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History of these lectures

e PART | FEBRUARY 8, 2011 ALGEBRAS; DERIVATIONS

e PART Il JULY 21, 2011 TRIPLE SYSTEMS; DERIVATIONS

e PART Ill  FEBRUARY 28, 2012 MODULES; DERIVATIONS

e PART IV JULY 26, 2012 COHOMOLOGY (ASSOCIATIVE ALGEBRAS)
e PART V OCTOBER 25, 2012 THE SECOND COHOMOLOGY GROUP
e PART VI MARCH 7, 2013 COHOMOLOGY (LIE ALGEBRAS)

e PART VIl JULY 25, 2013 COHOMOLOGY (JORDAN ALGEBRAS)

e PART VIII  SEPTEMBER 17, 2013 (today)

VANISHING THEOREMS IN DIMENSIONS 1 AND 2
(ASSOCIATIVE ALGEBRAS)
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Outline

Review of Algebras

e Derivations on matrix algebras

e Review of Cohomology
o HY(My, M) =0
° H2(/\/,27 Mz) =0
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Introduction

| will present simple proofs of vanishing of the first and second cohomology groups
of an associative algebra, illustrating with the algebra of two by two matrices with
matrix multiplication.

The relevant definitions and examples from earlier talks in the series will be
reviewed beforehand. J
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Review of Algebras—Axiomatic approach

AN ALGEBRA IS DEFINED TO BE A SET (ACTUALLY A VECTOR SPACE)
WITH TWO BINARY OPERATIONS, CALLED ADDITION AND
MULTIPLICATION

ADDITION IS DENOTED BY a+ b AND IS REQUIRED TO BE
COMMUTATIVE a+b=b+a
AND ASSOCIATIVE (a+b)+c=a+(b+¢)

MULTIPLICATION IS DENOTED BY ab AND IS REQUIRED TO BE
DISTRIBUTIVE WITH RESPECT TO ADDITION
(a+ b)c =ac+ bc, a(b+c)=ab+ac

AN ALGEBRA IS SAID TO BE ASSOCIATIVE (RESP. COMMUTATIVE) IF THE
MULTIPLICATION IS ASSOCIATIVE (RESP. COMMUTATIVE)
(RECALL THAT ADDITION IS ALWAYS COMMUTATIVE AND ASSOCIATIVE)
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Table 1 (FASHIONABLE) ALGEBRAS

commutative algebras
associative algebras

Lie algebras a> =0,

ab = ba
a(bc) = (ab)c

(ab)c + (bc)a+ (ca)b =0

Jordan algebras ab = ba, a(a’b) = a?(ab)

We shall only be concerned with associative algebras in this talk, in fact,
only the algebra of two by two matrices under matrix multiplication.
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DERIVATIONS ON MATRIX ALGEBRAS

THE SET M,(R) of n by n MATRICES IS AN ALGEBRA UNDER
MATRIX ADDITION A+ B
AND
MATRIX MULTIPLICATION AXxB
WHICH IS ASSOCIATIVE BUT NOT COMMUTATIVE.

For the Record:
[ay] + [by] = [ay + by] [ag] x [by] = [>_—1 aikbyj]

DEFINITION

A DERIVATION ON M,(R) WITH RESPECT TO MATRIX MULTIPLICATION
IS A LINEAR PROCESS 6: (A + B) = 6(A) + 6(B)

WHICH SATISFIES THE PRODUCT RULE

(A x B) =0(A) x B+ A x §(B)

Bernard Russo (UCI) DERIVATIONS An introduction to non associative alge 7/25



PROPOSITION
FIX A MATRIX A in M,(R) AND DEFINE

SaA(X)=Ax X=X xA.

THEN 64 IS A DERIVATION WITH RESPECT TO MATRIX MULTIPLICATION
(WHICH CAN BE NON-ZERO)

THEOREM (Noether,Wedderburn,Hochschild,Jacobson,
Kaplansky, Kadison,Sakai)

EVERY DERIVATION ON M,(R) WITH RESPECT TO MATRIX
MULTIPLICATION IS OF THE FORM §4 FOR SOME A IN M,(R).

We shall give a proof of this theorem for n = 2 in this talk.
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Review of Cohomology

NOTATION

n is a positive integer, n=1,2,---

f is a function of n variables

F is a function of n+ 1 variables (n + 2 variables?)
X1, X2, ,Xpt1 belong to an algebra A
f(y1,---,¥n) and F(y1, - ,¥nt1) also belong to A

The basic formula of homological algebra

F(X1, .. Xny Xnt1) =
X1f(X2, o0 7Xn+1)
—IC(X1X2,X37 coo ,Xn+1)
+1 (X1, X2X3, X4 - + 5 Xnt1)
(X1, X2y« « « s XpXnt+1)
Fr(X1y -y Xn)Xnt1
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HIERARCHY

X1, X2, - - - , Xp are points (or vectors)

f and F are functions—they take points to points

T, defined by T(f) = F is a transformation—takes functions to functions
points x1, ..., Xp+1 and f(y1,...,y,) will belong to an algebra A
functions f will be either constant, linear or multilinear (hence so will F)
transformation T is linear

SHORT FORM OF THE FORMULA
(TH(xa,y - -+ Xny Xnt1)

= le(Xg, 000 7Xn+1)
+ Z(_l)Jf(Xla sy XiXjply e 7Xn+1)
Jj=1

+(—1)”+1f(xl7 ooy X)Xt 1
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FIRST CASES

n=20

If f is any constant function from A to A, say, f(x) = b for all x in A, where b is
a fixed element of A, we have, consistent with the basic formula, a linear function
To(f)i

To(f)(x1) = x1b — bxy

n=1
If f is a linear function from A to A, then Ty(f) is a bilinear function

Tl(f)(Xl,XQ) = X1 f(X2) S f(X1X2) + f(X]_)X2

n=2
If f is a bilinear function from A X A to A, then T,(f) is a trilinear function

TQ(f)(Xl,XQ,X3) =

X1 f(XQ,X3) = f(X1X2,X3) aF f(Xl, X2X3) — f(Xl, X2)X3
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FIRST COHOMOLOGY GROUP

Kernel and Image of a linear transformation

G X—>Y

Since X and Y are vector spaces, they are in particular, commutative groups.
Kernel of G (also called nullspace of G) is

ker G = {x € X : G(x) =0}

This is a subgroup of X

Image of G is

imG = {G(x): x € X}

This is a subgroup of Y

T
X = A (the algebra)

= L(A) (all linear transformations on A)

( )(X]_) = X]_b le

ker To={b € A: xb— bx =0 for all x € A} (center of A)

im Ty = the set of all linear maps of A of the form x — xb — bx,
in other words, the set of all inner derivations of A

ker Ty is a subgroup of A

im Tp is a subgroup of L(A)
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G=T,

X = L(A) (linear transformations on A)

Y = L?(A) (bilinear transformations on A x A)

Tl(f)(Xl,Xz) = X1 f(X2) — f(X1X2) aF f(Xl)Xz

ker T; = {f € L(A) : Tlf(X]_7X2) =0 for all X1,X2 € A} = the set of all
derivations of A

im T, = the set of all bilinear maps of A x A of the form

(x1,%) = x1f(x2) — f(axe) + f(x1)x,

for some linear function f € L(A).
ker Ty is a subgroup of L(A)
im T; is a subgroup of L2(A)
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G=T,

X = L2(A) (bilinear transformations on A x A)

Y = L3(A) (trilinear transformations on A x A x A)

TQ(f)(Xl,X27X3) = X1f(X2,X3)) — f(X1X2,X3) + f(X1X2,X3) — f(Xl,XQ)X:),
ker Tp = {f € L2(A) : Tof (x1, %, x3) = 0 for all x;,x,x3 € A}

im T, = the set of all trilinear maps of A x A x A of the form

(x1, %2, x3) = x1f (X2, x3)) — f(x1%2, x3) + F(X1x2, x3) — f(x1,%2)X3

for some bilinear function f € L(A).
ker T is a subgroup of L2(A)
im T, is a subgroup of L3(A)
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LO(A) 12 L(A) 1 [2(A) 2 [3(A) -
FACTS: TioTp =0
T2 (0] T1 =0

Tn+1 oT,=0

Therefore

im T, C ker T3 C L"(A)
and therefore
im T, is a subgroup of ker T,

TERMINOLOGY

im T,,_; = the set of n-coboundaries
ker T, = the set of n-cocycles

and therefore

every n-coboundary is an n-cocycle.
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im Tg C ker Ty
says
Every inner derivation (1-coboundary) is a derivation (1-cocycle).

im T1 C ker T,
says
for every linear map f, the bilinear map Fdefined by
F(Xl, X2) = le(Xz) = f(X1X2) aF f(Xl)X2

(2-coboundary) satisfies the equation

X1F(X2,X3) — F(X1X2,X3) —|— F(X17X2X3) — F(Xl,Xz)X3 = O

for every xi, x2, x3 € A (2-cocycle).
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The cohomology groups of A are defined as the quotient groups

ker T, n-cocycles
H"(A) = = =12...
(4) im T,_1  n-coboundaries s 25+

Thus o
HY(A) = ker T;  l-cocycles derivations

" imTy  1l-coboundaries  inner derivations

H2(A) = ker T 2-cocycles ~_ null extensions

im Ty 2-coboundaries  split null extensions

The theorem that every derivation of M,(R) is inner (that is, of the form §, for
some a € M,(R), Theorem 1 below for n = 2) can now be restated as:
"the cohomology group H*(M,(R)) is the trivial one element group”

The theorem that every null extension of M,(R) is a split null extension
(Corollary 2 of Theorem 2 below for n = 2) can be stated as:
"the cohomology group H?(M,(R)) is the trivial one element group”
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HY(M,, My) = 0

Matrix units
1 0 0 1 0 0 0 0
LetEu:{O 0},52:[0 0}7E21={1 0],5222{01}

LEMMA
> E11+ Exn=1
> E’.Jt. = |57
> EiEw = 6uEn

THEOREM 1

Let § : My — M, be a derivation: ¢ is linear and 6(AB) = AJ(B) + 6(A)B. Then
there exists a matrix K such that §(X) = XK — KX for X in M.

COROLLARY
HY (M2, Mp) =0
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PROOF OF THEOREM 1

0 = 0(1) =0(Eu1 + Ex) = 0(E11) + 0(Ex)

= O(EwEn) + 0(EaEr2)
= E116(E11) + 0(E11)Err + E210(Ex2) + 0(E21) Exz
= E116(E11) + Ex19(Er2) + 6(E11) Exn + 0(Ez1) Era.
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PROOF OF THEOREM 1

0 = 0(1) = 6(Enr + Ex) = 6(E11) + 0(E22)

= O(Eu k) + 6(Ea1Er2)
= End(Ewn)+ 0(Ein)Enr + End(Er) + 0(Ea)Erz
= )

E110(E11) + E210(Er2) + 0(Ex1) Ern + 0(En1) Eo.

Let K = E118(Ev) + End(Ei2) = —6(Ew1)Evr — 6(Es1)Era. Then
» KEin = —6(En)Enn , EnK = End(En)
» KEip = —6(Enn)Er2 , EnnK = Ennd(En)
» KEyy = —6(En)Enn , ExnK = Exd(En)
> KExp = —6(Ex1)E12 , ExK = Exd(Er)
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PROOF OF THEOREM 1

0 = 4(1) =
= (EnEn) + 6(ExEr2)

= E116(E11) + 0(E11)Err + E210(Ex2) + 0(E21) Exz

= End(En)+ Exd(Er2) + 6(Enr)En + 0(Ex1) Era.

Ei1 + E22) = 5(E11) I 5(E22)

Let K = E118(Ev) + End(Ei2) = —6(Ew1)Evr — 6(Es1)Era. Then
> KE;y = —6(Ei1)Enn , EnnK = Enid(En)
» KEip = —6(Enn)Er2 , EnnK = Ennd(En)
» KEyy = —6(En)Enn , ExnK = Exd(En)
> KExp = —6(Ex1)E12 , ExK = Exd(Er)
» EnnK — KEyn = Ené(Enn) + 0(Ew1) Enn = 6(EnEnn) = 0(Enr)
> EnK — KEyp = E110(Er2) + 0(E11) Ero = 0(E11E12) = 0(Er2)
> EnK — KEx = E»10(Eq1) + 0(Eo1) Ern = 0(Ep1 E11) = 0(Exn)
> ExsK — KEx = End(Ews) + 6(Ea)Ers = 8(EaiEra) = 6(Ezs) QE.D
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H?(My, My) = 0

DEFINITION
Let p be a linear transformation on M,. We define linear transformations o7 and
02 On M2 by
01(A) = E11p(En1A) + Exip(ErzA)
and
02(A) = Erap(E21A) + Exop(Ex2A)
LEMMA 1

Ul(A) = AJl(I) and 0’2(A) = AU2(I)

We only need o7 or o, not both. We'll go with 7.
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PROOF OF LEMMA 1
E11AE; = ciiEr, EpAE = o1 Bry, EnnAEy = cioBrr, EipAEy = cnkrn

> E1A= EnAEnEn + B AE B = B + cioEr B = cuBin + cipEap
> EpA = EpAEnEn + EpAE B = o1 B + BB = o1 Ein + cnEip

> AE; = Enn B A + B EpAE = i + o By By = B + c1Ex
> AEy = EnnEnn Ay + Ex1 EppAEy = cioErn + co By Bry = ciobor + oo

01(A) = Eup(E11A) + Exnp(EnA)
= Enp(cibn + czE) + Exp(c B + cxEi2)
= cnEnp(En) + czEnp(E2) + c1Exp(Eir) + Bz p(Er2)
= (cubn + abo)p(Err) + (cr2En + c2Bo1)p(Er2)
= AEnp(Ei1) + AExnp(Ei2)
Aosi(1) QE.D.
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DEFINITION

Let f be a bilinear transformation on M, x M,. We define bilinear transformations
71 and 7 on My x M, by

Tl(A, B) = Ellf(E11A7 B) + Ez]_f(Ele, B)

and
TQ(A, B) = Elzf(E21A, B) =+ E22f(E22A, B)

LEMMA 2
71(A, B) = Ary(1, B) and (A, B) = Any(I, B)

We only need 7 or 7, not both. We'll go with 7.

PROOF OF LEMMA 2

For B fixed, let p(A) = f(A, B) and apply LEMMA 1 to this p. Namely, set
O'(A) = E11P(E11A) T Eglp(Ele). Then O'(A) = Tl(A, B) By LEMMA 1,
o(A) = Ao(1) and 71(A, B) = 0(A) = Ao(1) = Ani(1, B). Q.E.D.
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THEOREM 2
Let f be a 2-cocycle: f is bilinear and
Tof (A, B, C) = Af(B,C) — f(AB,C) + f(A,BC) — f(A,B)C =0

for all A, B, C in M. Then there exists a linear transformation & on M, such that
T,:£ = f, that is, f is a 2-coboundary.

COROLLARY 1
H2(My, My) = 0

COROLLARY 2

It E is any associative algebra containing an ideal J such that E/J is isomorphic
to M, (E is then said to be an extension of M,), then there is a subalgebra B of
E such that E = B&® M, (E is a split extension) °

3There is always a subspace B such that E = B & M,
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PROOF OF THEOREM 2

Define a bilinear map 7(A, B) = E11f(E11A, B) + Exf(EipA, B) and then define a
linear map &(B) = 7(1, B). Now just verify that T1(£) = f. Q.E.D.

DETAILS

T1E(A,B) = AL(B) —&(AB) +&(A)B
= Ar(1,B)—7(1,AB) +7(1,A)B
— (A B)—(1,AB) + 7(1,A)B
Eiif(EnA, B) + Exif(Ei2A, B)
Eq1f(E11,AB) — Exif(E12, AB)
+ Eif(Ewn, A)B+ Exnf(En,A)B

Tof (E11, A, B) = Einf(A, B) — f(EniA, B) + f(E11, AB) — f(E11,A)B =0

Tof (E1p, A, B) = E1of (A, B) — f(E2A, B) + f(E12, AB) — f(E1p, A)B =0
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0 = E11 Tof (E11, A, B) + Exi Tof (v, A, B)

0 = En[Enf(A B)— f(EnA, B) + f(Ei1, AB) — f(E11,A)B]
aF E21[E12f(A, B) = f(Ele, B) aF f(Elg, AB) = f(Elg,A)B]

FROM THE PRECEDING PAGE

Tlf(A7 B) = Enf(EuA7 B) + Eglf(ElgA, B) — Ellf(Eu, AB)
— Ezlf(Elz, AB) =F E11f(E11,A)B + E21f(E12, A)B

Add these two equations to get

T16(A, B) = Enf(A, B) + Exf(A,B) = f(A,B) Q.E.D. (again)
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