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1. Jordan Derivations

Building on earlier work of Kadison, Sakai proved that very derivation 6 : M — M
of a von Neumann algebra into itself is inner (1966).

o(ab) = ad(b) +d(a)b , d(x)= ada(x) = ax — xa

Thus the first Hochschild cohomology group H*(M, M) vanishes for any von
Neumann algebra M.

Building on earlier work of Bunce and Paschke, Haagerup showed in 1983 that
every derivation 6 : M — M, of a von Neumann algebra into its predual is inner,
and as a consquence that every C*-algebra is weakly amenable. .

0(ab) = a.6(b) +d(a).b , I(x) = adp(x) =p.x — x.p
ex(y) =elxy) , xply) = e(yx)

Thus the first Hochschild cohomology group H*(M, M,) vanishes for any von
Neumann algebra M. (So does H1(A, A*) for every C*-algebra)
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PROPOSITION 1 (special case of Upmeier 1980)

Let M be any von Neumann algebra. Then every Jordan derivation of M is an
inner Jordan derivation. Thus the first “Jordan cohomology group” H}(M, M)
vanishes for any von Neumann algebra M.

Earlier History
FD SS char 0: Jacobson 1949, 1951; char # 2: Harris 1959

Definition
When xj is an element in a Jordan Banach A-module, X, over a Jordan Banach
algebra 2, A, for each b € A, the mapping dx,» = [L(b), L(x0)] : A = X,

Bn(a) = (x00a) 0 b— (b0 a) 0 x0, (a€ A),

is a Jordan derivation. Finite sums of derivations of this form are called inner
Jordan derivations.

?For purposes of this talk, Jordan algebra means an associative algebra with the
product ao b = (ab + ba)/2, so for a Jordan derivation D(a?) = 2a o D(a) is enough.
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Commutators in von Neumann algebras

Pearcy-Topping '69; Fack-delaHarpe 80

If M is a finite von Neumann algebra, then every element of M of central trace
zero is a finite sum of commutators

Halmos ’52,’54; Brown-Pearcy-Topping '68; Halpern '69

If M is properly infinite (no finite central projections), then every element of M is
a finite sum of commutators

Thus for any von Neumann algebra, we have M = Z(M) + [M, M], where Z(M)
is the center of M and [M, M] is the set of finite sums of commutators in M.

PROOF of PROPOSITION 1

Suppose ¢ is a Jordan derivation of M. Then ¢ is an associative derivation
(Sinclair) and by Kadison-Sakai, d(x) = ax — xa where a = z + Y [x;, yi] with
z € Z(M) and x;,y; € M. Since ad [x, y] = 4[L(x), L(y)]. ¢ is an inner Jordan
derivation. Q.E.D.

Bernard Russo (UCI) Recent Advances in the Theory of Derivations on Jord: 5 /37



PROPOSITION 2
(special case of Ho-Martinez-Peralta-Russo 2002)

Every Jordan triple derivation of M is an inner triple derivation. Thus
HY (M, M) =0

Earlier History
FD SS char 0: Meyberg 1972: Jordan Pair: Loos 1977, Kiihn-Rosendahl 1978

Definition
Let E be a Jordan triple? and let X be a triple E-module. For each b € E and
each xg € X, the mapping 6 = L(b, xp) — L(xo, b) : E — X, defined by

5(3) = {b7X07a}7{X07bva} (a6 E)7 (1)

is a triple derivation from E into X. Finite sums of derivations of the form
0(b, xp) are called inner triple derivations.

2For purposes of this talk, a Jordan triple is an associative *-algebra with the triple
product {a, b,c} = (ab*c + cb*a)/2 and a triple derivation satisfies
d{a, b,c} = {da, b,c} + {a,db,c} + {a, b,dc}
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LEMMA
Let A be a unital Banach *-algebra equipped with the ternary product given by
{a,b,c} = 1 (ab*c + cb*a) and the Jordan product ao b = (ab + ba)/2.

» Let D be an inner derivation, that is, D = ad a for some a in A.
Then D is a *-derivation whenever a* = —a. Conversely, if D is a
*_derivation, then a* = —a + z for some z in the center of A.

» Every triple derivation is the sum of a Jordan *-derivation and an inner triple
derivation.

PROOF of PROPOSITION 2

It suffices to show that a self-adjoint Jordan derivation § of M in an inner triple
derivation. Such a ¢ is an associative derivation (Sinclair) and by Kadison-Sakai
and the Lemma, 0(x) = ax — xa where a* + a = z is a self adjoint element of the
center of M. Since M = Z(M) + [M, M], where Z(M) denotes the center of M,
we can therefore write

a=2'+) b+ ig, b} + icl,
j

where b, bl ¢;, ¢/ are self adjoint elements of M and 2z’ € Z(M).
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It follows that

O=a"+a—z=(2) +2-z+2Y (g, b]+[bc])

so that ([, bj] + [by, ¢j]) belongs to the center of M. We now have

§=ada=ad Z [b;, 5] — [gi, 1) (2)

We have just seen that a self adjoint Jordan derivation § of M has the form (2).
A direct calculation shows that ¢ is equal to the inner triple derivation

J

Thus, every triple derivation is inner.
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2. Jordan weak*-amenability

This section represents joint work with Robert Pluta

Theorem 1 Let M be a von Neumann algebra.

(a) If every Jordan derivation of M into M., is approximated in norm by
inner Jordan derivations, then M is finite.

(b) Conversely, if M is a finite von Neumann algebra acting on a
separable Hilbert space or if M is a finite factor, then every Jordan
derivation of M into M, is approximated in norm by inner Jordan
derivations.

Corollary (Cohomological characterization of finiteness)

If M acts on a separable Hilbert space, or if M is a factor, then M is finite if and
only if every Jordan derivation of M into M, is approximated in norm by inner
Jordan derivations.

Theorem 1 and its corollary hold with Jordan derivation replaced by Jordan triple
derivation. An important role in the proofs is played by commutators in the
predual of a von Neumann algebra. (More about that later)
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Theorem 2 Let M be an infinite factor

The complex vector space of Jordan derivations of M into M., modulo the
norm closure of the inner Jordan derivations, has dimension 1.

Corollary (Zero-One Law)

If M is a factor, the linear space of Jordan derivations into the predual, modulo
the norm closure of the inner Jordan derivations, has dimension 0 or 1: It is zero if
the factor is finite; and it is 1 if the factor is infinite.

Theorem 2 and its corollary hold with Jordan derivation replaced by Jordan triple
derivation
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Summary: If M is a factor,

o o (B3 Jordan Derivations into M.
M is infinite < NG —riostre of inner Jordan derivations into m, ~ ©

S Jordan Derivations into M, —
Mis finite < NorClosure of inner Jordan derivations into #, — °

Jordan triple Derivations into m.

W I (il & Norm closure of inner triple derivations into M, I
s Jordan triple Derivations into m. _
M'is finite < Norm closure of inner triple derivations into m, — ¢
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Which von Neumann algebras are Jordan weak*-amenable?
That is, every Jordan derivation into the predual is inner

Short answer: commutative, finite dimensional. Any others?

Proposition 3 Let M be a finite von Neumann algebra.

(a) If M acts on a separable Hilbert space or is a factor (hence admits
a faithful normal finite trace tr), and if tr=1(0) = [M., M], then M
is Jordan weak*-amenable. (Extended trace)

(b) If M is a factor and M is Jordan weak*-amenable, then
tr=1(0) = [M,, M].

Corollary

No factor of type /l; is Jordan weak*-amenable

Proposition 3 and its corollary hold with Jordan derivation replaced by Jordan
triple derivation
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If M is a finite von Neumann algebra of type /,, with n < oo, we can assume

M = L>=(Q, 1, Ma(C)) = Mn(L®(, 1)),

My = LY(Q, 1, Ma(C)s)) = Ma(L(Q, 1))

and
Z(M) = L*°(Q, u)1.

It is known that the center valued trace on M is given by

TR (x) = Zx,,)l , forx=[xj]eM

We thus define, for a finite von Neumann algebra of type /, which has a faithful

normal finite trace tr,

=S v forw =l e M.
1
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(a) If TR(x) = 0, then ¢ vanishes on the center Z(M) of M.

(b) ¥* = —t on Z(M) if and only if tr (¢)(w)) is purely imaginary for
almost every w.

¥(x)

[ 0)x(w) dulw) = [ tr (b)) due)
Q Q

|t 0 v @) die)

S X vlehnte) die)

| vl due)

k

/Q(Z Yik(w))f(w) dp(w) =0

proving (a). As for (b), use ¢(f -1) = [, f(w (w)) du(w).
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Proposition 4

Let M be a finite von Neumann algebra of type I, with n < oo, which admits a
faithful normal finite trace tr (equivalently, M is countably decomposable
= o-finite). Then M is Jordan weak*-amenable if and only if

TR™(0) = [M,, M].

Corollary

Let M be a finite von Neumann algebra of type /, admitting a faithful normal
finite trace tr. If tr =1(0) = [M,, M], then M is Jordan weak*-amenable.

Proposition 4 and its corollary hold with Jordan derivation replaced by Jordan
triple derivation

Problem

Is a finite von Neumann algebra of type | Jordan weak*-amenable? or triple
weak*-amenable? If M admits a faithful normal finite trace, is

TRY(0) = [M,, M]?
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"A veritable army of researchers took the theory of derivations of
operator algebras to dizzying heights—producing a theory of
cohomology of operator algebras as well as much information about
automorphisms of operator algebras.”

—Dick Kadison (Which Singer is that? 2000)

It is conjectured that all of the Hochschild cohomology groups H"(A, A) of a von
Neumann algebra A vanish and that this is known to be true for most of them. In
addition to associative algebras, cohomology groups are defined for Lie algebras
and to some extent, for Jordan algebras. Since the structures of Jordan
derivations and Lie derivations on von Neumann algebras are well understood,
isn't it time to study the higher dimensional non associative cohomology of a von
Neumann algebra? This section will be an introduction to the first and second
Jordan cohomology groups of a von Neumann algebra. (Spoiler alert: Very little is
known about the second Jordan cohomology group.)
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3. Jordan 2-cocycles

Let M be a von Neumann algebra. A Hochschild 2-cocycle is a bilinear map
f:Mx M — M satisfying

af(b,c) — f(ab, c) + f(a, bc) — f(a,b)c =0 3)
EXAMPLE: Hochschild 2-coboundary

f(a, b) = au(b) — u(ab) + p(a)b , w: M — M linear

A Jordan 2-cocycle is a bilinear map f : M x M — M satisfying
f(a, b) = f(b, a) (symmetric)

f(a®,a0 b) + f(a, b) 0 a°> 4 f(a,a) o (ao b) (4)
—f(a®o b,a) — f(a*,b)oa— (f(a,a)ob)oa=0
EXAMPLE: Jordan 2-coboundary

f(a,b) =aopu(b) —pu(aob)+ua)ob, , w:M— M linear
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HY (M, M) = 1-cocycles _  derivations
’ 1-coboundaries ~ inner derivations

HY(M, M) = 2ordan t-cocycles_ _Jordan derivations
AN Jordan 1-coboundaries ~— inner Jordan derivations

2 _ 2-cocycles 2 _ Jordan 2-cocycles
H*(M, M) = 2-coboundaries ' H3(M, M) = Jordan 2-coboundaries

For almost all von Neumann algebras, H?(M, M) = 0. How about H3(M, M)? J

FD char 0: Albert 1947, Penico 1951; char # 2: Taft 1957 )
Two elegant approaches: Jordan classification; Lie algebras
One inelegant approach: solving linear equations J
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Linear algebra approach-Level 1

Let h be a Hochschild 1-cocycle, that is, a linear map h: M,(C) — M,(C)
satisfying h(ab) — ah(b) — h(a)b = 0. To show that there is an element x € M,(C)
such that h(a) = xa — ax, it is enough to prove this with a € {g;}. With

X = prqepq- (5)
P.q

and 7jjpq defined by

h(e;) Z Yiipq€pq> (6)

we arrive at the system of linear vector equations
Z Viipg€pq = Z 0qiXpq€pj — Z djpXpq€iq- (7)

with n? unknowns x;. Then any solution of (7) proves the result.
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Linear algebra approach-Level 2

Let h be a Hochschild 2-cocycle, that is, a bilinear map

h: Mp(C) x M,(C) — M,(C) satisfying

ah(b, c) — h(ab, c) + h(a, bc) — h(a, b)c = 0.

To show that there is a linear transformation i : M,(C) — M,(C) such that
h(a, b) = p(ab) — ap(b) — u(a)b, it is enough to prove that this holds with
a, b € {ej}, thatis

h(eij, exr) = djupleir) — ejpen) — pley)en- (8)

With ,u(e,-j) = Zk,l ikl €kl and Yijkipg defined by h(e,-j, ek/) = Zp,q Vijklpqg €pq >
we arrive at the system of n® linear equations

E Yijkipq€pq = E Ojkhilpg — E djplikipg€iq — § :5qk“UPqu” (9)
p.q P,q P.q p:q

with n* unknowns ;. Then any solution of (9) proves (8).
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Linear algebra approach-Level 3

Let M = M,(L>°(Q2)) be a finite von Neumann algebra of type /, with n = 2. Let
f be a Jordan 2-cocycle, that is, a symmetric bilinear map f : M x M — M with

f(a®,ab) + f(a, b)a* + f(a, a)(ab) — f(a’b,a) — f(a%, b)a— (f(a,a)b)a = 0. (10)

(To save space, ab denotes the Jordan product in the associative algebra M)

To show that there is a linear transformation . : M — M such that

F(a, b) = u(ab) — a(b) — p(a)b, (11)

it is enough to prove, for a, b € Z(M),

f(ae,-j, bek,) = jku(abe,-,) — ae,-ju(bek,) — ,u(ae,-j)bek/. (12)
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With /L(ae,-j) = Zk,,u,-jk,(a)ek, and v,jklpq(a, b) € Z(M) defined by

f(aejj, bew) = Z’Yijk/pq(a, b)epq,
P.q

we arrive at the system of n® linear vector equations with 3n* unknowns
tijki(ab), pijwi(a)s pijwa (b)

2 Z Yijkipg (3, b)€pg = Jjk Z Hitpg(ab)epq

p.q p.q

- Z Sjphiking(b)e€ig + Sighikipg (b)ep;)

- Z b(Sqktijpg(@)ep + diptiijpg(a)exq)-

Then any solution of (14) proves (12) and hence (11).
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Some properties of Jordan 2-cocycles

Proposition

Every symmetric Hochschild 2-cocycle is a Jordan 2-cocycle.

Recall that every Jordan derivation on a semisimple Banach algebra is a derivation
(Sinclair). If every Jordan 2-cocycle was a Hochschild 2-cocycle, GAME OVER

Proposition Let M be a von Neumann algebra.

(a) Let f: M x M — M be defined by f(a,b) =aocb. Then f is a
Jordan 2-cocycle with values in M, which is not a Hochschild
2-cocycle unless M is commutative.

(b) If M is finite with trace tr, then f : M x M — M, defined by
f(a, b)(x) =tr((ao b)x) is a Jordan 2-cocycle with values in M,
which is not a Hochschild 2-cocycle unless M is commutative.

Proposition

Let f be a Jordan 2-cocycle on the von Neumann algebra M. Then
f(1,x) = xf(1,1) for every x € M and f(1,1) belongs to the center of M.
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Recall the definition of Jordan 2-cocycle
f(a%, a0 b)+ f(a,b) 0 2> + f(a,a) o (ao b) (15)
—f(a® o b,a) — f(a®,b)oa—(f(a,a)ob)oa=0
Proof of part (a) of the second proposition
Let f(a, b) = ac b. The equation (15) reduces to
a*o(aob)+(acb)oa’+a’o(aob)—(aob)oa—(a®ob)oa—(a®ob)oa,

which is zero by the Jordan axiom, so f is a Jordan 2-cocycle.
If this f were a Hochschild 2-cocycle, we would have

c(aob)—(ca)ob+co(ab) —(coa)b=0,

which reduces to [[c, b], a] = 0 and therefore [M, M] C Z(M) (the center of M).
Since M = Z(M) + [M, M], M is commutative. This proves (a).
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4. Algebras of unbounded operators

Murray-von Neumann algebras

Physics considerations demand that the Hamiltonian of a quantum system will, in
general, correspond to an unbounded operator on a Hilbert space H. These
unbounded operators will not lie in a von Neumann algebra, but they may be
affiliated with the von Neumann algebra corresponding to the quantum system. In
general, unbounded operators do not behave well with respect to addition and
multiplication. However, as noted by Murray and von Neumann in 1936, for the
finite von Neumann algebras, their families of affiliated operators do form a
*_algebra. Thus, it natural to study derivations of algebras that include such
unbounded operators.

A closed densely defined operator T on a Hilbert space H is affiliated with a von
Neumann algebra R when UT = TU for each unitary operator U in R’, the
commutant of R. If operators S and T are affiliated with R, then S + T and ST
are densely defined, preclosed and their closures are affiliated with R. Such
algebras are referred to as Murray-von Neumann algebras.
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If R is a finite von Neumann algebra, we denote by Ar(R) its associated
Murray-von Neumann algebra. It is natural to conjecture that every derivation of
Afr(R) should be inner. Kadison and Liu proved in 2014 that extended derivations
of A¢(R) (those that map R into R) are inner.

They also proved that each derivation of A¢(R) with R a factor of type //; that
maps Af(R) into R is 0.

In other words, by requiring that the range of the derivation is in R, the bounded
part of Af(R), allows a noncommutative unbounded version of the well-known
Singer-Wermer conjecture.

This extends to the general von Neumann algebra of type I/ )
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We turn our attention now to commutators in Af(N), where N is a finite von
Neumann algebra. The following theorem is related to the work of Kadison and
Liu described above.

Theorem (Liu 2011)

Let N be /l;-factor. If the element b of N is a commutator of self-adjoint
elements in Ar(N), then b has trace zero. In particular, the scalar operator i1 € N
is not a commutator of self-adjoint elements in Ar(/N).

This has been complemented as follows.

Theorem (Thom 2014)

Let a, b € Ar(N) where N is a /l;-factor. Assume that either a, b belong to the
Haagerup-Schultz algebra (a *-subalgebra of A¢(N)) or if ab € A¢(N) is conjugate
to a self-adjoint element. If [a, b] = A1, then A = 0.
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As for sums of commutators, we have the following theorem. J

Theorem (Thom 2014)

Let N be a /h-factor. There exist a, b, c,d € A¢(N) such that 1 = [a, b] + [c, d].
Every element of Af(N) is the sum of two commutators.
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Algebras of measurable operators

Noncommutative integration theory was initiated by Segal in 1953, who considered
new classes of algebras of unbounded operators, in particular the algebra S(M) of
all measurable operators affiliated with a von Neumann algebra M.

A study of the derivations on the algebra S(M) was initiated by Ayupov in 2000. J

For example, in the commutative case M = L>=°(Q, X, ), S(M) is isomorphic to
the algebra L°(Q) of all complex measurable functions and it is shown by
Ber-Chillin-Sukochev in 2006 that L°(0, 1) admits nonzero derivations which are
discontinuous in the measure topology.

The study of derivations on various subalgebras of the algebra LS(M) of all locally
measurable operators in the general semifinite case was initiated by
Alberio-Ayupov-Kudaybergenov in 2007-8, with the most complete results
obtained in the type | case, 2009.

(See the 2010 survey by Ayupov-Kudaybergenov.
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It was shown by Alberio-Ayupov-Kudaybergenov in 2009 (and by
Ber-dePadgter-Sukochev in 2011 for separable predual) that if M is properly
infinite and of type |, then every derivation of LS(M) is continuous in the local
measure topology t(M) on LS(M). The same holds for M of type Il as shown by
Ayupov-Kudaybergenov in 2010 and for type /., (Ber-Chillin-Sukochev 2013).

The following illustrates the state of the art.

Theorem (Ber-Chillin-Sukochev 2014)

Let M be any von Neumann algebra. Every derivation on the *-algebra LS(M)
continuous with respect to the topology t(M) is inner.

Corollary

If M is a properly infinite von Neumann algebra, then every derivation on LS(M)
is inner.
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5. Local derivations on JB*-triples

Linear maps which agree with a derivation at each point are called local
derivations. These have been studied in the Banach setting by Kadison 1990,
Johnson 2001, Ajupov et. al 2009-11, among others.

Kadison proved that a continuous local derivation from a von Neumann algebra
into a Banach dual module is a derivation.

Let X and Y be Banach spaces. A subset D of the Banach space B(X, Y), of all
bounded linear operators from X into Y, is called algebraically reflexive in
B(X, Y) when it satisfies the property:

T € B(X,Y) with T(x) € D(x), Vxe X = T € D. (16)

Algebraic reflexivity of D in the space L(X, Y), of all linear mappings from X into
Y, a stronger version of the above property not requiring continuity of T, is
defined by:

T € L(X, Y) with T(x) € D(x), ¥x € X = T € D. (17)
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In 1990, Kadison proved that (16) holds if D is the set Der(M, X) of all
(associative) derivations on a von Neumann algebra M into a dual M-bimodule X.

Johnson extended Kadison's result by establishing that the set D = Der(A, X), of
all (associative) derivations from a C*-algebra A into a Banach A-bimodule X
satisfies (17).

Michael Mackey gave a talk on this topic at the conference in honor of Cho-Ho
Chu's 65th birthday in May 2012 in Hong Kong. He proved that every continuous
local derivation on a JBW*-triple is a derivation, and he suggested some
problems, among them whether every local derivation on a JB*-triple into itself or
into a Banach module is automatically continuous, and if so, whether it is a
derivation. There are other problems in this area, some involving nonlinear maps.
Many of these have now been answered.

Bernard Russo (UCI) Recent Advances in the Theory of Derivations on Jord: 32 /37



Algebraic reflexivity of the set of local triple derivations on a C*-algebra and on a
JB*-triple have been studied in 2013-14 by Peralta, Polo, Burgos, Garces, Molina.

More precisely, Mackey proves that the set D = Der;(M), of all triple derivations
on a JBW*-triple M satisfies (16).

The result has been supplemented by Burgos, Fernandez-Polo and Peralta who
prove that for each JB*-triple E, the set D = Der,(E) of all triple derivations on
E satisfies (17).
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In what follows, algebraic reflexivity will refer to the stronger version (17) which
does not assume the continuity of T.

In 1995, Brear and Semrl proved that the set of all (algebra) automorphisms of
B(H) is algebraically reflexive whenever H is a separable, infinite-dimensional
Hilbert space.

Given a Banach space X. A linear mapping T : X — X satisfying the hypothesis
t (17) for D = Aut(X), the set of automorphisms on X, is called a local
automorphism.

Larson and Sourour showed in 1990 that for every infinite dimensional Banach
space X, every surjective local automorphism T on the Banach algebra B(X), of
all bounded linear operators on X, is an automorphism.
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Motivated by the results of Semrl in 1997, references witness a growing interest in
a subtle version of algebraic reflexivity called algebraic 2-reflexivity

A subset D of the set M(X,Y) = YX, of all mappings from X into Y, is called
algebraically 2-reflexive when the following property holds: for each mapping T in
M(X,Y) such that for each a, b € X, there exists S = S, , € D (depending on a
and b), with T(a) = S, (a) and T(b) = S, (b), then T lies in D.

A mapping T : X — Y satisfying that for each a, b € X, there exists
S =S, € D (depending on a and b), with T(a) = S, p(a) and T(b) = S, »(b)
will be called a 2-local D-mapping.

Semrl establishes that for every infinite-dimensional separable Hilbert space H, the
sets Aut(B(H)) and Der(B(H)), of all (algebra) automorphisms and associative
derivations on B(H), respectively, are algebraically 2-reflexive in

M(B(H)) = M(B(H), B(H))-

Ayupov and Kudaybergenov proved in 2012 that the same statement remains true
for general Hilbert spaces.
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Actually, the set Hom(A), of all homomorphisms on a general C*-algebra A, is
algebraically 2-reflexive in the Banach algebra B(A), of all bounded linear
operators on A, and the set *~-Hom(A), of all *-homomorphisms on A, is
algebraically 2-reflexive in the space L(A), of all linear operators on A (Peralta
2014).

In recent contributions (2014), Burgos, Fernandez-Polo and Peralta prove that the
set Hom(M) (respectively, Hom:(M)), of all homomorphisms (respectively, triple
homomorphisms) on a von Neumann algebra (respectively, on a JBW*-triple) M,
is an algebraically 2-reflexive subset of M(M), while Ayupov and Kudaybergenov
establish that set Der(M) of all derivations on M is algebraically 2-reflexive in
M(M).
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We recall that every C*-algebra A can be equipped with a ternary product of the
form

1
{a,b,c} = E(ab*c + cb*a).

When A is equipped with this product it becomes a JB*-triple. A linear mapping
0 : A — Ais said to be a triple derivation when it satisfies the (triple) Leibnitz
rule:

d{a, b,c} = {0(a), b,c} + {a,d(b), c} + {a, b,d(c)}.

According to the standard notation, 2-local Der;(A)-mappings from A into A are
called 2-local triple derivations.

Theorem (Kudaybergenov-Oikhberg-Peralta-Russo 2014)

Every (not necessarily linear nor continuous) 2-local triple derivation on an
arbitrary von Neumann algebra M is a triple derivation (hence linear and
continuous), equivalently, Der;(M) is algebraically 2-reflexive in M(M).

FIN , MERCI
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