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History of these lectures

• PART I FEBRUARY 8, 2011 ALGEBRAS; DERIVATIONS

• PART II JULY 21, 2011 TRIPLE SYSTEMS; DERIVATIONS

• PART III FEBRUARY 28, 2012 MODULES; DERIVATIONS

• PART IV JULY 26, 2012 COHOMOLOGY (ASSOCIATIVE ALGEBRAS)

• PART V OCTOBER 25, 2012 THE SECOND COHOMOLOGY GROUP

• PART VI MARCH 7, 2013 COHOMOLOGY (LIE ALGEBRAS)

• PART VII JULY 25, 2013 COHOMOLOGY (JORDAN ALGEBRAS)

• PART VIII SEPTEMBER 17, 2013 (today)

VANISHING THEOREMS IN DIMENSIONS 1 AND 2
(ASSOCIATIVE ALGEBRAS)
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Outline

• Review of Algebras

• Derivations on matrix algebras

• Review of Cohomology

• H1(M2,M2) = 0

• H2(M2,M2) = 0
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Introduction

I will present simple proofs of vanishing of the first and second cohomology groups
of an associative algebra, illustrating with the algebra of two by two matrices with
matrix multiplication.

The relevant definitions and examples from earlier talks in the series will be
reviewed beforehand.
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Review of Algebras—Axiomatic approach

AN ALGEBRA IS DEFINED TO BE A SET (ACTUALLY A VECTOR SPACE)
WITH TWO BINARY OPERATIONS, CALLED ADDITION AND
MULTIPLICATION

ADDITION IS DENOTED BY a + b AND IS REQUIRED TO BE
COMMUTATIVE a + b = b + a
AND ASSOCIATIVE (a + b) + c = a + (b + c)

MULTIPLICATION IS DENOTED BY ab AND IS REQUIRED TO BE
DISTRIBUTIVE WITH RESPECT TO ADDITION
(a + b)c = ac + bc, a(b + c) = ab + ac

AN ALGEBRA IS SAID TO BE ASSOCIATIVE (RESP. COMMUTATIVE) IF THE
MULTIPLICATION IS ASSOCIATIVE (RESP. COMMUTATIVE)
(RECALL THAT ADDITION IS ALWAYS COMMUTATIVE AND ASSOCIATIVE)
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Table 1 (FASHIONABLE) ALGEBRAS

commutative algebras ab = ba

associative algebras a(bc) = (ab)c

Lie algebras a2 = 0 , (ab)c + (bc)a + (ca)b = 0

Jordan algebras ab = ba, a(a2b) = a2(ab)

We shall only be concerned with associative algebras in this talk, in fact,
only the algebra of two by two matrices under matrix multiplication.
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DERIVATIONS ON MATRIX ALGEBRAS

THE SET Mn(R) of n by n MATRICES IS AN ALGEBRA UNDER
MATRIX ADDITION A + B

AND
MATRIX MULTIPLICATION A× B

WHICH IS ASSOCIATIVE BUT NOT COMMUTATIVE.

For the Record:

[aij ] + [bij ] = [aij + bij ] [aij ]× [bij ] = [
∑n

k=1 aikbkj ]

DEFINITION

A DERIVATION ON Mn(R) WITH RESPECT TO MATRIX MULTIPLICATION
IS A LINEAR PROCESS δ: δ(A + B) = δ(A) + δ(B)
WHICH SATISFIES THE PRODUCT RULE

δ(A× B) = δ(A)× B + A× δ(B)

.
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PROPOSITION

FIX A MATRIX A in Mn(R) AND DEFINE

δA(X ) = A× X − X × A.

THEN δA IS A DERIVATION WITH RESPECT TO MATRIX MULTIPLICATION
(WHICH CAN BE NON-ZERO)

THEOREM (Noether,Wedderburn,Hochschild,Jacobson,
Kaplansky,Kadison,Sakai)

EVERY DERIVATION ON Mn(R) WITH RESPECT TO MATRIX
MULTIPLICATION IS OF THE FORM δA FOR SOME A IN Mn(R).

We shall give a proof of this theorem for n = 2 in this talk.
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Review of Cohomology

NOTATION
n is a positive integer, n = 1, 2, · · ·
f is a function of n variables
F is a function of n + 1 variables (n + 2 variables?)
x1, x2, · · · , xn+1 belong to an algebra A
f (y1, . . . , yn) and F (y1, · · · , yn+1) also belong to A

The basic formula of homological algebra

F (x1, . . . , xn, xn+1) =
x1f (x2, . . . , xn+1)
−f (x1x2, x3, . . . , xn+1)
+f (x1, x2x3, x4, . . . , xn+1)
− · · ·
±f (x1, x2, . . . , xnxn+1)
∓f (x1, . . . , xn)xn+1
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HIERARCHY

x1, x2, . . . , xn are points (or vectors)
f and F are functions—they take points to points
T , defined by T (f ) = F is a transformation—takes functions to functions
points x1, . . . , xn+1 and f (y1, . . . , yn) will belong to an algebra A
functions f will be either constant, linear or multilinear (hence so will F )
transformation T is linear

SHORT FORM OF THE FORMULA

(Tf )(x1, . . . , xn, xn+1)

= x1f (x2, . . . , xn+1)

+
n∑

j=1

(−1)j f (x1, . . . , xjxj+1, . . . , xn+1)

+(−1)n+1f (x1, . . . , xn)xn+1
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FIRST CASES
n = 0
If f is any constant function from A to A, say, f (x) = b for all x in A, where b is
a fixed element of A, we have, consistent with the basic formula, a linear function
T0(f ):

T0(f )(x1) = x1b − bx1

n = 1
If f is a linear function from A to A, then T1(f ) is a bilinear function

T1(f )(x1, x2) = x1f (x2)− f (x1x2) + f (x1)x2

n = 2
If f is a bilinear function from A× A to A, then T2(f ) is a trilinear function

T2(f )(x1, x2, x3) =

x1f (x2, x3)− f (x1x2, x3) + f (x1, x2x3)− f (x1, x2)x3
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FIRST COHOMOLOGY GROUP

Kernel and Image of a linear transformation

G : X → Y
Since X and Y are vector spaces, they are in particular, commutative groups.
Kernel of G (also called nullspace of G ) is
kerG = {x ∈ X : G (x) = 0}
This is a subgroup of X
Image of G is
imG = {G (x) : x ∈ X}
This is a subgroup of Y

G = T0

X = A (the algebra)
Y = L(A) (all linear transformations on A)
T0(f )(x1) = x1b − bx1
kerT0 = {b ∈ A : xb − bx = 0 for all x ∈ A} (center of A)
imT0 = the set of all linear maps of A of the form x 7→ xb − bx ,
in other words, the set of all inner derivations of A
kerT0 is a subgroup of A
imT0 is a subgroup of L(A)
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G = T1

X = L(A) (linear transformations on A)
Y = L2(A) (bilinear transformations on A× A)
T1(f )(x1, x2) = x1f (x2)− f (x1x2) + f (x1)x2
kerT1 = {f ∈ L(A) : T1f (x1, x2) = 0 for all x1, x2 ∈ A} = the set of all
derivations of A
imT1 = the set of all bilinear maps of A× A of the form

(x1, x2) 7→ x1f (x2)− f (x1x2) + f (x1)x2,

for some linear function f ∈ L(A).
kerT1 is a subgroup of L(A)
imT1 is a subgroup of L2(A)
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G = T2

X = L2(A) (bilinear transformations on A× A)
Y = L3(A) (trilinear transformations on A× A× A)
T2(f )(x1, x2, x3) = x1f (x2, x3))− f (x1x2, x3) + f (x1x2, x3)− f (x1, x2)x3
kerT2 = {f ∈ L2(A) : T2f (x1, x2, x3) = 0 for all x1, x2, x3 ∈ A}
imT2 = the set of all trilinear maps of A× A× A of the form

(x1, x2, x3) 7→ x1f (x2, x3))− f (x1x2, x3) + f (x1x2, x3)− f (x1, x2)x3

for some bilinear function f ∈ L(A).
kerT2 is a subgroup of L2(A)
imT2 is a subgroup of L3(A)
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L0(A)
T0−→ L(A)

T1−→ L2(A)
T2−→ L3(A) · · ·

FACTS: T1 ◦ T0 = 0
T2 ◦ T1 = 0
· · ·
Tn+1 ◦ Tn = 0
· · ·

Therefore

imTn ⊂ kerTn+1 ⊂ Ln(A)
and therefore
imTn is a subgroup of kerTn+1

TERMINOLOGY
imTn−1 = the set of n-coboundaries
kerTn = the set of n-cocycles
and therefore
every n-coboundary is an n-cocycle.
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imT0 ⊂ kerT1

says
Every inner derivation (1-coboundary) is a derivation (1-cocycle).

imT1 ⊂ kerT2

says
for every linear map f , the bilinear map Fdefined by

F (x1, x2) = x1f (x2)− f (x1x2) + f (x1)x2

(2-coboundary) satisfies the equation

x1F (x2, x3)− F (x1x2, x3) + F (x1, x2x3)− F (x1, x2)x3 = 0

for every x1, x2, x3 ∈ A (2-cocycle).
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The cohomology groups of A are defined as the quotient groups

Hn(A) =
kerTn

imTn−1
=

n-cocycles

n-coboundaries
(n = 1, 2, . . .)

Thus

H1(A) =
kerT1

imT0
=

1-cocycles

1-coboundaries
=

derivations

inner derivations

H2(A) =
kerT2

imT1
=

2-cocycles

2-coboundaries
=

null extensions

split null extensions

The theorem that every derivation of Mn(R) is inner (that is, of the form δa for
some a ∈ Mn(R), Theorem 1 below for n = 2) can now be restated as:
”the cohomology group H1(Mn(R)) is the trivial one element group”

The theorem that every null extension of Mn(R) is a split null extension
(Corollary 2 of Theorem 2 below for n = 2) can be stated as:
”the cohomology group H2(Mn(R)) is the trivial one element group”
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H1(M2,M2) = 0

Matrix units

Let E11 =

[
1 0
0 0

]
, E12 =

[
0 1
0 0

]
, E21 =

[
0 0
1 0

]
, E22 =

[
0 0
0 1

]

LEMMA
I E11 + E22 = I

I E t
ij = Eji

I EijEkl = δklEil

THEOREM 1

Let δ : M2 → M2 be a derivation: δ is linear and δ(AB) = Aδ(B) + δ(A)B. Then
there exists a matrix K such that δ(X ) = XK − KX for X in M2.

COROLLARY

H1(M2,M2) = 0
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PROOF OF THEOREM 1

0 = δ(1) = δ(E11 + E22) = δ(E11) + δ(E22)

= δ(E11E11) + δ(E21E12)

= E11δ(E11) + δ(E11)E11 + E21δ(E12) + δ(E21)E12

= E11δ(E11) + E21δ(E12) + δ(E11)E11 + δ(E21)E12.

Let K = E11δ(E11) + E21δ(E12) = −δ(E11)E11 − δ(E21)E12. Then

I KE11 = −δ(E11)E11 , E11K = E11δ(E11)

I KE12 = −δ(E11)E12 , E12K = E11δ(E12)

I KE21 = −δ(E21)E11 , E21K = E21δ(E11)

I KE22 = −δ(E21)E12 , E22K = E21δ(E12)

I E11K − KE11 = E11δ(E11) + δ(E11)E11 = δ(E11E11) = δ(E11)

I E12K − KE12 = E11δ(E12) + δ(E11)E12 = δ(E11E12) = δ(E12)

I E21K − KE21 = E21δ(E11) + δ(E21)E11 = δ(E21E11) = δ(E21)

I E22K − KE22 = E21δ(E12) + δ(E21)E12 = δ(E21E12) = δ(E22) Q.E.D.
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H2(M2,M2) = 0

DEFINITION
Let ρ be a linear transformation on M2. We define linear transformations σ1 and
σ2 on M2 by

σ1(A) = E11ρ(E11A) + E21ρ(E12A)

and
σ2(A) = E12ρ(E21A) + E22ρ(E22A)

LEMMA 1

σ1(A) = Aσ1(I ) and σ2(A) = Aσ2(I )

We only need σ1 or σ2, not both. We’ll go with σ1.
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PROOF OF LEMMA 1
E11AE11 = c11E11, E12AE11 = c21E11, E11AE21 = c12E11, E12AE21 = c22E11

I E11A = E11AE11E11 + E11AE21E12 = c11E11 + c12E11E12 = c11E11 + c12E12

I E12A = E12AE11E11 + E12AE21E12 = c21E11 + c22E11E12 = c21E11 + c22E12

I AE11 = E11E11AE11 + E21E12AE11 = c11E11 + c21E21E11 = c11E11 + c21E21

I AE21 = E11E11AE21 + E21E12AE21 = c12E11 + c22E21E11 = c12E21 + c22E21

σ1(A) = E11ρ(E11A) + E21ρ(E12A)

= E11ρ(c11E11 + c12E12) + E21ρ(c21E11 + c22E12)

= c11E11ρ(E11) + c12E11ρ(E12) + c21E21ρ(E11) + c22E21ρ(E12)

= (c11E11 + c21E21)ρ(E11) + (c12E11 + c22E21)ρ(E12)

= AE11ρ(E11) + AE21ρ(E12)

= Aσ1(1) Q.E.D.
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DEFINITION
Let f be a bilinear transformation on M2 ×M2. We define bilinear transformations
τ1 and τ2 on M2 ×M2 by

τ1(A,B) = E11f (E11A,B) + E21f (E12A,B)

and
τ2(A,B) = E12f (E21A,B) + E22f (E22A,B)

LEMMA 2

τ1(A,B) = Aτ1(I ,B) and τ2(A,B) = Aτ2(I ,B)

We only need τ1 or τ2, not both. We’ll go with τ1.

PROOF OF LEMMA 2

For B fixed, let ρ(A) = f (A,B) and apply LEMMA 1 to this ρ. Namely, set
σ(A) = E11ρ(E11A) + E21ρ(E12A). Then σ(A) = τ1(A,B). By LEMMA 1,
σ(A) = Aσ(1) and τ1(A,B) = σ(A) = Aσ(1) = Aτ1(1,B). Q.E.D.
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THEOREM 2
Let f be a 2-cocycle: f is bilinear and

T2f (A,B,C ) = Af (B,C )− f (AB,C ) + f (A,BC )− f (A,B)C = 0

for all A,B,C in M2. Then there exists a linear transformation ξ on M2 such that
T1ξ = f , that is, f is a 2-coboundary.

COROLLARY 1

H2(M2,M2) = 0

COROLLARY 2

It E is any associative algebra containing an ideal J such that E/J is isomorphic
to M2 (E is then said to be an extension of M2), then there is a subalgebra B of
E such that E = B ⊕M2 (E is a split extension) a

aThere is always a subspace B such that E = B ⊕M2
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PROOF OF THEOREM 2

Define a bilinear map τ(A,B) = E11f (E11A,B) + E21f (E12A,B) and then define a
linear map ξ(B) = τ(1,B). Now just verify that T1(ξ) = f . Q.E.D.

DETAILS

T1ξ(A,B) = Aξ(B)− ξ(AB) + ξ(A)B

= Aτ(1,B)− τ(1,AB) + τ(1,A)B

= τ(A,B)− τ(1,AB) + τ(1,A)B

= E11f (E11A,B) + E21f (E12A,B)

− E11f (E11,AB)− E21f (E12,AB)

+ E11f (E11,A)B + E21f (E12,A)B

T2f (E11,A,B) = E11f (A,B)− f (E11A,B) + f (E11,AB)− f (E11,A)B = 0

T2f (E12,A,B) = E12f (A,B)− f (E12A,B) + f (E12,AB)− f (E12,A)B = 0
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0 = E11T2f (E11,A,B) + E21T2f (E12,A,B)

0 = E11[E11f (A,B)− f (E11A,B) + f (E11,AB)− f (E11,A)B]

+ E21[E12f (A,B)− f (E12A,B) + f (E12,AB)− f (E12,A)B]

FROM THE PRECEDING PAGE

T1ξ(A,B) = E11f (E11A,B) + E21f (E12A,B)− E11f (E11,AB)

− E21f (E12,AB) + E11f (E11,A)B + E21f (E12,A)B

Add these two equations to get

T1ξ(A,B) = E11f (A,B) + E22f (A,B) = f (A,B) Q.E.D. (again)
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