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PREAMBLE

Much of the algebra taught in the

undergraduate curriculum, such as linear

algebra (vector spaces, matrices), modern

algebra (groups, rings, fields), number

theory (primes, congruences) is concerned

with systems with one or more associative

binary products.

For example, addition and multiplication of

matrices is associative:

A+(B+C)=(A+B)+C

and

A(BC)=(AB)C.



In the early 20th century, physicists started

using the product A.B for matrices, defined

by

A.B = AB +BA,

and called the Jordan product (after the

physicist Pascual Jordan 1902-1980), to

model the observables in quantum mechanics.

Also in the early 20th century both

mathematicians and physicists used the

product [A,B], defined by

[A,B] = AB −BA

and called the Lie product (after the

mathematician Sophus Lie 1842-1899), to

study differential equations.



Neither one of these products is associative,

so they each give rise to what is called a

nonassociative algebra, in these cases, called

Jordan algebras and Lie algebras

respectively.

Abstract theories of these algebras and other

nonassociative algebras were subsequently

developed and have many other applications,

for example to cryptography and genetics,

to name just two.

Lie algebras are especially important in

particle physics.



Using only the product rule for differentiation,

which every calculus student knows, part I

introduced the subject of nonassociative

algebras as the natural context for

derivations.

Part II introduced derivations on other

algebraic systems which have a ternary

rather than a binary product, with special

emphasis on Jordan and Lie structures.

(Today, we shall restrict ourselves to

algebras only)



Part III introduced the notion of a module,

which is usually not taught in an

undergraduate curriculum.

Today, we are now ready to introduce the

sophisticated subject called

homological algebra.

(To keep things simple, we shall not consider

modules and algebras will be associative)



PART 1 OF TODAY’S TALK

DERIVATIONS ON ALGEBRAS

(Review of Part I: FEBRUARY 8, 2011)

AXIOMATIC APPROACH

AN ALGEBRA IS DEFINED TO BE A SET

(ACTUALLY A VECTOR SPACE) WITH

TWO BINARY OPERATIONS, CALLED

ADDITION AND MULTIPLICATION

ACTUALLY, IF YOU FORGET ABOUT

THE VECTOR SPACE, THIS DEFINES A

RING



ADDITION IS DENOTED BY

a+ b

AND IS REQUIRED TO BE

COMMUTATIVE AND ASSOCIATIVE

a+ b = b+ a, (a+ b) + c = a+ (b+ c)

THERE IS ALSO AN ELEMENT 0 WITH

THE PROPERTY THAT FOR EACH a,

a+ 0 = a

AND THERE IS AN ELEMENT CALLED −a
SUCH THAT

a+ (−a) = 0

MULTIPLICATION IS DENOTED BY

ab

AND IS REQUIRED TO BE DISTRIBUTIVE

WITH RESPECT TO ADDITION

(a+ b)c = ac+ bc, a(b+ c) = ab+ ac



IMPORTANT: A RING MAY OR MAY

NOT HAVE AN IDENTITY ELEMENT

(FOR MULTIPLICATION)

1x = x1 = x

AN ALGEBRA (or RING) IS SAID TO BE

ASSOCIATIVE (RESP. COMMUTATIVE) IF

THE MULTIPLICATION IS ASSOCIATIVE

(RESP. COMMUTATIVE)

(RECALL THAT ADDITION IS ALWAYS

COMMUTATIVE AND ASSOCIATIVE)



Table 2

ALGEBRAS (OR RINGS)

commutative algebras

ab = ba

associative algebras

a(bc) = (ab)c

Lie algebras

a2 = 0

(ab)c+ (bc)a+ (ca)b = 0

Jordan algebras

ab = ba

a(a2b) = a2(ab)



Sophus Lie (1842–1899)

Marius Sophus Lie was a Norwegian

mathematician. He largely created the theory

of continuous symmetry, and applied it to the

study of geometry and differential equations.



Pascual Jordan (1902–1980)

Pascual Jordan was a German theoretical and

mathematical physicist who made significant

contributions to quantum mechanics and

quantum field theory.



THE DERIVATIVE

f ′(x) = lim
h→0

f(x+ h)− f(x)

h

DIFFERENTIATION IS A LINEAR

PROCESS

(f + g)′ = f ′+ g′

(cf)′ = cf ′

THE SET OF DIFFERENTIABLE

FUNCTIONS FORMS AN ALGEBRA D

(fg)′ = fg′+ f ′g

(product rule)



CONTINUITY

xn → x⇒ f(xn)→ f(x)

THE SET OF CONTINUOUS FUNCTIONS

FORMS AN ALGEBRA C

(sums, constant multiples and products of

continuous functions are continuous)

D and C ARE EXAMPLES OF ALGEBRAS

WHICH ARE BOTH ASSOCIATIVE AND

COMMUTATIVE



PROPOSITION 1

EVERY DIFFERENTIABLE FUNCTION IS

CONTINUOUS

D is a subalgebra of C; D ⊂ C

D 6= C

(f(x) = |x|)



DIFFERENTIATION IS A LINEAR

PROCESS

LET US DENOTE IT BY D AND WRITE

Df for f ′

D(f + g) = Df +Dg

D(cf) = cDf

D(fg) = (Df)g + f(Dg)

D(f/g) =
g(Df)− f(Dg)

g2



DEFINITION 1

A DERIVATION ON C IS A LINEAR

PROCESS SATISFYING THE LEIBNIZ

RULE:

δ(f + g) = δ(f) + δ(g)

δ(cf) = cδ(f)

δ(fg) = δ(f)g + fδ(g)

DEFINITION 2

A DERIVATION ON AN ALGEBRA A IS A

LINEAR PROCESS δ SATISFYING THE

LEIBNIZ RULE:

δ(ab) = δ(a)b+ aδ(b)



THEOREM 1

(1955 Singer-Wermer, 1960 Sakai)

There are no (non-zero) derivations on C.

In other words,

Every derivation of C is identically zero

Just to be clear,

The linear transformation which sends

every function to the zero function, is the

only derivation on C.



DERIVATIONS ON THE SET OF

MATRICES

THE SET Mn(R) of n by n MATRICES IS

AN ALGEBRA UNDER

MATRIX ADDITION

A+B

AND

MATRIX MULTIPLICATION

A×B

WHICH IS ASSOCIATIVE BUT NOT

COMMUTATIVE.

(PREVIOUSLY WE DEFINED TWO MORE

MULTIPLICATIONS)



DEFINITION 3

A DERIVATION ON Mn(R) WITH

RESPECT TO MATRIX MULTIPLICATION

IS A LINEAR PROCESS δ WHICH

SATISFIES THE PRODUCT RULE

δ(A×B) = δ(A)×B +A× δ(B)

.

PROPOSITION 2

FIX A MATRIX A in Mn(R) AND DEFINE

δA(X) = A×X −X ×A.

THEN δA IS A DERIVATION WITH

RESPECT TO MATRIX MULTIPLICATION

(WHICH CAN BE NON-ZERO)



THEOREM 2
(1942 Hochschild)

EVERY DERIVATION ON Mn(R) WITH
RESPECT TO MATRIX MULTIPLICATION

IS OF THE FORM δA FOR SOME A IN
Mn(R).

Gerhard Hochschild (1915–2010)

(Photo 1968)
Gerhard Paul Hochschild was an American
mathematician who worked on Lie groups,
algebraic groups, homological algebra and

algebraic number theory.



Joseph Henry Maclagan Wedderburn

(1882–1948)

Scottish mathematician, who taught at

Princeton University for most of his career. A

significant algebraist, he proved that a finite

division algebra is a field, and part of the

Artin–Wedderburn theorem on simple

algebras. He also worked on group theory and

matrix algebra.



Amalie Emmy Noether (1882–1935)

Amalie Emmy Noether was an influential

German mathematician known for her

groundbreaking contributions to abstract

algebra and theoretical physics. Described as

the most important woman in the history of

mathematics, she revolutionized the theories

of rings, fields, and algebras. In physics,

Noether’s theorem explains the fundamental

connection between symmetry and

conservation laws.



END OF PART I OF TODAY’S TALK



Part 2 of today’s talk

DERIVATIONS ON MODULES

(Review of Part III: FEBRUARY 28,

2012)

WHAT IS A MODULE?

The American Heritage Dictionary of the

English Language, Fourth Edition 2009 has 8

definitions.

1. A standard or unit of measurement.

2. Architecture The dimensions of a struc-

tural component, such as the base of a

column, used as a unit of measurement or

standard for determining the proportions of

the rest of the construction.

3. Visual Arts/Furniture A standardized, of-

ten interchangeable component of a sys-

tem or construction that is designed for

easy assembly or flexible use: a sofa con-

sisting of two end modules.



4. Electronics A self-contained assembly of

electronic components and circuitry, such

as a stage in a computer, that is installed

as a unit.

5. Computer Science A portion of a pro-

gram that carries out a specific function

and may be used alone or combined with

other modules of the same program.

6. Astronautics A self-contained unit of a

spacecraft that performs a specific task or

class of tasks in support of the major func-

tion of the craft.

7. Education A unit of education or instruc-

tion with a relatively low student-to-teacher

ratio, in which a single topic or a small sec-

tion of a broad topic is studied for a given

period of time.

8. Mathematics A system with scalars com-

ing from a ring.



Nine Zulu Queens Ruled China

• Mathematicians think of numbers as a set

of nested Russian dolls. The inhabitants of

each Russian doll are honorary inhabitants

of the next one out.

N ⊂ Z ⊂ Q ⊂ R ⊂ C

• In N you can’t subtract; in Z you can’t

divide; in Q you can’t take limits; in R you

can’t take the square root of a negative

number. With the complex numbers C,

nothing is impossible. You can even raise

a number to a complex power.

• Z is a ring

• Q,R,C are fields

• Qn is a vector space over Q

• Rn is a vector space over R

• Cn is a vector space over C



A field is a commutative ring with iden-

tity element 1 such that for every nonzero

element x, there is an element called x−1

such that

xx−1 = 1

A vector space over a field F (called the

field of scalars) is a set V with an addition

+ which is commutative and associative

and has a zero element and for which there

is a “scalar” product ax in V for each a

in F and x in V , satisfying the following

properties for arbitrary elements a, b in F

and x, y in V :

1. (a+ b)x = ax+ bx

2. a(x+ y) = ax+ ay

3. a(bx) = (ab)x

4. 1x = x



In abstract algebra, the concept of a module

over a ring is a generalization of the notion of

vector space, wherein the corresponding

scalars are allowed to lie in an arbitrary ring.

Modules also generalize the notion of abelian

groups, which are modules over the ring of

integers.

Thus, a module, like a vector space, is an

additive abelian group; a product is defined

between elements of the ring and elements of

the module, and this multiplication is

associative (when used with the

multiplication in the ring) and distributive.

SKIP TO PAGE 39,

NOW

(39=31+8)



Modules are very closely related to the

representation theory

of groups and of other algebraic structures.

They are also one of the central notions of

commutative algebra

and

homological algebra,

and are used widely in

algebraic geometry

and

algebraic topology.



A DIGRESSION

The traditional division of mathematics into

subdisciplines:

Arithmetic (whole numbers)

Geometry (figures)

Algebra (abstract symbols)

Analysis (limits).



MATHEMATICS SUBJECT CLASSIFICATION

(AMERICAN MATHEMATICAL SOCIETY)

00-XX General

01-XX History and biography

03-XX Mathematical logic and foundations

05-XX Combinatorics

06-XX Lattices, ordered algebraic structures

08-XX General algebraic systems

11-XX Number Theory

12-XX Field theory and polynomials

13-XX COMMUTATIVE ALGEBRA

14-XX ALGEBRAIC GEOMETRY

15-XX Linear algebra; matrix theory

16-XX Associative rings and algebras

16-XX REPRESENTATION THEORY

17-XX Nonassociative rings and algebras

18-XX Category theory;

18-XX HOMOLOGICAL ALGEBRA

19-XX K-theory

20-XX Group theory and generalizations

20-XX REPRESENTATION THEORY

22-XX Topological groups, Lie groups



26-XX Real functions

28-XX Measure and integration

30-XX Complex Function Theory

31-XX Potential theory

32-XX Several complex variables

33-XX Special functions

34-XX Ordinary differential equations

35-XX Partial differential equations

37-XX Dynamical systems, ergodic theory

39-XX Difference and functional equations

40-XX Sequences, series, summability

41-XX Approximations and expansions

42-XX Harmonic analysis on Euclidean spaces

43-XX Abstract harmonic analysis

44-XX Integral transforms

45-XX Integral equations

46-XX Functional analysis

47-XX Operator theory

49-XX Calculus of variations, optimal control

51-XX Geometry

52-XX Convex and discrete geometry

53-XX Differential geometry

54-XX General topology



55-XX ALGEBRAIC TOPOLOGY

57-XX Manifolds and cell complexes
58-XX Global analysis, analysis on manifolds
60-XX Probability theory
62-XX Statistics
65-XX Numerical analysis
68-XX Computer science
70-XX Mechanics of particles and systems
74-XX Mechanics of deformable solids
76-XX Fluid mechanics
78-XX Optics, electromagnetic theory
80-XX Classical thermodynamics, heat
81-XX Quantum theory
82-XX Statistical mechanics, matter
83-XX Relativity and gravitational theory
85-XX Astronomy and astrophysics
86-XX Geophysics
90-XX Operations research
91-XX Game theory, economics
92-XX Biology and other natural sciences
93-XX Systems theory; control
94-XX Information and communication
97-XX Mathematics education

END OF DIGRESSION



MOTIVATION

In a vector space, the set of scalars forms

a field and acts on the vectors by scalar mul-

tiplication, subject to certain axioms such as

the distributive law. In a module, the scalars

need only be a ring, so the module concept

represents a significant generalization.

In commutative algebra, it is important that

both ideals and quotient rings are modules, so

that many arguments about ideals or quotient

rings can be combined into a single argument

about modules.

In non-commutative algebra the distinction

between left ideals, ideals, and modules be-

comes more pronounced, though some impor-

tant ring theoretic conditions can be expressed

either about left ideals or left modules.



Much of the theory of modules consists of

extending as many as possible of the desir-

able properties of vector spaces to the realm

of modules over a ”well-behaved” ring, such

as a principal ideal domain.

However, modules can be quite a bit more

complicated than vector spaces; for instance,

not all modules have a basis, and even those

that do, free modules, need not have a unique

rank if the underlying ring does not satisfy the

invariant basis number condition.

Vector spaces always have a basis whose car-

dinality is unique (assuming the axiom of choice).



FORMAL DEFINITION

A left R-module M over the ring R consists

of an abelian group (M, +) and an operation

R×M →M such that for all r,s in R, x,y in M,

we have:

r(x+ y) = rx+ ry

(r + s)x = rx+ sx

(rs)x = r(sx)

1x = x

if R has multiplicative identity 1.

The operation of the ring on M is called scalar

multiplication, and is usually written by juxta-

position, i.e. as rx for r in R and x in M.



EXAMPLES

1. If K is a field, then the concepts ”K-vector
space” (a vector space over K) and K-
module are identical.

2. The concept of a Z-module agrees with the
notion of an abelian group. That is, every
abelian group is a module over the ring of
integers Z in a unique way. For n ≥ 0, let
nx = x + x + ... + x (n summands), 0x =
0, and (-n)x = -(nx). Such a module need
not have a basis

3. The square n-by-n matrices with real en-
tries form a ring R, and the Euclidean space
Rn is a left module over this ring if we de-
fine the module operation via matrix mul-
tiplication. If R is any ring and I is any
left ideal in R, then I is a left module over
R. Analogously of course, right ideals are
right modules.

SKIP TO PAGE 50, NOW

(50=40+10)



4. If R is any ring and n a natural number,

then the cartesian product Rn is both a left

and a right module over R if we use the

component-wise operations. Hence when

n = 1, R is an R-module, where the scalar

multiplication is just ring multiplication. The

case n = 0 yields the trivial R-module 0

consisting only of its identity element. Mod-

ules of this type are called free

5. If S is a nonempty set, M is a left R-

module, and MS is the collection of all

functions f : S → M, then with addition

and scalar multiplication in MS defined by

(f + g)(s) = f(s) + g(s) and (rf)(s) =

rf(s), MS is a left R-module. The right

R-module case is analogous. In particu-

lar, if R is commutative then the collection

of R-module homomorphisms h : M → N

(see below) is an R-module (and in fact a

submodule of NM).

6. There are modules of a Lie algebra as well.



If one writes the scalar action as fr so that

fr(x) = rx, and f for the map which takes

each r to its corresponding map fr, then

the first axiom states that every fr is a

group homomorphism of M, and the other

three axioms assert that the map f:R →
End(M) given by r 7→ fr is a ring homomor-

phism from R to the endomorphism ring

End(M).

In this sense, module theory generalizes

representation theory, which deals with group

actions on vector spaces.

A bimodule is a module which is a left

module and a right module such that the

two multiplications are compatible.



SUBMODULES AND HOMOMORPHISMS

Suppose M is a left R-module and N is a

subgroup of M. Then N is a submodule

(or R-submodule, to be more explicit) if,

for any n in N and any r in R, the product

r n is in N (or nr for a right module).

If M and N are left R-modules, then a map

f : M → N is a homomorphism of R-

modules if, for any m, n in M and r, s in

R, f(rm + sn) = rf(m) + sf(n).

This, like any homomorphism of mathe-

matical objects, is just a mapping which

preserves the structure of the objects. An-

other name for a homomorphism of mod-

ules over R is an R-linear map.



A bijective module homomorphism is an

isomorphism of modules, and the two

modules are called isomorphic.

Two isomorphic modules are identical for

all practical purposes, differing solely in the

notation for their elements.

The kernel of a module homomorphism f :

M → N is the submodule of M consisting

of all elements that are sent to zero by f.

The isomorphism theorems familiar from

groups and vector spaces are also valid for

R-modules.



TYPES OF MODULES

(a) Finitely generated A module M is finitely
generated if there exist finitely many el-
ements x1, . . . xn in M such that every
element of M is a linear combination
of those elements with coefficients from
the scalar ring R.

(b) Cyclic module A module is called a
cyclic module if it is generated by one
element.

(c) Free A free module is a module that
has a basis, or equivalently, one that is
isomorphic to a direct sum of copies of
the scalar ring R. These are the mod-
ules that behave very much like vector
spaces.

(d) Projective Projective modules are di-
rect summands of free modules and share
many of their desirable properties.

(e) Injective Injective modules are defined
dually to projective modules.

(f) Flat A module is called flat if taking
the tensor product of it with any short
exact sequence of R modules preserves
exactness.



(g) Simple A simple module S is a module

that is not 0 and whose only submod-

ules are 0 and S. Simple modules are

sometimes called irreducible.

(h) Semisimple A semisimple module is a

direct sum (finite or not) of simple mod-

ules. Historically these modules are also

called completely reducible.

(i) Indecomposable An indecomposable mod-

ule is a non-zero module that cannot be

written as a direct sum of two non-zero

submodules. Every simple module is in-

decomposable, but there are indecom-

posable modules which are not simple

(e.g. uniform modules).

(j) Faithful A faithful module M is one where

the action of each r 6= 0 in R on M is

nontrivial (i.e. rx 6= 0 for some x in M).

Equivalently, the annihilator of M is the

zero ideal.

(k) Noetherian. A Noetherian module is

a module which satisfies the ascending

chain condition on submodules, that is,



every increasing chain of submodules be-

comes stationary after finitely many steps.

Equivalently, every submodule is finitely

generated.

(l) Artinian An Artinian module is a mod-

ule which satisfies the descending chain

condition on submodules, that is, ev-

ery decreasing chain of submodules be-

comes stationary after finitely many steps.

(m) Graded A graded module is a module

decomposable as a direct sum M = ⊕xMx

over a graded ring R = ⊕xRx such that

RxMy ⊂Mx+y for all x and y.

(n) Uniform A uniform module is a module

in which all pairs of nonzero submodules

have nonzero intersection.



RELATION TO REPRESENTATION

THEORY

If M is a left R-module, then the action

of an element r in R is defined to be the

map M → M that sends each x to rx (or

xr in the case of a right module), and is

necessarily a group endomorphism of the

abelian group (M,+).

The set of all group endomorphisms of M is

denoted EndZ(M) and forms a ring under

addition and composition, and sending a

ring element r of R to its action actually

defines a ring homomorphism from R to

EndZ(M).



Such a ring homomorphism R → EndZ(M)

is called a representation of R over the

abelian group M; an alternative and equiv-

alent way of defining left R-modules is to

say that a left R-module is an abelian group

M together with a representation of R over

it.

A representation is called faithful if and

only if the map R → EndZ(M) is injective.

In terms of modules, this means that if r

is an element of R such that rx=0 for all x

in M, then r=0.

END OF “MODULE” ON MODULES



DERIVATIONS INTO A MODULE

CONTEXTS

(i) ASSOCIATIVE ALGEBRAS

(ii) LIE ALGEBRAS

(iiI) JORDAN ALGEBRAS

Could also consider:

(i’) ASSOCIATIVE TRIPLE SYSTEMS

(ii’) LIE TRIPLE SYSTEMS

(iii’) JORDAN TRIPLE SYSTEMS



(i) ASSOCIATIVE ALGEBRAS

derivation: D(ab) = a ·Db+Da · b
inner derivation: (ad x)(a) = x · a− a · x

(x ∈M)

THEOREM (Noether,Wedderburn)

(early 20th century)) ∗

EVERY DERIVATION OF

SEMISIMPLEASSOCIATIVE ALGEBRA

IS INNER, THAT IS, OF THE FORM

x 7→ ax− xa FOR SOME a IN THE

ALGEBRA

THEOREM (Hochschild 1942)

EVERY DERIVATION OF SEMISIMPLE

ASSOCIATIVE ALGEBRA INTO A

MODULE IS INNER, THAT IS, OF THE

FORM x 7→ ax− xa FOR SOME a IN

THE MODULE
∗The operational word here, and in all of these results
is SEMISIMPLE—think primes, fundamental theorem
of arithmetic



(iii) JORDAN ALGEBRAS

derivation: D(a ◦ b) = a ◦Db+Da ◦ b

inner derivation:∑
i[L(xi)L(ai)− L(ai)L(xi)]

(xi ∈M,ai ∈ A)
b 7→

∑
i[xi ◦ (ai ◦ b)− ai ◦ (xi ◦ b)]

THEOREM (1949-Jacobson)

EVERY DERIVATION OF A FINITE
DIMENSIONAL SEMISIMPLE JORDAN

ALGEBRA INTO ITSELF IS INNER

THEOREM (1951-Jacobson)

EVERY DERIVATION OF A FINITE
DIMENSIONAL SEMISIMPLE JORDAN

ALGEBRA INTO A (JORDAN)
MODULE IS INNER

(Lie algebras, Lie triple systems)

SKIP TO PAGE 57, SLOWLY

(57=52+5)



(iii’) JORDAN TRIPLE SYSTEMS

derivation:

D{a, b, c} = {Da.b, c}+ {a,Db, c}+ {a, b,Dc}

{x, y, z} = (xy∗z + zy∗x)/2

inner derivation:
∑
i[L(xi, ai)− L(ai, xi)]

(xi ∈M,ai ∈ A)

b 7→
∑
i[{xi, ai, b} − {ai, xi, b}]

THEOREM (1972 Meyberg)

EVERY DERIVATION OF A FINITE

DIMENSIONAL SEMISIMPLE JORDAN

TRIPLE SYSTEM IS INNER

(Lie algebras, Lie triple systems)

THEOREM (1978 Kühn-Rosendahl)

EVERY DERIVATION OF A FINITE

DIMENSIONAL SEMISIMPLE JORDAN

TRIPLE SYSTEM INTO A JORDAN

TRIPLE MODULE IS INNER

(Lie algebras)



(i’) ASSOCIATIVE TRIPLE

SYSTEMS

derivation:

D(abtc) = abtDc+ a(Db)tc+ (Da)btc

inner derivation: see Table 3

The (non-module) result can be derived

from the result for Jordan triple systems.

(See an exercise)

THEOREM (1976 Carlsson)

EVERY DERIVATION OF A FINITE

DIMENSIONAL SEMISIMPLE

ASSOCIATIVE TRIPLE SYSTEM INTO

A MODULE IS INNER

(reduces to associative ALGEBRAS)



(ii) LIE ALGEBRAS

THEOREM (Zassenhaus)

(early 20th century)

EVERY DERIVATION OF A FINITE

DIMENSIONAL SEMISIMPLE LIE

ALGEBRA INTO ITSELF IS INNER

THEOREM (Hochschild 1942)

EVERY DERIVATION OF A FINITE

DIMENSIONAL SEMISIMPLE LIE

ALGEBRA INTO A MODULE IS INNER



(ii’) LIE TRIPLE SYSTEMS

THEOREM (Lister 1952)

EVERY DERIVATION OF A FINITE

DIMENSIONAL SEMISIMPLE LIE

TRIPLE SYSTEM INTO ITSELF IS

INNER

THEOREM (Harris 1961)

EVERY DERIVATION OF A FINITE

DIMENSIONAL SEMISIMPLE LIE

TRIPLE SYSTEM INTO A MODULE IS

INNER



Table 1 Mn(R) (ALGEBRAS)

associative Lie Jordan
ab = a× b [a, b] = ab− ba a ◦ b = ab+ ba

Noeth,Wedd Zassenhaus Jacobson
1920 1930 1949

Hochschild Hochschild Jacobson
1942 1942 1951

Table 3 Mm,n(R) (TRIPLE SYSTEMS)

associative Lie Jordan
triple triple triple
abtc [[a, b], c] abtc+ cbta

Lister Meyberg
1952 1972

Carlsson Harris Kühn-Rosendahl
1976 1961 1978



Part 3 of today’s talk

COHOMOLOGY OF ASSOCIATIVE

ALGEBRAS

(Introduction to HOMOLOGICAL

ALGEBRA)

SKIP TO PAGE 61, NOW

(61=58+3)



Let M be an associative algebra and X an

M-module.

For n ≥ 1, let

Ln(M,X) = all n-linear maps

(L0(M,X) = X)

Coboundary operator

∂ : Ln → Ln+1 (for n ≥ 1)

∂φ(a1, · · · , an+1) = a1φ(a2, · · · , an+1)

+
∑

(−1)jφ(a1, · · · , aj−1, ajaj+1, · · · , an+1)

+(−1)n+1φ(a1, · · · , an)an+1

For n = 0,

∂ : X → L(M,X) ∂x(a) = ax− xa
so

Im∂ = the space of inner derivations

Since ∂ ◦ ∂ = 0,

Im(∂ : Ln−1 → Ln) ⊂ ker(∂ : Ln → Ln+1)

Hn(M,X) = ker∂/Im∂ is a vector space.



For n = 1, ker∂ =

{φ : M → X :

a1φ(a2)− φ(a1a2) + φ(a1)a2 = 0}
= the space of continuous derivations

from M to X

Thus,

H1(M,X) =
derivations from M to X

inner derivations from M to X

measures how close continuous

derivations are to inner derivations.

(What do H2(M,X),

H3(M,X),. . . measure?)



START OVER

WORK BACKWARDS

The basic formula of homological

algebra

F (x1, . . . , xn, xn+1) =

x1f(x2, . . . , xn+1)

−f(x1x2, x3, . . . , xn+1)

+f(x1, x2x3, x4, . . . , xn+1)

− · · ·
±f(x1, x2, . . . , xnxn+1)

∓f(x1, . . . , xn)xn+1

OBSERVATIONS

• n is a positive integer, n = 1,2, · · ·
• f is a function of n variables

• F is a function of n+ 1 variables

• x1, x2, · · · , xn+1 belong an algebra A

• f(y1, . . . , yn) and F (y1, · · · , yn+1) also be-

long to A



HIERARCHY

• x1, x2, . . . , xn are points (or vectors)

• f and F are functions—they take points

to points

• T , defined by T (f) = F is a transformation—

takes functions to functions

• points x1, . . . , xn+1 and f(y1, . . . , yn) will

belong to an algebra A

• functions f will be either constant, linear

or multilinear (hence so will F )

• transformation T is linear



SHORT FORM OF THE FORMULA

(Tf)(x1, . . . , xn, xn+1)

= x1f(x2, . . . , xn+1)

+
n∑

j=1

(−1)jf(x1, . . . , xjxj+1, . . . , xn+1)

+(−1)n+1f(x1, . . . , xn)xn+1

FIRST CASES

n = 0

If f is any constant function from A to A,

say, f(x) = b for all x in A, where b is a

fixed element of A, we have, consistent

with the basic formula,

T0(f)(x1) = x1b− bx1



n = 1

If f is a linear map from A to A, then

T1(f)(x1, x2) = x1f(x2)−f(x1x2)+f(x1)x2

n = 2

If f is a bilinear map from A×A to A,

then

T2(f)(x1, x2, x3) =

x1f(x2, x3)− f(x1x2, x3)

+f(x1, x2x3)− f(x1, x2)x3



Kernel and Image of a linear

transformation

• G : X → Y

• Kernel of G is

kerG = {x ∈ X : G(x) = 0}

• Image of G is

ImG = {G(x) : x ∈ X}

What is the kernel of D on D?

What is the image of D on D?

(Hint: Second Fundamental theorem of

calculus)

We now let G = T0, T1, T2



G = T0

X = A (the algebra)

Y = L(A) (all linear transformations on A)

ker T0 = {b ∈ A : xb− bx = 0 for all x ∈ A}
(center of A)

ImT0 = the set of all linear maps of A of

the form x 7→ xb− bx, in other words, the

set of all inner derivations of A



G = T1

X = L(A) (linear transformations on A)

Y = L2(A) (all bilinear transformations on

A×A)

ker T1 = {f ∈ L(A) : T1f(x1, x2) =

0 for all x1, x2 ∈ A} = the set of all

derivations of A

ImT1 = the set of all bilinear maps of

A×A of the form

(x1, x2) 7→ x1f(x2)− f(x1x2) + f(x1)x2,

for some linear function f ∈ L(A).

(we won’t do the calculation for T2)



L0(A)
T0−→ L(A)

T1−→ L2(A)
T2−→ L3(A) · · ·

FACTS:

• T1 ◦ T0 = 0

• T2 ◦ T1 = 0

• · · ·
• Tn+1 ◦ Tn = 0

• · · ·

Therefore

ImTn ⊂ ker Tn+1



• ImT0 ⊂ ker T1

says

Every inner derivation is a derivation

• ImT1 ⊂ ker T2

says

for every linear map f , the bilinear map

F defined by

F (x1, x2) = x1f(x2)−f(x1x2) +f(x1)x2

satisfies the equation

x1F (x2, x3)− F (x1x2, x3)+

F (x1, x2x3)− F (x1, x2)x3 = 0

for every x1, x2, x3 ∈ A.



The cohomology groups of A are defined

as follows

Hn(A) =
ker Tn

ImTn−1

Thus

H1(A) =
ker T1

ImT0
=

derivations

inner derivations

H2(A) =
ker T2

ImT1
=

?

?

We need to know about equivalence

relations and quotients of groups in order

to make this definition precise.

This will have to wait for the next talk in

this series, and will include an

interpretation of H2(A).



• H1(C) = 0, H2(C) = 0

• H1(C,M) = 0, H2(C,M) = 0

• Hn(Mk(R),M) = 0 ∀n ≥ 1, k ≥ 2

• Hn(A) = H1(A,L(A)) for n ≥ 2



Future talks in this series will discuss

versions of cohomology involving

• modules (1945)

• Lie algebras (1952)

• Lie triple systems (1961,2002)

• Jordan algebras (1971)

• associative triple systems (1976)

• Jordan triple systems (1982)


