHICH SATISFIES THE PRODUCT RULE

δ(A ◦ B) = δ(A) ◦ B + A ◦ δ(B)
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PROPOSITION

FIX A MATRIX A in Mn(R) AND DEFINE

δA(X ) = A× X − X × A.

THEN δA IS A DERIVATION WITH RESPECT TO CIRCLE MULTIPLICATION
(ALSO CALLED AN INNER DERIVATION IN THIS CONTEXTa)

aHowever, see the following remark. Also see some of the exercises (Dr. Gradus Ad
Parnassum) in part 1 of these lectures

THEOREM (1972-Sinclair)

EVERY DERIVATION ON Mn(R) WITH RESPECT TO CIRCLE
MULTIPLICATION IS INNER, THAT IS, OF THE FORM δA FOR SOME A IN
Mn(R).

REMARK (1937-Jacobson)
THE ABOVE PROPOSITION AND THEOREM NEED TO BE MODIFIED FOR
THE SUBALGEBRA (WITH RESPECT TO CIRCLE MULTIPLICATION) OF
SYMMETRIC MATRICES, FOR EXAMPLE.
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Table 2 Mn(R) (ALGEBRAS)

matrix bracket circle
ab = a× b [a, b] = ab − ba a ◦ b = ab + ba
Associative Lie Jordan
δa(x) δa(x) δa(x)

= = =
ax − xa ax − xa ax − xa

or trace(x)I
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H1(M2,M2) = 0

Matrix units

Let E11 =

[
1 0
0 0

]
, E12 =

[
0 1
0 0

]
, E21 =

[
0 0
1 0

]
, E22 =

[
0 0
0 1

]

LEMMA
I E11 + E22 = I

I E t
ij = Eji

I EijEkl = δklEil

THEOREM 1

Let δ : M2 → M2 be a derivation: δ is linear and δ(AB) = Aδ(B) + δ(A)B. Then
there exists a matrix K such that δ(X ) = XK − KX for X in M2.

COROLLARY

H1(M2,M2) = 0
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PROOF OF THEOREM 1

0 = δ(1) = δ(E11 + E22) = δ(E11) + δ(E22)

= δ(E11E11) + δ(E21E12)

= E11δ(E11) + δ(E11)E11 + E21δ(E12) + δ(E21)E12

= E11δ(E11) + E21δ(E12) + δ(E11)E11 + δ(E21)E12.

Let K = E11δ(E11) + E21δ(E12) = −δ(E11)E11 − δ(E21)E12. Then

I KE11 = −δ(E11)E11 , E11K = E11δ(E11)

I KE12 = −δ(E11)E12 , E12K = E11δ(E12)

I KE21 = −δ(E21)E11 , E21K = E21δ(E11)

I KE22 = −δ(E21)E12 , E22K = E21δ(E12)

I E11K − KE11 = E11δ(E11) + δ(E11)E11 = δ(E11E11) = δ(E11)

I E12K − KE12 = E11δ(E12) + δ(E11)E12 = δ(E11E12) = δ(E12)

I E21K − KE21 = E21δ(E11) + δ(E21)E11 = δ(E21E11) = δ(E21)

I E22K − KE22 = E21δ(E12) + δ(E21)E12 = δ(E21E12) = δ(E22) Q.E.D.
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Return to Axiomatic approach

If A is an associative algebra, we can make it into a Lie algebra, denoted A− by
defining [a, b] = ab − ba and into a Jordan algebra, denoted A+ by defining
a ◦ b = (ab + ba)/2.

Examples: A = C ⇒ A− = A with all products [a, b] = 0, A+ = A with a ◦ b = ab

NOT VERY INTERESTING

A = Mn(R) is more interesting!
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Types of derivations

Derivation

δ(ab) = aδ(b) + δ(a)b

Lie derivation

δ([a, b]) = [a, δ(b)] + [δ(a), b]

Jordan derivation

δ(a ◦ b) = a ◦ δ(b) + δ(a) ◦ b

Trivial Exercise
A derivation is also a Lie derivation and a Jordan derivation.
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Converses

These are the two theorems relating different types of derivations

Theorem 1

A Jordan derivation is a derivation (A = Mn(R))

Example

There is a Lie derivation which is not a derivation (A = Mn(R), namely
δ(x) = trace(x)I

Theorem 2
Every Lie derivation is the sum of a derivation and a linear operator of the above
form (A = Mn(R))
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Diagonals

Let d = 1
n

∑
i,j eij ⊗ eji . Then d is a diagonal for Mn(C), that is,

π(d) = 1 and a · d = d · a for all a ∈ Mn(C), where
π(x ⊗ y) = xy , a · x ⊗ y = (ax)⊗ y and x ⊗ y · a = x ⊗ (ya).
Explicitly, π(d) = 1

n

∑
i,j eijeji = 1, 1

n

∑
i,j(aeij)⊗ eji = 1

n

∑
i,j eij ⊗ (ejia)

The symmetric nature of d implies 1
n

∑
i,j(eija)⊗ eji = 1

n

∑
i,j eij ⊗ (aeji )

For any linear transformation D, apply 1⊗ D and then π, to get
1
n

∑
i,j(aeij)D(eji ) = 1

n

∑
i,j eijD(ejia) and 1

n

∑
i,j(eija)D(eji ) = 1

n

∑
i,j eijD(aeji )
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Proof of Theorem 1 (Barry Johnson 1996)

Let D : Mn(C)→ Mn(C) be a Jordan derivation

Define x = 1
n

∑
i,j eijDeji . Then

ax = 1
n

∑
i,j aeijDeji = 1

n

∑
i,j eijD(ejia)

D(ejia) + D(aeji ) = ejiDa + (Da)eji + (Deji )a + aDeji

ax = 1
n

∑
i,j eij [ejiDa + D(eji )a + (Da)eji + aDeji − D(aeji )]

ax = Da + xa + ∆(a) + 0, where

∆(a) = 1
n

∑
i,j eij(Da)eji (recall that 1

n

∑
i,j(eija)D(eji ) = 1

n

∑
i,j eijD(aeji ))
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∆ is a Jordan derivation with a∆(b) = ∆(b)a, that is,
1
n

∑
i,j aeij(Db)eji = 1

n

∑
i,j eij(Db)ejia

Proof: Apply RDb ⊗ 1, then π to 1
n

∑
i,j(aeij)⊗ eji = 1

n

∑
i,j eij ⊗ (ejia)

Start over with D replaced by ∆
x0 = 1

n

∑
i,j eij∆(eji )

ax0 = ∆a + x0a + 1
n

∑
i,j eij∆(a)(eji ) = 2∆a + x0a

∆a = 1
2 (ax0 − x0a)

Da = ax − xa−∆a = a(x − 1
2x0)− (x − 1

2x0)a
is an inner associative derivation. Q.E.D.

The proof of the Lie derivation result goes along the same lines
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Proof of Theorem 2 (Barry Johnson 1996)

Let D : Mn(C)→ Mn(C) be a Lie derivation

Define x = 1
n

∑
i,j eijDeji . Then

ax = 1
n

∑
i,j aeijDeji = 1

n

∑
i,j eijD(ejia)

D(ejia)− D(aeji ) = ejiDa− (Da)eji + (Deji )a− aDeji

ax = 1
n

∑
i,j eij [ejiDa + D(eji )a− (Da)eji − aDeji + D(aeji )]

ax = Da + xa−∆(a) + 0, where

∆(a) = 1
n

∑
i,j eij(Da)eji (recall that 1

n

∑
i,j(eija)D(eji ) = 1

n

∑
i,j eijD(aeji ))

∆ is a Lie derivation with a∆(b) = ∆(b)a, that is, so it vanishes on commutators
and so Da = ax − xa + ∆(a) as required.
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DERIVATIONS ON RECTANGULAR MATRICES

MULTIPLICATION DOES NOT MAKE SENSE ON Mm,n(R) if m 6= n.
NOT TO WORRY!
WE CAN FORM A TRIPLE PRODUCT X × Y t × Z
(TRIPLE MATRIX MULTIPLICATION)

COMMUTATIVE AND ASSOCIATIVE DON’T MAKE SENSE HERE. RIGHT?
WRONG!!

(X × Y t × Z )× At × B = X × Y t × (Z × At × B)
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DEFINITION

A DERIVATION ON Mm,n(R) WITH RESPECT TO
TRIPLE MATRIX MULTIPLICATION
IS A LINEAR PROCESS δ WHICH SATISFIES THE (TRIPLE) PRODUCT RULE
δ(A× B t × C ) =
δ(A)× B t × C + A× δ(B)t × C + A× B t × δ(C )

PROPOSITION

FOR TWO MATRICES A,B in Mm,n(R),
DEFINE δA,B(X ) =

A× B t × X + X × B t × A− B × At × X − X × At × B

THEN δA,B IS A DERIVATION WITH RESPECT TO TRIPLE MATRIX
MULTIPLICATION
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THEOREM

EVERY DERIVATION ON Mm,n(R) WITH RESPECT TO TRIPLE MATRIX
MULTIPLICATION IS A SUM OF DERIVATIONS OF THE FORM δA,B .

REMARK
THESE RESULTS HOLD TRUE AND ARE OF INTEREST FOR THE CASE
m = n.
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TRIPLE BRACKET MULTIPLICATION
LET’S GO BACK FOR A MOMENT TO SQUARE MATRICES AND THE
BRACKET MULTIPLICATION.
MOTIVATED BY THE LAST REMARK, WE DEFINE THE TRIPLE BRACKET
MULTIPLICATION TO BE [[X ,Y ],Z ]

DEFINITION

A DERIVATION ON Mn(R) WITH RESPECT TO
TRIPLE BRACKET MULTIPLICATION
IS A LINEAR PROCESS δ WHICH SATISFIES THE TRIPLE PRODUCT RULE
δ([[A,B],C ]) = [[δ(A),B],C ] + [[A, δ(B)],C ] + [[A,B], δ(C )]
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PROPOSITION

FIX TWO MATRICES A,B IN Mn(R) AND DEFINE δA,B(X ) = [[A,B],X ]
THEN δA,B IS A DERIVATION WITH RESPECT TO TRIPLE BRACKET
MULTIPLICATION.

THEOREM

EVERY DERIVATION OF Mn(R) WITH RESPECT TO TRIPLE BRACKET
MULTIPLICATION IS A SUM OF DERIVATIONS OF THE FORM δA,B .
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TRIPLE CIRCLE MULTIPLICATION
LET’S RETURN TO RECTANGULAR MATRICES AND FORM THE TRIPLE
CIRCLE MULTIPLICATION
(A× B t × C + C × B t × A)/2
For sanity’s sake, let us write this as

{A,B,C} = (A× B t × C + C × B t × A)/2

DEFINITION

A DERIVATION ON Mm,n(R) WITH RESPECT TO
TRIPLE CIRCLE MULTIPLICATION
IS A LINEAR PROCESS δ WHICH SATISFIES THE TRIPLE PRODUCT RULE
δ({A,B,C}) = {δ(A),B,C}+ {A, δ(B),C}+ {A,B, δ(C )}
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PROPOSITION

FIX TWO MATRICES A,B IN Mm,n(R) AND DEFINE

δA,B(X ) = {A,B,X} − {B,A,X}

THEN δA,B IS A DERIVATION WITH RESPECT TO TRIPLE CIRCLE
MULTIPLICATION.

THEOREM

EVERY DERIVATION OF Mm,n(R) WITH RESPECT TO TRIPLE CIRCLE
MULTIPLICATION IS A SUM OF DERIVATIONS OF THE FORM δA,B .

Bernard Russo (UCI) DERIVATIONS An introduction to non associative algebra (or, Playing havoc with the product rule)29 / 44



IT IS TIME FOR SUMMARY OF THE PRECEDING

Table 3 Mm,n(R) (TRIPLE SYSTEMS)

triple triple triple
matrix bracket circle
abtc [[a, b], c] abtc + cbta

Th. 8 Th.9 Th.10
δa,b(x) δa,b(x) δa,b(x)

= = =
abtx abx abtx

+xbta +xba +xbta
−batx −bax −batx
−xatb −xab −xatb
(sums) (sums) (sums)

(m = n)
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Table 2 Mn(R) (ALGEBRAS)
matrix bracket circle

ab = a× b [a, b] = ab − ba a ◦ b = ab + ba
δa(x) δa(x) δa(x)

= = =
ax − xa ax − xa ax − xa

Table 3 Mm,n(R) (TRIPLE SYSTEMS)

triple triple triple
matrix bracket circle

< abc >= abtc [abc] = [[a, b], c] {abc} = abtc + cbta
δa,b(x) δa,b(x) δa,b(x)

= = =
abtx abx abtx

+xbta +xba +xbta
−batx −bax −batx
−xatb −xab −xatb
(sums) (sums) (sums)

(m = n)
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AXIOMATIC APPROACH FOR TRIPLE SYSTEMS

AN TRIPLE SYSTEM IS DEFINED TO BE A SET (ACTUALLY A VECTOR
SPACE) WITH ONE BINARY OPERATION, CALLED ADDITION AND ONE
TERNARY OPERATION CALLED TRIPLE MULTIPLICATION
ADDITION IS DENOTED BY
a + b
AND IS REQUIRED TO BE COMMUTATIVE AND ASSOCIATIVE
a + b = b + a, (a + b) + c = a + (b + c)
TRIPLE MULTIPLICATION IS DENOTED
abc
AND IS REQUIRED TO BE LINEAR IN EACH VARIABLE

(a + b)cd = acd + bcd
a(b + c)d = abd + acd
ab(c + d) = abc + abd
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SIMPLE BUT IMPORTANT EXAMPLES OF TRIPLE SYSTEMS CAN BE
FORMED FROM ANY ALGEBRA
IF ab DENOTES THE ALGEBRA PRODUCT, JUST DEFINE A TRIPLE
MULTIPLICATION TO BE (ab)c
LET’S SEE HOW THIS WORKS IN THE ALGEBRAS WE INTRODUCED IN
PART I
C,D; fgh = (fg)h
(Mn(R),×); abc = a× b × c or a× bt × c
(Mn(R), [, ]); abc = [[a, b], c]
(Mn(R), ◦); abc = (a ◦ b) ◦ c (NO GO!)
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A TRIPLE SYSTEM IS SAID TO BE ASSOCIATIVE (RESP. COMMUTATIVE)
IF THE MULTIPLICATION IS ASSOCIATIVE (RESP. COMMUTATIVE)
(RECALL THAT ADDITION IS ALWAYS COMMUTATIVE AND ASSOCIATIVE)
IN THE TRIPLE CONTEXT THIS MEANS THE FOLLOWING
ASSOCIATIVE
ab(cde) = (abc)de = a(bcd)e
OR ab(cde) = (abc)de = a(dcb)e
COMMUTATIVE: abc = cba

THE TRIPLE SYSTEMS C, D AND (Mn(R),×) ARE EXAMPLES OF
ASSOCIATIVE TRIPLE SYSTEMS.
C AND D ARE EXAMPLES OF COMMUTATIVE TRIPLE SYSTEMS.
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THE AXIOM WHICH CHARACTERIZES TRIPLE MATRIX MULTIPLICATION
IS

(abc)de = ab(cde) = a(dcb)e

THESE ARE CALLED
ASSOCIATIVE TRIPLE SYSTEMS
or
HESTENES ALGEBRAS

THE AXIOMS WHICH CHARACTERIZE TRIPLE BRACKET MULTIPLICATION
ARE
aab = 0
abc + bca + cab = 0
de(abc) = (dea)bc + a(deb)c + ab(dec)
THESE ARE CALLED
LIE TRIPLE SYSTEMS
(NATHAN JACOBSON, MAX KOECHER)
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THE AXIOMS WHICH CHARACTERIZE TRIPLE CIRCLE MULTIPLICATION
ARE

abc = cba

de(abc) = (dea)bc − a(edb)c + ab(dec)

THESE ARE CALLED
JORDAN TRIPLE SYSTEMS
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YET ANOTHER SUMMARY

Table 4 TRIPLE SYSTEMS
associative triple systems
(abc)de = ab(cde) = a(dcb)e
Lie triple systems
aab = 0
abc + bca + cab = 0
de(abc) = (dea)bc + a(deb)c + ab(dec)
Jordan triple systems
abc = cba
de(abc) = (dea)bc − a(edb)c + ab(dec)

Table 1 (FASHIONABLE) ALGEBRAS

commutative algebras ab = ba
associative algebras a(bc) = (ab)c
Lie algebras a2 = 0 , (ab)c + (bc)a + (ca)b = 0
Jordan algebras ab = ba, a(a2b) = a2(ab)

Bernard Russo (UCI) DERIVATIONS An introduction to non associative algebra (or, Playing havoc with the product rule)37 / 44



Theorem
Every derivation of a finite dimensional semisimple Lie triple system F is a sum of
derivations of the form δA,B , for some A’s and B’s in the triple system. These
derivations are called inner derivations and their set is denoted InderF .

Proof

Let F be a finite dimensional semisimple Lie triple system (over a field of
characteristic 0) and suppose that D is a derivation of F . Let L be the Lie algebra
(InderF )⊕ F with product

[(H1, x1), (H2, x2)] = ([H1,H2] + L(x1, x2),H1x2 − H2x1).

A derivation of L is defined by δ(H ⊕ a) = [D,H]⊕ Da. Together with the
definition of semisimple Lie triple system, it is proved in the lecture notes of
Meyberg (Lectures on algebras and triple systems 1972) that F semisimple implies
L semisimple. Thus there exists U = H1 ⊕ a1 ∈ L such that δ(X ) = [U,X ] for all
X ∈ L. Then 0⊕ Da = δ(0⊕ a) = [H1 + a1, 0⊕ a] = L(a1, a)⊕ H1a so
L(a1, a) = 0 and D = H1 ∈ InderF .
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Theorem
Every derivation of a finite dimensional semisimple Jordan triple system is inner.

The TKK construction (Tits-Kantor-Koecher)

Let V be a Jordan triple and let L(V ) be its TKK Lie algebra .
L(V ) = V ⊕ V0 ⊕ V and the Lie product is given by

[(x , h, y), (u, k , v)] = (hu − kx , [h, k] + x v − u y , k\y − h\v).

Here, a b is the left multiplication operator x 7→ {abx} (also called the box
operator), V0 = span{V V } is a Lie subalgebra of L(V ) and for
h =

∑
i ai bi ∈ V0, the map h\ : V → V is defined by

h\ =
∑
i

bi ai .
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We can show the correspondence of derivations δ : V → V and
D : L(V )→ L(V ) for Jordan triple V and its TKK Lie algebra L(V ).

Let θ : L(V )→ L(V ) be the main involution θ(x ⊕ h ⊕ y) = y ⊕−h\ ⊕ x

Lemma
Let δ : V → V be a derivation of a Jordan triple V , with TKK Lie algebra
(L(V ), θ). Then there is a derivation D : L(V )→ L(V ) satisfying

D(V ) ⊂ V and Dθ = θD.
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Proof
Given a, b ∈ V , we define

D(a, 0, 0) = (δa, 0, 0)

D(0, 0, b) = (0, 0, δb)

D(0, a b, 0) = (0, δa b + a δb, 0)

and extend D linearly on L(V ). Then D is a derivation of L(V ) and evidently,
D(V ) ⊂ V .

It is readily seen that Dθ = θD, since

Dθ(0, a b, 0) = D(0,−b a, 0)

= (0, −δb a− b δa, 0)

= θ(0, δa b + a δb, 0)

= θD(0, a b, 0).
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Lemma

Let V be a Jordan triple with TKK Lie algebra (L(V ), θ). Given a derivation
D : L(V )→ L(V ) satisfying D(V ) ⊂ V and Dθ = θD, the restriction
D|V : V → V is a triple derivation.

Theorem

Let V be a Jordan triple with TKK Lie algebra (L(V ), θ). There is a one-one
correspondence between the triple derivations of V and the Lie derivations
D : L(V )→ L(V ) satisfying D(V ) ⊂ V and Dθ = θD.
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Lemma

Let V be a Jordan triple with TKK Lie algebra (L(V ), θ). Let D : L(V )→ L(V )
be a Lie inner derivation such that D(V ) ⊂ V . Then the restriction D|V is a
triple inner derivation of V .

Corollary

Let δ be a derivation of a finite dimensional semisimple Jordan triple V . Then δ is
a triple inner derivation of V .

Proof

The TKK Lie algebra L(V ) is semisimple. Hence the result follows from the Lie
result and the Lemma.
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The proof of the last Lemma is instructive. The steps are as follows.

1. D(x , k, y) = [(x , k, y), (a, h, b)] for some (a, h, b) ∈ L(V )
2. D(x , 0, 0) = [(x , 0, 0), (a, h, b)] = (−h(x), x b, 0)
3. δ(x) = −h(x) = −

∑
i αi βi (x)

4. D(0, 0, y) = [(0, 0, y), (a, h, b)] = (0,−a y , h\(y))
5. δ(x) = −h\(x) =

∑
i βi αi (x)

6. δ(x) = 1
2

∑
i (βi αi − αi βi )(x)
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APPENDIX: SOLVING LINEAR EQUATIONS
Let h be a Hochschild 1-cocycle, that is, a linear map

h : Mn(C)→ Mn(C)

satisfying
h(ab)− ah(b)− h(a)b = 0. (1)

We are going to show that there is an element x ∈ Mn(C) such that

h(a) = xa− ax . (2)

It is enough to prove that (2) holds with a ∈ {eij}, that is

h(eij) = xeij − eijx . (3)

The element x can be defined by determining its coordinates xij from other
information, that is

x =
∑
p,q

xpqepq. (4)

Define γijpq by

h(eij) =
∑
p,q

γijpqepq. (5)
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Then (3), (4) and (5) lead to the system of linear vector equations∑
p,q

γijpqepq =
∑
p,q

δqixpqepj −
∑
p,q

δjpxpqeiq. (6)

with n2 unknowns xij . Then any solution of (6) proves (3) and hence (2).

It is a special case of a theorem of Hochschild (1945) that such an x exists. We
shall find x by solving the equations. We shall now restrict to n = 2.
From (6) we have for fixed i , j ,

γij11e11 + γij12e12 + γij21e21 + γij22e22

= δ1ix11e1j + δ2ix12e1j + δ1ix21e2j + δ2ix22e2j (7)

−δj1x11ei1 − δj1x12ei2 − δj2x21ei1 − δj2x22ei2.

With (i , j) successively equal to (1, 1), (1, 2), (2, 1), (2, 2) we obtain the following
16 equations.
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Coefficient of e11

1 (i , j) = (1, 1) γ1111 = x11 − x11 = 0

2 (i , j) = (1, 2) γ1211 = −x21

3 (i , j) = (2, 1) γ2111 = x12

4 (i , j) = (2, 2) γ2211 = 0

Coefficient of e12

5 (i , j) = (1, 1) γ1112 = −x12

6 (i , j) = (1, 2) γ1212 = x11 − x22

7 (i , j) = (2, 1) γ2112 = 0

8 (i , j) = (2, 2) γ2212 = x12

Coefficient of e21

9 (i , j) = (1, 1) γ1121 = x21

10 (i , j) = (1, 2) γ1221 = 0

11 (i , j) = (2, 1) γ2121 = x22 − x11

12 (i , j) = (2, 2) γ2221 = −x21
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Coefficient of e22

13 (i , j) = (1, 1) γ1122 = 0

14 (i , j) = (1, 2) γ1222 = x21

15 (i , j) = (2, 1) γ2122 = −x12

16 (i , j) = (2, 2) γ2222 = x22 − x22 = 0

These 16 equations have the following formal solution, which is subject to the
validity of the relations between the γijpq, which is verified below.

I x21 = −γ1211 = γ1121 = γ1222 = −γ2221

I x12 = γ2111 = −γ1112 = γ2212 = −γ2122

I x22 = −γ1221 = −γ2221

I x11 = x22 + γ1212 = x22 − γ2121

I 0 = γ1111 = γ2211 = γ1122 = γ2222 = γ2112 = γ1221

Thus all solutions are given by

x =

[
γ1212 + x22 0
γ1121 x22

]
(x22 ∈ C)

proving the theorem.
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We now find the relations between the γs. From (1) and (5), we have for fixed
i , j , k .l ,

0 = δjk(γil11e11 + γil12e12 + γil21e21 + γil22e22)

− δj1γkl11ei1 − δj1γkl12ei2 − δj2γkl21ei1 − δj2γkl22ei2 (8)

−δ1kγij11e1l − δ2kγij12e1l − δ1kγij21e2l − δ2kγij22e2l .

With (i , j) successively equal to (1, 1), (1, 2), (2, 1), (2, 2) and (k, l) successively
equal to (1, 1), (1, 2), (2, 1), (2, 2) we obtain the following 64 equations giving the
necessary conditions on the quantities γijkl
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Coefficient of e11

eq ij kl = 0

1 11 11 −γ1111

2 11 12 γ1211 − γ2111

3 11 21 γ2111 − γ1112

4 11 22 −γ2211

5 12 11 −γ1111 − γ1121 − γ1211

6 12 12 −γ1211 − γ1221

7 12 21 γ1111 − γ2121 − γ1212

8 12 22 γ1211 − γ2211 − γ2221

9 21 11 γ1111 − γ2111

10 21 12 γ2211

11 21 21 −γ2112

12 21 22 0

13 22 11 −γ2211

14 22 12 0
15 22 21 γ2111 − γ2212

16 22 22 γ2211 − γ2222
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Coefficient of e12

eq ij kl = 0

17 11 11 γ1112 − γ1112 = 0
18 11 12 γ1212 − γ1212 − γ1111

19 11 21 −γ2112

20 11 22 −γ2212 − γ1112

21 12 11 −γ1122

22 12 12 −γ1221 − γ1222 − γ1211

23 12 21 γ1112 − γ2122

24 12 22 γ1212 − γ2222 − γ1212

25 21 11 γ2112

26 21 12 γ2212 − γ2111

27 21 21 0
28 21 22 −γ2112

29 22 11 0
30 22 12 −γ2211

31 22 21 γ2112 − γ2212

32 22 22 γ2212 − γ2212 = 0

Bernard Russo (UCI) DERIVATIONS An introduction to non associative algebra (or, Playing havoc with the product rule)44 / 44



Coefficient of e21

eq ij kl = 0

33 11 11 γ1121 − γ1121

34 11 12 γ1221

35 11 21 −γ1122

36 11 22 0

37 12 11 −γ1221

38 12 12 0
39 12 21 γ1121 − γ1222

40 12 22 γ1221

41 21 11 γ2121 − γ1111 − γ2121 = −γ1111

42 21 12 γ2221 − γ1211

43 21 21 −γ2111 − γ2122

44 21 22 γ2211

45 22 11 −γ1121 − γ2221

46 22 12 −γ1221

47 22 21 γ2121 − γ2121 − γ2222 = −γ2222

48 22 22 γ2221 − γ2221 = 0

Bernard Russo (UCI) DERIVATIONS An introduction to non associative algebra (or, Playing havoc with the product rule)44 / 44



Coefficient of e22

eq ij kl = 0

491 11 11 −γ1122

50 11 12 γ1222 − γ1121

51 11 21 0
52 11 22 0

53 12 11 −γ1221

54 12 12 0
55 12 21 γ1122

56 12 22 γ1222

57 21 11 γ2122 − γ2112

58 21 12 γ2222 − γ2212 − γ2121

59 21 21 −γ2112

60 21 22 −γ2212 − γ2122

61 22 11 −γ1122

62 22 12 −γ1222 − γ2221

63 22 21 γ2122 − γ2122 = 0
64 22 22 γ2222 − γ2222 − γ2222 = −3γ2222
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