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Derivations on matrix algebras

We consider the algebra M,(C) of all n by n complex matrices. J

Matrix units

E = (a,J) where a;; = (5(,-’1-),(;(,/)

1 0 0 1 0 0 0 0
5112[0 0],5122{0 0},1521:[1 0],5222{0 1]

PROPERTIES OF MATRIX UNITS
> Y Ei=1
» Ef=E;
> EjiEw = 6uEx
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THEOREM 1

Let § : M,(C) — M,(C) be a derivation: 4 is linear and §(AB) = Ad(B) + 4(A)B.
Then there exists a matrix K such that 6(X) = XK — KX for X in M,(C).

COROLLARY
H(M,(C), My(C)) = 0
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PROOF OF THEOREM 1 (from Blackadar book)

0 = 6(1) =6(E1 + Ex) = 6(E11) + 0(Ex2)
= (EuEn) + 6(ExEr2)
= E116(E11) + 0(E11)Err + Ex10(Ex2) + 0(E21) Exz
= E116(E11) + Ex19(Er2) + 6(E11) Exn + 0(Ez1) Era.

Let K = E118(Ev) + End(Ei2) = —6(Ew1)Evr — 6(Es1)Esz. Then
> KEyy = —6(Ei1)Enn , EnnK = Enid(En)
» KEip = —6(Enn)Er2 , EnnK = Ennd(En)
» KEyy = —6(En)Enn , ExnK = Exd(En)
> KEp = —6(Ex1)E12 , ExK = Exd(Er)
» EnnK — KEyn = End(Enr) + 0(Ewn) Enn = 6(EniEnn) = 0(Enr)
> EnK — KEyp = E110(Er2) + 0(E11) Ero = 0(E11E12) = 0(Er2)
> EnK — KEx = E»10(Eq1) + 0(Eo1) Ern = 0(Ep1 E11) = 0(Exn)
> ExsK — KEx = En6(Ens) + 6(Ean)Evs = 8(EaiEra) = 6(Ezs) QE.D
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Another proof of Theorem 1
(Kadison and Ringrose Acta Math 1972)

DEFINITION

Let p be a linear transformation on M,. We define linear transformations o7 and
o, on M, by

01(A) = Ei1p(E11A) + Exip(E12A)
and

02(A) = Erap(E21A) + Exop(Ex2A)

LEMMA 1
Ul(A) = A(J'l(/) and JQ(A) = AO’Q(I)

We only need o7 or o, not both. We'll go with . J
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PROOF OF LEMMA 1
E11AE; = ciiEr, EpAE = o1 Bry, EnnAEy = cioBrr, EipAEy = cnkrn

> E1A= EnAEnEn + B AE B = B + cioEr B = cuBin + cipEap
> EpA = EpAEnEn + EpAE B = o1 B + BB = o1 Ein + cnEip

> AE; = Enn B A + B EpAE = i + o By By = B + c1Ex
> AEy = EnnEnn Ay + Ex1 EppAEy = cioErn + co By Bry = ciobor + oo

01(A) = Eup(E11A) + Exnp(EnA)
= Enp(cibn + czE) + Exp(c B + cxEi2)
= cnEnp(En) + czEnp(E2) + c1Exp(Eir) + Bz p(Er2)
= (cubn + abo)p(Err) + (cr2En + c2Bo1)p(Er2)
= AEnp(Ei1) + AExnp(Ei2)
Aosi(1) QE.D.
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Second proof of Theorem 1 (Kadison-Ringrose)

Let o(a) = >_; ejp(erja). Then o(a) = ao(1) and (1) = >, ej1p(ey;) J

Let To be the linear transformation from M,(C) to linear transformations on
M, (C) defined by To(b)(x) = xb — bx. l

Let T; be the linear transformation from L(M,(C)) to bilinear transformations on
M, (C) defined by T1f(a, b) = af(b) — f(ab) + f(a)b.

Then To(o(1))(x) = xa(1) —a(1)x = 3_; e1p(e1jx) — o(1)x J

If p is a derivation, then 0 = 3. j1(T1p)(ey), x) J

= > ei(ep(x) — pleyx) + pleyy)x) = p(x) — >_; ep(erjx) + 3-; ejip(erj)x J

Thus xo(1) — o(1)x = p(x) Q.E.D. ]
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Jordan derivations

DEFINITION

A linear map D on M,(C) is a Jordan derivation if
D(ab + ba) = (Da)b + b(Da) + (Db)a + a(Db)

This is the same as D(a?) = (Da)a + a(Da) J

THEOREM 2

Let D : M,(C) — M,(C) be a Jordan derivation. Then D is an inner (associative)
derivation, that is, there exists a matrix K such that §(X) = XK — KX for X in
M,(C).

Since every derivation is a Jordan derivation, Theorem 2 provides a third proof of
Theorem 1.
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Diagonals

Letd = £, . e; ®ej. Then d is a diagonal for M,(C), that is,
m(d)=1and a-d =d-a for all a € M,(C), where
T(x®y)=xy,a-x®y =(ax)®@y and x®@y-a=x® (ya).
Explicitly, 7T(d) = %Zi,j €jjeji = 1, %Z,J(aeij) R €ji = %Z/,j €j & (ej,-a)

The symmetric nature of d implies 1 >oij(eja) ® i = i >0 € @ (aeji)
For any linear transformation D, apply 1 ® D and then 7, to get
23" (aej)D(ei) = £ 32, ejD(eia) and 37, (e5a)D(ei) = + 3, ; €5 D(aey)
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Proof of Theorem 2 (Barry Johnson 1996)

Let D : M,(C) — M,(C) be a Jordan derivation |
Define x = 1 >_ij€ijDeji. Then J
ax = 335 ;aeDej = 13, ; e D(e2) |
D(ejia) + D(aeji) = ejiDa + (Da)eji + (Deji)a + aDe;; ]
ax =+ 3", ejleiDa + (D(ej)a+ (Da)ej + aDej — D(aej)] J
ax = Da+ xa+ A(a) + 0, where |
A(a) = £+, ej(Da)eji (recall that £ 7, (eja)D(ei) = + Y, ; e;D(ae)) J
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A is a Jordan derivation with aA(b) = A(b)a, that is,
% Zi,j ae;(Db)eji = % Zi,j ej(Db)ejia
Proof: Apply Rpp ® 1, then m to 7, (aej) ® e = + 3, ; € @ (ejia)

Start over with D replaced by A
X0 = %Zi,j e;jA(ej)
axp = Aa+ xpa+ 1 > ei(a)(ei) = 2Aa + xoa

1

Aa = 5(axo — x0a)

Da = ax — xa— Aa = a(x — 1x) — (x — 3x0)a
is an inner associative derivation. Q.E.D.
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Yet another proof of Theorem 1 (Jacobson 1937)

If § is a derivation, consider the two representations of M,(C)

IR A

The first is a direct sum of two copies of the identity representation; but so is the
second, since

0 01, equivalent to 00
5(2) z is equiv 0 -

SO

Thus az = za, bz=2zb
d(z)a=cz—zc and §(z)b = dz — zd.
a and b are multiples of | and can't both be zero. QED
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Modules

Let A be an associative algebra. Let us recall that an A-bimodule is a vector
space X, equipped with two bilinear products (a, x) — ax and (a, x) — xa from
A x X to X satisfying the following axioms for every a,b € A and x € X:

a(bx) = (ab)x, a(xb) = (ax)b, and (xa)b = x(ab),

The space A@® X is an associative algebra with respect to the product

(a,x)(b,y) := (ab, ay + bx).

Let A be a Jordan algebra. A Jordan A-module is a vector space X, equipped
with two bilinear products (a, x) — ao x and (x,a) — xoa from A x X to X,
satisfying:
aox=xo0a, a’o(xoa)=(a’ox)oa, and,
2((xo0a)ob)oa+xo(a®ob)=2(xoa)o(aob)+ (xob)oa’
for every a,b € A and x € X.

The space A® X is a Jordan algebra with respect to the product

(a,x) o (b,y) :=(aob,aoy+ box).
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Jordan triple system |

A complex (resp., real) Jordan triple is a complex (resp., real) vector space E
equipped with a triple product

EXEXE—E (xyz) — {x,y, z}

which is bilinear and symmetric in the outer variables and conjugate linear (resp.,
linear) in the middle one and satisfying the so-called “Jordan Identity”:

L(av b)L(X7y) - L(Xay)L(av b) = L(L(av b)Xay) - L(Xv L(b, a)y)a
for all a, b, x,y in E, where L(x,y)z := {x,y, z}.

The Jordan identity is equivalent to

{a’ b7 {C7 d’ e}} = {{a7 b7 C} ) d7 e} - {C7 {b7 a7 d} ) e} + {C7 d7 {a’ b7 e}} )
which asserts that the map iL(a, a) is a triple derivation (to be defined shortly).

It also shows that the span of the “multiplication” operators L(x, y) is a Lie
algebra.
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Jordan triple module |

Let E be a complex (resp. real) Jordan triple. A Jordan triple E-module is a
vector space X equipped with three mappings

{4 XXEXE—=X, {,, h ExXXXxE—=X
and {.,.,.}3: EXExX—=X

in such a way that the space E ® X becomes a real Jordan triple with respect to
the triple product {a1+x1,80 + 0,33 + 3} =

{a1, a2, a3} + {x1, a2, a3}; + {a1, %0, a3}, + {a1, a2, x3}5.

(PS: we don't really need the subscripts on the triple products)

The Jordan identity
{a’ b, {C’ d, e}} = {{a, b, C} ,d, e} - {C7 {b7 a, d} ) e} + {C7 d, {aa b, e}} )

holds whenever exactly one of the elements belongs to X.

In the complex case we have the unfortunate technical requirement that
{x, a, b}1 (={b, a, x}3) is linear in a and x and conjugate linear in b

{a, x, b}, is conjugate linear in a, b, x.
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Every (associative) Banach A-bimodule (resp., Jordan Banach A-module) X over
an associative Banach algebra A (resp., Jordan Banach algebra A) is a real Banach
triple A-module (resp., A-module) with respect to the “elementary’ product

{a,b,c} := %(abc + cba)

(resp., {a,b,c} = (aob)oc+ (cob)oa—(aoc)ob), where one element of
a, b, cisin X and the other two are in A.

The dual space, E*, of a complex (resp., real) Jordan Banach triple E is a
complex (resp., real) triple E-module with respect to the products:

{a, b, 0} (x) = {#, b,a} (x) := w {b,a,x} (1)

and
{a, ¢, b} (x) := p{a, x, b}, (2)
Vx € X,a,b € E,p € E*. (the "'usual” adjoint action)
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Derivations

Let X be a Banach A-bimodule over an (associative) Banach algebra A. A linear
mapping D : A — X is said to be a derivation if D(ab) = D(a)b + aD(b), for
every a, b in A. For emphasis we call this a binary (or associative) derivation.

We denote the set of all continuous binary derivations from A to X by Dp(A, X) J

When X is a Jordan Banach module over a Jordan Banach algebra A, a linear
mapping D : A — X is said to be a derivation if D(ao b) = D(a) o b+ ao D(b),
for every a, b in A. For emphasis we call this a Jordan derivation.

We denote the set of continuous Jordan derivations from A to X by D,(A, X). J

In the setting of Jordan Banach triples, a triple or ternary derivation from a
(real or complex) Jordan Banach triple, E, into a Banach triple E-module, X, is a
conjugate linear mapping § : E — X satisfying

d{a,b,c} ={d(a), b,c} +{a,d(b),c} + {a,b,6(c)}, (3)

for every a, b,c in E.

We denote the set of all continuous ternary derivations from E to X by D(E, X)J
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Inner derivations

Let X be a Banach A-bimodule over an associative Banach algebra A. Given X in
X, the mapping D, : A — X, Dy (a) = x,a — ax, is a bounded (associative or
binary) derivation. Derivations of this form are called inner.

The set of all inner derivations from A to X will be denoted by Znnp(A, X). J

When X, is an element in a Jordan Banach A-module, X, over a Jordan Banach
algebra, A, for each b € A, the mapping dx »: A — X,

Ox.b(a) 7= (%, 0a) 0o b—(boa)ox, (acA),

is a bounded derivation. Finite sums of derivations of this form are called inner.

The set of all inner Jordan derivations from A to X is denoted by Znn (A, X) J
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Let E be a complex (resp., real) Jordan triple and let X be a triple E-module. For
each b € E and each x, € X, we conclude, via the main identity for Jordan triple
modules, that the mapping § = (b, x,) : E — X, defined by

6(a) = (b, x,)(a) :={b,x,,a} — {x,,b,a} (a€E), 4

is a ternary derivation from E into X. Finite sums of derivations of the form
d(b, x,) are called inner triple derivations.

The set of all inner ternary derivations from E to X is denoted by Znn.(E, X) . J
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Our proof of Theorem 3 below uses the following proposition, due to Ho,Peralta,
and Russo 2012.

Proposition
Let A be a unital Banach *-algebra equipped with the ternary product given by
{a,b,c} =1 (ab*c + cb*a) and the Jordan product ao b = (ab + ba)/2.

(a) Let D be an element in Znnp(A, A), that is, D = ad a for some a in
A. Then D is a *-derivation whenever a* = —a. Conversely, if D is
a *-derivation, then a* = —a + z for some z in the center of A.

(b) De(A, A) = D*(A, A) + Inn.(A, A).

Theorem 3
Let M be any von Neumann algebra. Then
» Every Jordan derivation of M is an inner Jordan derivation.

» Every triple derivation of M is an inner triple derivation.
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Proof of Theorem 3 (Pluta-R)

To prove the second statement, it suffices, by Proposition (b), to show that

D (M, M) C Znn,(M, M). Suppose ¢ is a self-adjoint Jordan derivation of M. By

Theorem 2, ¢ is an inner associative derivation so by Proposition (a),

0(x) = ax — xa where a* + a = z is a self adjoint element of the center of M. @
Since M = Z(M) + [M, M], where Z(M) denotes the center of M, we can write
a=2Zz'+> :[bj + ic;, bi + icj], where b;, b, c;, c; are self adjoint elements of M

Jr Fjo
and z’ € Z(M). It follows that
0=a"+ta—z= ()" +2 —z+2i3 ([ b]] + [b), ¢]]) so that
> i([g;, ] + [b;, ¢[]) belongs to the center of M. We now have

6 =ada=ad Z([bj, bj] =l ¢1)

and therefore a direct calculation shows that ¢ is equal to the inner triple
derivation

Z (L(bja 2b_]/) - L(2bjlv bj) - L(ij 2CJ/) + L(2cjla CJ)) 0
J

@You would need Theorem 1 in situations more general than M,(C).
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Proof of the first statement

We have just shown that a self adjoint Jordan derivation § of M has the form (5).
Then another direct calculation shows that § is equal to the inner Jordan
derivation

4 (L(b)L(B)) = L(B)L(by) = L(G)L(e]) + L(L(c)) -
J
If § is any Jordan derivation, so are §* and id, so J is an inner Jordan derivation.

Details

Let 6 = ad[b, b']. Then
0(x) = (bb' — b'b)x — x(bb' — b’'b) = bb'x — b'bx — xbb" + xb’b

(L(b,2b") — L(2b', b))(x) = (b(2b')*x + x(2b")*b) /2 — (2b'(b')*x + xb*2b') /2 =
bb'x — b'bx — xbb’ + xb’b

4(L(b)L(D') — L(V')L(b))(x) =4bo (b ox)—4b o(box) =
b(b'x + xb")+ (b'x + xb")b— b (bx + xb) — (bx + xb)b’ = bb'x — b’ bx — xbb' + xb'b
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Ternary Weak Amenability (Ho-Peralta-R)

Proposition
Let A be a unital Banach *-algebra equipped with the ternary product given by
{a,b,c} =1 (ab*c + cb*a) and the Jordan product ao b = (ab + ba)/2. Then

De(A, A*) C D’(A, A*) o « + Inny(A, A%).

Proposition

Every commutative (real or complex) C*-algebra A is
ternary weakly amenable, that is D;(A, A*) = Znn.(A, A*) (# 0 btw).

Proposition

The C*-algebra A= M,(C) is ternary weakly amenable (Hochschild 1945) and
Jordan weakly amenable (Jacobson 1951).

Question
Is Co(X, M,(C)) ternary weakly amenable?
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Negative results

Proposition

The C*-algebra A = K(H) of all compact operators on an infinite dimensional
Hilbert space H is not ternary weakly amenable.

Proposition

The C*-algebra A = B(H) of all bounded operators on an infinite dimensional
Hilbert space H is not ternary weakly amenable.
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Non algebra results

Theorem

Let H and K be two complex Hilbert spaces with dim(H) = co > dim(K). Then
the rectangular complex Cartan factor of type |, B(H, K), and all its real forms
are not ternary weakly amenable. (triple product: {xyz} = (xy*z + zy*x)/2 )

Theorem

Every commutative (real or complex) JB*-triple (def: |[{xxx}| = ||x||* and
L(x, x) hermitian positive) E is approximately ternary weakly amenable, that
is, Znn(E, E*) is a norm-dense subset of D,(E, E*).

Commutative Jordan Gelfand Theory (Kaup,Friedman-R)

Given a commutative (complex) JB*-triple E, there exists a principal T-bundle
A = NA(E), i.e. a locally compact Hausdorff space A together with a continuous
mapping T x A — A, (t,\) — tA such that s(t\) = (st)A, 1A = X and

tA =\ = t =1, satisfying that E is JB*-triple isomorphic to

Ca(N) :={f € Co(N) : f(tA) = tF(\),Vt € T, € A}.

Bernard Russo (UCI) Associative, Jordan, and triple derivations 26 /71



Normal ternary weak amenability

Corollary

Let M be a von Neumann algebra and consider the submodule M, C M*. Then

D:(M, M) = Znn;(M, M) o * + Znn,(M, M,).

Note

L°° is ternary weakly amenable and normally ternary weakly amenable, that is,
D(L®°, LY) = Znn (L=, LY).

Question

Is L ® M,(C) normally ternary weakly amenable?
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Main results: Pluta-R 2013

Theorem

If M is a properly infinite factor, then the real vector space of triple derivations of

M into M,, modulo the norm closure of the inner triple derivations, has dimension
1.

Dt(M, M*)/Innt(M, M*) ~ R

Theorem

If M is a von Neumann algebra, then M is finite if and only if every triple
derivation of M into M, is approximated in norm by inner triple derivations.

De(M, M,) = Tnn,(M, M)

compare: Bunce-Pashcke,Haagerup 1983

If M is a von Neumann algebra, then every derivation of M into M, is inner.

Dy(M, M,)/Inny(M, M,) =0
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Nonassociative algebras

Table 1 (FASHIONABLE) ALGEBRAS

commutative algebras ab = ba

associative algebras a(bc) = (ab)c

Lie algebras a2 =0, (ab)c + (bc)a+ (ca)b=0

Jordan algebras ab = ba, a(a’b) = a*(ab)

In the rest of this talk we shall mainly be concerned with associative

algebras, in fact, primarily the algebra of n by n matrices under matrix
multiplication.
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Review of Cohomology (associative algebras)

NOTATION

n is a positive integer, n=1,2,---

f is a function of n variables

F is a function of n+ 1 variables (n + 2 variables?)
X1, X2, ,Xpt1 belong to an algebra A
f(y1,---,¥n) and F(y1, - ,¥nt1) also belong to A

The basic formula of homological algebra

F(X1, .. Xny Xnt1) =
X1f(X2, o0 7Xn+1)
—f(X1X2,X3, coo ,Xn+1)
+1 (X1, X2X3, X4 - + 5 Xnt1)
(X1, X2y« « « s XpXnt+1)
Fr(X1y -y Xn)Xnt1
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HIERARCHY

X1, X2, - - - , Xp are points (or vectors)

f and F are functions—they take points to points

T, defined by T(f) = F is a transformation—takes functions to functions
points x1, ..., Xp+1 and f(y1,...,y,) will belong to an algebra A
functions f will be either constant, linear or multilinear (hence so will F)
transformation T is linear

SHORT FORM OF THE FORMULA
(TH(xa,y - -+ Xny Xnt1)

= le(Xz, 000 7Xn+1)
+ Z(_l)Jf(Xla sy XiXjply e 7Xn+1)
Jj=1

+(—1)”+1f(xl7 ooy X)Xt 1
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FIRST CASES

n=20

If f is any constant function from A to A, say, f(x) = b for all x in A, where b is
a fixed element of A, we have, consistent with the basic formula, a linear function
To(f)i

To(f)(x1) = x1b — bxy

n=1
If f is a linear function from A to A, then Ty(f) is a bilinear function

Tl(f)(Xl,XQ) = X1 f(X2) S f(X1X2) + f(X]_)X2

n=2
If f is a bilinear function from A X A to A, then T,(f) is a trilinear function

TQ(f)(Xl,XQ,X3) =

X1 f(XQ,X3) = f(X1X2,X3) aF f(Xl, X2X3) — f(Xl, X2)X3
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FIRST COHOMOLOGY GROUP

Kernel and Image of a linear transformation

G X—>Y

Since X and Y are vector spaces, they are in particular, commutative groups.
Kernel of G (also called nullspace of G) is

ker G = {x € X : G(x) =0}

This is a subgroup of X

Image of G is

imG = {G(x): x € X}

This is a subgroup of Y

T
X = A (the algebra)

= L(A) (all linear transformations on A)

( )(X]_) = X]_b le

ker To={b € A: xb— bx =0 for all x € A} (center of A)

im Ty = the set of all linear maps of A of the form x — xb — bx,
in other words, the set of all inner derivations of A

ker Ty is a subgroup of A

im Tp is a subgroup of L(A)
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G=T,

X = L(A) (linear transformations on A)

Y = L?(A) (bilinear transformations on A x A)

Tl(f)(Xl,Xz) = X1 f(X2) — f(X1X2) aF f(Xl)Xz

ker T; = {f € L(A) : Tlf(X]_7X2) =0 for all X1,X2 € A} = the set of all
derivations of A

im T, = the set of all bilinear maps of A x A of the form

(x1,%) = x1f(x2) — f(axe) + f(x1)x,

for some linear function f € L(A).
ker Ty is a subgroup of L(A)
im T; is a subgroup of L2(A)
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G=T,

X = L2(A) (bilinear transformations on A x A)

Y = L3(A) (trilinear transformations on A x A x A)

TQ(f)(Xl,X27X3) = X1f(X2,X3)) — f(X1X2,X3) + f(X1X2,X3) — f(Xl,XQ)X:),
ker Tp = {f € L2(A) : Tof (x1, %, x3) = 0 for all x;,x,x3 € A}

im T, = the set of all trilinear maps of A x A x A of the form

(x1, %2, x3) = x1f (X2, x3)) — f(x1%2, x3) + F(X1x2, x3) — f(x1,%2)X3

for some bilinear function f € L(A).
ker T is a subgroup of L2(A)
im T, is a subgroup of L3(A)
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LO(A) 12 L(A) 1 [2(A) 2 [3(A) -
FACTS: TioTp =0
T2 (0] T1 =0

Tn+1 oT,=0

Therefore

im T, C ker T3 C L"(A)
and therefore
im T, is a subgroup of ker T,

TERMINOLOGY

im T,,_; = the set of n-coboundaries
ker T, = the set of n-cocycles

and therefore

every n-coboundary is an n-cocycle.
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im Tg C ker Ty
says
Every inner derivation (1-coboundary) is a derivation (1-cocycle).

im T1 C ker T,
says
for every linear map f, the bilinear map Fdefined by
F(Xl, X2) = le(Xz) = f(X1X2) aF f(Xl)X2

(2-coboundary) satisfies the equation

X1F(X2,X3) — F(X1X2,X3) —|— F(X17X2X3) — F(Xl,Xz)X3 = O

for every xi, x2, x3 € A (2-cocycle).
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The cohomology groups of A are defined as the quotient groups

ker T, n-cocycles
H"(A) = = =12 ...
(4) im T,_1  n-coboundaries s 25+

Thus o
HY(A) = ker T;  l-cocycles derivations

~ imTy  1l-coboundaries inner derivations

H2(A) = ker T 2-cocycles ~_ null extensions

im Ty 2-coboundaries  split null extensions

The theorem that every derivation of M,(RR) is inner (that is, of the form 4§, for
some a € M,(R), Theorem 1) can now be restated as:
"the cohomology group H*(M,(R)) is the trivial one element group”

The theorem that every null extension of M,(R) is a split null extension
(Corollary 2 of Theorem 4 below for n = 2) can be stated as:
"the cohomology group H?(M,(RR)) is the trivial one element group”
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H?(My, My) = 0

DEFINITION

Let p be a linear transformation on M,. We define linear transformations o7 and
02 On M2 by
01(A) = E11p(En1A) + Exip(ErzA)

and
02(A) = Erap(E21A) + Exop(Ex2A)

recall LEMMA 1
Ul(A) = AJl(I) and 0’2(A) = AU2(I)

We only need o7 or o, not both. We'll go with 7. J
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DEFINITION

Let f be a bilinear transformation on M, x M,. We define bilinear transformations
71 and 7 on My x M, by

Tl(A, B) = Ellf(E11A7 B) + Ez]_f(Ele, B)

and
TQ(A, B) = Elzf(E21A, B) =+ E22f(E22A, B)

LEMMA 2
71(A, B) = Ary(1, B) and (A, B) = Any(I, B)

We only need 7 or 7, not both. We'll go with 7.

PROOF OF LEMMA 2

For B fixed, let p(A) = f(A, B) and apply LEMMA 1 to this p. Namely, set
O'(A) = E11P(E11A) T Eglp(Ele). Then O'(A) = Tl(A, B) By LEMMA 1,
o(A) = Ao(1) and 71(A, B) = 0(A) = Ao(1) = Ani(1, B). Q.E.D.
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THEOREM 4
Let f be a 2-cocycle: f is bilinear and
Tof (A, B, C) = Af(B,C) — f(AB,C) + f(A,BC) — f(A,B)C =0

for all A, B, C in M. Then there exists a linear transformation & on M, such that
T,:£ = f, that is, f is a 2-coboundary.

COROLLARY 1
H2(My, My) = 0

COROLLARY 2

It E is any associative algebra containing an ideal J such that E/J is isomorphic
to M, (E is then said to be an extension of M,), then there is a subalgebra B of
E such that E = B&® M, (E is a split extension) °

3There is always a subspace B such that E = B & M,
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PROOF OF THEOREM 4
(Kadison and Ringrose, Acta Math 1972)

Define a bilinear map 7(A, B) = Ei1f(E11A, B) + Ex1f(Ei2A, B) and then define a
linear map &(B) = 7(1, B). Now just verify that T1(£) = f. Q.E.D.

T1§(A,B) = A{(B)—¢&(AB) +¢(A)B
= Ar(1,B)-7(1,AB)+7(1,A)B
= 7(AB)—7(1,AB)+7(1,A)B
= Enf(EnA, B) + Exnf(EnA, B)
E11f(Eq1, AB) — Ep1f(E2, AB)
+ Eif(Ewn, A)B+ Exnf(En,A)B

Tof (Exy, A, B) = Eqy (A, B) — f(EnyA, B) + f(En, AB) — f(Ey1, A)B =0

Tof (Ein, A, B) = Eiaf (A, B) — f(E2A, B) + f(Ei2, AB) — f(E12,A)B =0
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0 = E11 Tof (E11, A, B) + Exi Tof (v, A, B)

0 = En[Enf(A B)— f(EnA, B) + f(Ei1, AB) — f(E11,A)B]
aF E21[E12f(A, B) = f(Ele, B) aF f(Elg, AB) = f(Elg,A)B]

FROM THE PRECEDING PAGE

Tlf(A7 B) = Enf(EuA7 B) + Eglf(ElgA, B) — Ellf(Eu, AB)
— Ezlf(Elz, AB) =F E11f(E11,A)B + E21f(E12, A)B

Add these two equations to get

T16(A, B) = Enf(A, B) + Exf(A,B) = f(A,B) Q.E.D. (again)
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Some miscellaneous facts
(M is a module)

> H(C) =0, H3(C) = 0

» HY(C,M) =0, H*(C,M) =0
(Kamowitz 1962)

> HP(M(R), M) =0V¥n>1k>2

» H"(A) = H""Y(A, L(A)) for n > 2
(Hochschild 1945)
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EXTENSIONS

Let A be an algebra. Let M be another algebra which contains an ideal / and let
g : M — A be a homomorphism.
In symbols,

IS ME A
This is called an extension of A by / if

> kerg =/
» img=A
It follows that M/ is isomorphic to A
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EXAMPLE 1

Let A be an algebra.

Define an algebra M = A® A to be the set A x A with addition
(a,x)+(by)=(a+b,x+y)

and product

(a,x)(b,y) = (ab, xy)
» {0} x Ais an ideal in M
> ({0} x AP £0
» g: M — A defined by g(a,x) = a is a homomorphism
» M is an extension of {0} x A by A.
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EXAMPLE 2

Let A be an algebra and let h € ker T, C L%(A).
Recall that this means that for all x1,x, x3 € A,
X1 f(Xz, X3) — f(X1X27 X3)

—|—f(X]_7X2X3) - f(Xl,Xz)X:; =0

Define an algebra M), to be the set A x A with addition
(a,x)+ (b,y) = (a+ b,x+y)

and the product

(a,x)(b,y) = (ab, ay + xb + h(a, b))

Because h € ker T, this algebra is
ASSOCIATIVE!

whenever A is associative.
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THE PLOT THICKENS

{0} x A'is an ideal in M,

({0} x A)2 =0

g : My — A defined by g(a, x) = a is a homomorphism
M}, is an extension of {0} x A by A.

vV vVv.vyYy
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EQUIVALENCE OF EXTENSIONS

Extensions

ISMEA

and )

IS MEA

are said to be equivalent if

there is an isomorphism ¢ : M — M’
such that

> (x) =xforall x el
>g=g'coy

(Is this an equivalence relation?)
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EXAMPLE 2—continued

Let h]_7 hy € ker T5.
We then have two extensions of A by {0} x A, namely
{O0xAS M, & A
and
{O0xAS M, B A
Now suppose that h; is equivalent! to ho,
hy — hy = T1f for some f € L(A)
» The above two extensions are equivalent.

» We thus have a mapping from H?(A, A) into the set of equivalence classes of
extensions of A by the ideal {0} x A

IThis is the same as saying that [h1] = [h2] as elements of H?(A, A) = ker T/im Ty
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GRADUS AD PARNASSUM (COHOMOLOGY)

1. Verify that there is a one to one correspondence between partitions of a set
X and equivalence relations on that set.
Precisely, show that
» If X = UX; is a partition of X, then
R:={(x,y) € X x X : x,y € X; for some i} is an equivalence relation whose
equivalence classes are the subsets X;.
» If R is an equivalence relation on X with equivalence classes X;, then X = UX;
is a partition of X.

2. Verify that T,110 T, =0 for n=0,1,2. Then prove it for all n > 3.

3. Show that if f : G — G, is a homomorphism of groups, then G;/ ker f is
isomorphic to f(Gy)
Hint: Show that the map [x] — f(x) is an isomorphism of G;/ker f onto
f(G1)

4. Show that if h: Ay — Ay is a homomorphism of algebras, then A;/ker h is
isomorphic to h(A;)
Hint: Show that the map [x] — h(x) is an isomorphism of A;/ ker h onto
h(A1)
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5. Show that the algebra M, in Example 2 is associative.
Hint: You use the fact that A is associative AND the fact that,
since h € ker Ty, h(a, b)c + h(ab.c) = ah(b, c) + h(a, bc)

6. Show that equivalence of extensions is actually an equivalence
relation.
Hint:
> reflexive: ¢ : M — M is the identity map
» symmetric: replace ¢ : M — M’ by its inverse ¢y~ : M — M
> transitive: given v : M — M and ¢’ - M' — M" let
Y=y op: M— M’

7. Show that in example 2, if h; and hy are equivalent bilinear maps,
that is, hy — hy = T1f for some linear map f, then My, and M,
are equivalent extensions of {0} x A by A. Hint: ¢ : M, — My,
is defined by

¥(a,x) = (a,x + f(a))
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Cohomology groups were defined in various contexts as follows

>

vV vV.v vY

associative algebras (1945)

Lie algebras (1952)

Lie triple systems (1961,2002)
Jordan algebras (1971)
associative triple systems (1976)
Jordan triple systems (1982)

Bernard Russo (UCI) Associative, Jordan, and triple derivations

53 /71



FASHIONABLE TRIPLE SYSTEMS

Table 4
TRIPLE SYSTEMS

associative triple systems
(abc)de = ab(cde) = a(dcb)e

Lie triple systems

aab=20

abc 4 bca+ cab =10

de(abc) = (dea)bc + a(deb)c + ab(dec)

Jordan triple systems
abc = cbha
de(abc) = (dea)bc — a(edb)c + ab(dec)
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DERIVATIONS INTO A MODULE

CONTEXTS

(i) ASSOCIATIVE ALGEBRAS

(i) LIE ALGEBRAS

(iil) JORDAN ALGEBRAS

Could also consider:

(i") ASSOCIATIVE TRIPLE SYSTEMS
(ii") LIE TRIPLE SYSTEMS

(iii") JORDAN TRIPLE SYSTEMS
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(i) ASSOCIATIVE ALGEBRAS

derivation: D(ab) =a-Db+ Da- b

inner derivation: (ad x)(a) =x-a—a-x (x € M)

THEOREM (Noether,Wedderburn) (early 20th century)) 2

EVERY DERIVATION OF SEMISIMPLE ASSOCIATIVE ALGEBRA IS INNER,
THAT IS, OF THE FORM x +— ax — xa FOR SOME a IN THE ALGEBRA
THEOREM (Hochschild 1942)

EVERY DERIVATION OF SEMISIMPLE ASSOCIATIVE ALGEBRA INTO A
MODULE IS INNER, THAT IS, OF THE FORM x — ax — xa FOR SOME a IN
THE MODULE

2The operational word here, and in all of these results is SEMISIMPLE—think
primes, fundamental theorem of arithmetic
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(iii)) JORDAN ALGEBRAS

derivation: D(aob) =ao Db+ Daob

inner derivation: Y [L(x;)L(a;) — L(a;i)L(x;)]

(X,' eM,a; € A)

b Y [xio(aiob) —ajo(xjob)

THEOREM (1949-Jacobson)

EVERY DERIVATION OF A FINITE DIMENSIONAL SEMISIMPLE JORDAN
ALGEBRA INTO ITSELF IS INNER

THEOREM (1951-Jacobson)

EVERY DERIVATION OF A FINITE DIMENSIONAL SEMISIMPLE JORDAN
ALGEBRA INTO A (JORDAN) MODULE IS INNER

(Lie algebras, Lie triple systems)

Bernard Russo (UCI) Associative, Jordan, and triple derivations

57 /71



(iii’) JORDAN TRIPLE SYSTEMS

derivation: D{a, b,c} = {Da.b,c} + {a, Db, c} + {a, b, Dc}

{x.y,z} = (xy"z 4+ 2zy"x)/2

inner derivation: »_.[L(x;, a;) — L(ai, xi)]

(X,' e M, a; e A)

b Zi[{xiaai’ b} - {a,-,x,-, b}]

THEOREM (1972 Meyberg)

EVERY DERIVATION OF A FINITE DIMENSIONAL SEMISIMPLE JORDAN
TRIPLE SYSTEM IS INNER

(Lie algebras, Lie triple systems)

THEOREM (1978 Kiihn-Rosendahl)

EVERY DERIVATION OF A FINITE DIMENSIONAL SEMISIMPLE JORDAN
TRIPLE SYSTEM INTO A JORDAN TRIPLE MODULE IS INNER

(Lie algebras)
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(") ASSOCIATIVE TRIPLE SYSTEMS

derivation: D(abfc) = ab'Dc + a(Db)'c + (Da)b'c

inner derivation: see Table 3

The (non-module) result can be derived from the result for Jordan triple systems.
(See an exercise)

THEOREM (1976 Carlsson)

EVERY DERIVATION OF A FINITE DIMENSIONAL SEMISIMPLE
ASSOCIATIVE TRIPLE SYSTEM INTO A MODULE IS INNER

(reduces to associative ALGEBRAS)
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(ii) LIE ALGEBRAS

THEOREM (Zassenhaus)

(early 20th century)

EVERY DERIVATION OF A FINITE DIMENSIONAL SEMISIMPLE LIE
ALGEBRA INTO ITSELF IS INNER

THEOREM (Hochschild 1942)

EVERY DERIVATION OF A FINITE DIMENSIONAL SEMISIMPLE LIE
ALGEBRA INTO A MODULE IS INNER
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(ii’) LIE TRIPLE SYSTEMS

THEOREM (Lister 1952)

EVERY DERIVATION OF A FINITE DIMENSIONAL SEMISIMPLE LIE TRIPLE
SYSTEM INTO ITSELF IS INNER

THEOREM (Harris 1961)

EVERY DERIVATION OF A FINITE DIMENSIONAL SEMISIMPLE LIE TRIPLE
SYSTEM INTO A MODULE IS INNER
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Table 1 M,(R) (ALGEBRAS)

associative Lie Jordan
ab=axb |[abl=ab—ba| aocb=ab+ ba
Noeth,Wedd Zassenhaus Jacobson
1920 1930 1949
Hochschild Hochschild Jacobson
1942 1942 1951
Table 3 M, o(R) (TRIPLE SYSTEMS)
associative Lie Jordan
triple triple triple
abtc [[a, b], c] ab'c + cb'a
Lister Meyberg
1952 1972
Carlsson Harris Kiihn-Rosendahl
1976 1961 1978
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Table 2 M,(R) (ALGEBRAS)

matrix bracket circle
ab=axb | [abl=ab—ba | acb=ab+ ba
Th. 2 Th.3 Th.4
04(x) 04(x) 04(x)
ax — xa ax — xa ax — xa
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COHOMOLOGY OF NONASSOCIATIVE ALGEBRAS

n=20

ASSOCIATIVE

f: A— Ais a constant function, say f(x) = b for all x
To(f) : A— A'is a linear function
To(f)(x1) = x1b — bx

LIE

f: A— Ais a constant function, say f(x) = b for all x
To(f) : A— A'is a linear function
To(f)(xa) = [b,xi]

JORDAN

f € Ax Alis an ordered pair, say f = (a, b)
To(f) : A— A'is a linear function
To(f)(x1) = ao(boxi)—bo(aox)
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ASSOCIATIVE

f: A— Ais a linear function

T1(f) : Ax A — Ais a bilinear function
Tl(f)(Xl,Xz) = X1 f(X2) = f(X1X2) + f(Xl)X2

LIE

f:A— Ais a linear function
T1(f) : Ax A— Ais a skew-symmetric bilinear function
T1(F)(x1, %) = —[f(x2), x1] + [F (1), %] = F([x1, %])

JORDAN

f:A— Ais a linear function
T1(f) : AXx A — Ais a symmetric bilinear function
Tl(f)(X]_,XQ) = X1 © f(XQ) — f(Xl o X2) —|— f(Xl) O Xo
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ASSOCIATIVE

f:Ax A— Ais a bilinear function

To(f) : Ax Ax A— Als a trilinear function

To(f)(x1, %2, x3) = x1f(x2, X3) — f(x1X2, X3) — f(x1,X2%3) + f(x1,X2)x3

LIE

f:Ax A— Ais a skew-symmetric bilinear function
To(f): Ax AXx A— Alis a skew-symmetric trilinear function

T(f)0a,x2,x3) = [flxe,x3),x] = [f(x1, x3), 2] + [f(x1, x2), x3]
f(X3, [X1,X2]) aF f(Xz, [X17X3]) — f(Xl, [XQ,X3])

JORDAN
JUST AHEAD
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OBJECTIVES

INTERPRETATION OF COHOMOLOGY GROUPS

FIRST COHOMOLOGY GROUP
DERIVATIONS ( AND INNER DERIVATIONS)

SECOND COHOMOLOGY GROUP
EXTENSIONS ( AND SPLIT EXTENSIONS)

VANISHING THEOREMS

FOR EACH CLASS OF ALGEBRAS (ASSOCIATIVE, LIE, JORDAN), UNDER
WHAT CONDITIONS IS H"(A) = 0, ESPECIALLY FOR n=1,2
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Unified approach to second cohomology group

(Jacobson book on Jordan algebras 1968) J

Basic setting

Let M, E and A be algebras satisfying the same set of axioms (associative, Lie,
Jordan).
Let « and /3 be algebra homomorphisms

MAEL A
such that

kera = {0} (i.e., « is one-to-one)
Ima = ker 8
Img=A (1.e., B is onto)
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There is a linear transformation 0 : A — E such that 3(d(a)) = a for every a € A.
Define the bilinear transformation h: Ax A — M, h(a, b) = §(ab) — §(a)d(b)

THEOREM (Properties of h)

ASSOCIATIVE ALGEBRAS h(a, b)c + h(ab, c) = ah(b, c) + h(a, bc)
(Hochschild 2-cocycle)
Hochschild 2-coboundary: h(a, b) = af (b) — f(ab) + f(a)b

LIE ALGEBRAS h(a, a) = 0 and

h(a, b)c + h(ab, c) + h(b, c)a+ h(bc, a) + h(c,a)b+ h(ca, b) =0
(Lie 2-cocycle)

Lie 2-coboundary: h(a, b) = —[f(b), a] + [f(a), b] — f([a, b])
= —f(b)a+ af (b) + f(a)b — bf(a) — f(ab) + f(ba)
JORDAN ALGEBRAS h(a, b) = h(b, a) an
(h(a,a)b)c + h(a?, b)a + h(a*b,a) = 2h(b a) + h(a, a)(ba) + h(a?, ba)
(Jordan 2-cocycle)

Jordan 2-coboundary: h(a,b) = ao f(b) — f(ao b)+ f(a)ob

= ag(b) + g(b)a — g(ab) — g(ba) + g(a)b + bg(a)
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Beginning of the proof

Algebras defined by identities

If Ais an algebra then a function f : A X --- X A — A is said to be an identity for
Aif (a1, - ,a,) = 0 for every set of n elements of A

Let / denote the set of identites defining a class of algebras. For example

I = {f} where f(x1,x2,x3) = (x1x2)x3 — x1(x2x3) defines the class of associative
algebras

I = {f,g} where f(x1) = x? and g(x1,x2) = (x1x2)x3 + (x2x3)x1 + (x3x1)%2
defines the class of Lie algebras

I ={f, g} where f(x1,x) = x1x — xox1 and g(x1,x2) = (}¥x2)x1 — x?(x2x1)
defines the class of Jordan algebras

AND SO FORTH ... J
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Whitehead Type Theorems
ASSOCIATIVE ALGEBRAS
H'=H>=0

LIE ALGEBRAS

H'=H>=0

JORDAN ALGEBRAS
H'=H?>=0
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