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Derivations on matrix algebras

We consider the algebra Mn(C) of all n by n complex matrices.

Matrix units

Ekl = (aij) where aij = δ(i,j),(k,l)

E11 =

[
1 0
0 0

]
, E12 =

[
0 1
0 0

]
, E21 =

[
0 0
1 0

]
, E22 =

[
0 0
0 1

]

PROPERTIES OF MATRIX UNITS
I
∑n

j=1 Ejj = I

I E t
ij = Eji

I EijEkl = δklEil
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THEOREM 1

Let δ : Mn(C)→ Mn(C) be a derivation: δ is linear and δ(AB) = Aδ(B) + δ(A)B.
Then there exists a matrix K such that δ(X ) = XK − KX for X in Mn(C).

COROLLARY

H1(Mn(C),Mn(C)) = 0

Bernard Russo (UCI) Associative, Jordan, and triple derivations 4 / 71



PROOF OF THEOREM 1 (from Blackadar book)

0 = δ(1) = δ(E11 + E22) = δ(E11) + δ(E22)

= δ(E11E11) + δ(E21E12)

= E11δ(E11) + δ(E11)E11 + E21δ(E12) + δ(E21)E12

= E11δ(E11) + E21δ(E12) + δ(E11)E11 + δ(E21)E12.

Let K = E11δ(E11) + E21δ(E12) = −δ(E11)E11 − δ(E21)E12. Then

I KE11 = −δ(E11)E11 , E11K = E11δ(E11)

I KE12 = −δ(E11)E12 , E12K = E11δ(E12)

I KE21 = −δ(E21)E11 , E21K = E21δ(E11)

I KE22 = −δ(E21)E12 , E22K = E21δ(E12)

I E11K − KE11 = E11δ(E11) + δ(E11)E11 = δ(E11E11) = δ(E11)

I E12K − KE12 = E11δ(E12) + δ(E11)E12 = δ(E11E12) = δ(E12)

I E21K − KE21 = E21δ(E11) + δ(E21)E11 = δ(E21E11) = δ(E21)

I E22K − KE22 = E21δ(E12) + δ(E21)E12 = δ(E21E12) = δ(E22) Q.E.D.
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Another proof of Theorem 1
(Kadison and Ringrose Acta Math 1972)

DEFINITION
Let ρ be a linear transformation on M2. We define linear transformations σ1 and
σ2 on M2 by

σ1(A) = E11ρ(E11A) + E21ρ(E12A)

and
σ2(A) = E12ρ(E21A) + E22ρ(E22A)

LEMMA 1

σ1(A) = Aσ1(I ) and σ2(A) = Aσ2(I )

We only need σ1 or σ2, not both. We’ll go with σ1.
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PROOF OF LEMMA 1
E11AE11 = c11E11, E12AE11 = c21E11, E11AE21 = c12E11, E12AE21 = c22E11

I E11A = E11AE11E11 + E11AE21E12 = c11E11 + c12E11E12 = c11E11 + c12E12

I E12A = E12AE11E11 + E12AE21E12 = c21E11 + c22E11E12 = c21E11 + c22E12

I AE11 = E11E11AE11 + E21E12AE11 = c11E11 + c21E21E11 = c11E11 + c21E21

I AE21 = E11E11AE21 + E21E12AE21 = c12E11 + c22E21E11 = c12E21 + c22E21

σ1(A) = E11ρ(E11A) + E21ρ(E12A)

= E11ρ(c11E11 + c12E12) + E21ρ(c21E11 + c22E12)

= c11E11ρ(E11) + c12E11ρ(E12) + c21E21ρ(E11) + c22E21ρ(E12)

= (c11E11 + c21E21)ρ(E11) + (c12E11 + c22E21)ρ(E12)

= AE11ρ(E11) + AE21ρ(E12)

= Aσ1(1) Q.E.D.
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Second proof of Theorem 1 (Kadison-Ringrose)

Let σ(a) =
∑

j ej1ρ(e1ja). Then σ(a) = aσ(1) and σ(1) =
∑

j ej1ρ(e1j)

Let T0 be the linear transformation from Mn(C) to linear transformations on
Mn(C) defined by T0(b)(x) = xb − bx .

Let T1 be the linear transformation from L(Mn(C)) to bilinear transformations on
Mn(C) defined by T1f (a, b) = af (b)− f (ab) + f (a)b.

Then T0(σ(1))(x) = xσ(1)− σ(1)x =
∑

j ej1ρ(e1jx)− σ(1)x

If ρ is a derivation, then 0 =
∑

j ej1(T1ρ)(e1j , x)

=
∑

j ej1(e1jρ(x)− ρ(e1jx) + ρ(e1j)x) = ρ(x)−
∑

j ej1ρ(e1jx) +
∑

j ej1ρ(e1j)x

Thus xσ(1)− σ(1)x = ρ(x) Q.E.D.
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Jordan derivations

DEFINITION

A linear map D on Mn(C) is a Jordan derivation if
D(ab + ba) = (Da)b + b(Da) + (Db)a + a(Db)

This is the same as D(a2) = (Da)a + a(Da)

THEOREM 2

Let D : Mn(C)→ Mn(C) be a Jordan derivation. Then D is an inner (associative)
derivation, that is, there exists a matrix K such that δ(X ) = XK − KX for X in
Mn(C).

Since every derivation is a Jordan derivation, Theorem 2 provides a third proof of
Theorem 1.
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Diagonals

Let d = 1
n

∑
i,j eij ⊗ eji . Then d is a diagonal for Mn(C), that is,

π(d) = 1 and a · d = d · a for all a ∈ Mn(C), where
π(x ⊗ y) = xy , a · x ⊗ y = (ax)⊗ y and x ⊗ y · a = x ⊗ (ya).
Explicitly, π(d) = 1

n

∑
i,j eijeji = 1, 1

n

∑
i,j(aeij)⊗ eji = 1

n

∑
i,j eij ⊗ (ejia)

The symmetric nature of d implies 1
n

∑
i,j(eija)⊗ eji = 1

n

∑
i,j eij ⊗ (aeji )

For any linear transformation D, apply 1⊗ D and then π, to get
1
n

∑
i,j(aeij)D(eji ) = 1

n

∑
i,j eijD(ejia) and 1

n

∑
i,j(eija)D(eji ) = 1

n

∑
i,j eijD(aeji )
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Proof of Theorem 2 (Barry Johnson 1996)

Let D : Mn(C)→ Mn(C) be a Jordan derivation

Define x = 1
n

∑
i,j eijDeji . Then

ax = 1
n

∑
i,j aeijDeji = 1

n

∑
i,j eijD(ejia)

D(ejia) + D(aeji ) = ejiDa + (Da)eji + (Deji )a + aDeji

ax = 1
n

∑
i,j eij [ejiDa + (D(eji )a + (Da)eji + aDeji − D(aeji )]

ax = Da + xa + ∆(a) + 0, where

∆(a) = 1
n

∑
i,j eij(Da)eji (recall that 1

n

∑
i,j(eija)D(eji ) = 1

n

∑
i,j eijD(aeji ))
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∆ is a Jordan derivation with a∆(b) = ∆(b)a, that is,
1
n

∑
i,j aeij(Db)eji = 1

n

∑
i,j eij(Db)ejia

Proof: Apply RDb ⊗ 1, then π to 1
n

∑
i,j(aeij)⊗ eji = 1

n

∑
i,j eij ⊗ (ejia)

Start over with D replaced by ∆
x0 = 1

n

∑
i,j eij∆(eji )

ax0 = ∆a + x0a + 1
n

∑
i,j eij∆(a)(eji ) = 2∆a + x0a

∆a = 1
2 (ax0 − x0a)

Da = ax − xa−∆a = a(x − 1
2x0)− (x − 1

2x0)a
is an inner associative derivation. Q.E.D.
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Yet another proof of Theorem 1 (Jacobson 1937)

If δ is a derivation, consider the two representations of Mn(C)

z 7→
[

z 0
0 z

]
and z 7→

[
z 0
δ(z) z

]
The first is a direct sum of two copies of the identity representation; but so is the
second, since [

0 0
δ(z) z

]
is equivalent to

[
0 0
0 z

]
so [

z 0
δ(z) 0

] [
a b
c d

]
=

[
a b
c d

] [
z 0
0 z

]
Thus az = za, bz = zb

δ(z)a = cz − zc and δ(z)b = dz − zd .

a and b are multiples of I and can’t both be zero. QED
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Modules
Let A be an associative algebra. Let us recall that an A-bimodule is a vector
space X , equipped with two bilinear products (a, x) 7→ ax and (a, x) 7→ xa from
A× X to X satisfying the following axioms for every a, b ∈ A and x ∈ X :

a(bx) = (ab)x , a(xb) = (ax)b, and (xa)b = x(ab),

The space A⊕ X is an associative algebra with respect to the product

(a, x)(b, y) := (ab, ay + bx).

Let A be a Jordan algebra. A Jordan A-module is a vector space X , equipped
with two bilinear products (a, x) 7→ a ◦ x and (x , a) 7→ x ◦ a from A× X to X ,
satisfying:

a ◦ x = x ◦ a, a2 ◦ (x ◦ a) = (a2 ◦ x) ◦ a, and,

2((x ◦ a) ◦ b) ◦ a + x ◦ (a2 ◦ b) = 2(x ◦ a) ◦ (a ◦ b) + (x ◦ b) ◦ a2,
for every a, b ∈ A and x ∈ X .

The space A⊕ X is a Jordan algebra with respect to the product

(a, x) ◦ (b, y) := (a ◦ b, a ◦ y + b ◦ x).
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Jordan triple system

A complex (resp., real) Jordan triple is a complex (resp., real) vector space E
equipped with a triple product

E × E × E → E (xyz) 7→ {x , y , z}

which is bilinear and symmetric in the outer variables and conjugate linear (resp.,
linear) in the middle one and satisfying the so-called “Jordan Identity”:

L(a, b)L(x , y)− L(x , y)L(a, b) = L(L(a, b)x , y)− L(x , L(b, a)y),

for all a, b, x , y in E , where L(x , y)z := {x , y , z}.

The Jordan identity is equivalent to

{a, b, {c , d , e}} = {{a, b, c} , d , e} −{c , {b, a, d} , e}+ {c , d , {a, b, e}} ,

which asserts that the map iL(a, a) is a triple derivation (to be defined shortly).

It also shows that the span of the “multiplication” operators L(x , y) is a Lie
algebra.
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Jordan triple module

Let E be a complex (resp. real) Jordan triple. A Jordan triple E -module is a
vector space X equipped with three mappings

{., ., .}1 : X × E × E → X , {., ., .}2 : E × X × E → X

and {., ., .}3 : E × E × X → X

in such a way that the space E ⊕ X becomes a real Jordan triple with respect to
the triple product {a1 + x1, a2 + x2, a3 + x3} =

{a1, a2, a3}E + {x1, a2, a3}1 + {a1, x2, a3}2 + {a1, a2, x3}3.

(PS: we don’t really need the subscripts on the triple products)

The Jordan identity

{a, b, {c , d , e}} = {{a, b, c} , d , e} −{c , {b, a, d} , e}+ {c , d , {a, b, e}} ,
holds whenever exactly one of the elements belongs to X .

In the complex case we have the unfortunate technical requirement that

{x , a, b}1 (={b, a, x}3) is linear in a and x and conjugate linear in b

{a, x , b}2 is conjugate linear in a, b, x .
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Every (associative) Banach A-bimodule (resp., Jordan Banach A-module) X over
an associative Banach algebra A (resp., Jordan Banach algebra A) is a real Banach
triple A-module (resp., A-module) with respect to the “elementary” product

{a, b, c} :=
1

2
(abc + cba)

(resp., {a, b, c} = (a ◦ b) ◦ c + (c ◦ b) ◦ a− (a ◦ c) ◦ b), where one element of
a, b, c is in X and the other two are in A.

The dual space, E∗, of a complex (resp., real) Jordan Banach triple E is a
complex (resp., real) triple E -module with respect to the products:

{a, b, ϕ} (x) = {ϕ, b, a} (x) := ϕ {b, a, x} (1)

and
{a, ϕ, b} (x) := ϕ {a, x , b}, (2)

∀x ∈ X , a, b ∈ E , ϕ ∈ E∗. (the ’‘usual” adjoint action)
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Derivations
Let X be a Banach A-bimodule over an (associative) Banach algebra A. A linear
mapping D : A→ X is said to be a derivation if D(ab) = D(a)b + aD(b), for
every a, b in A. For emphasis we call this a binary (or associative) derivation.

We denote the set of all continuous binary derivations from A to X by Db(A,X ) .

When X is a Jordan Banach module over a Jordan Banach algebra A, a linear
mapping D : A→ X is said to be a derivation if D(a ◦ b) = D(a) ◦ b + a ◦ D(b),
for every a, b in A. For emphasis we call this a Jordan derivation.

We denote the set of continuous Jordan derivations from A to X by DJ(A,X ).

In the setting of Jordan Banach triples, a triple or ternary derivation from a
(real or complex) Jordan Banach triple, E , into a Banach triple E -module, X , is a
conjugate linear mapping δ : E → X satisfying

δ {a, b, c} = {δ(a), b, c}+ {a, δ(b), c}+ {a, b, δ(c)} , (3)

for every a, b, c in E .

We denote the set of all continuous ternary derivations from E to X by Dt(E ,X ).
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Inner derivations

Let X be a Banach A-bimodule over an associative Banach algebra A. Given x0 in
X , the mapping Dx

0
: A→ X , Dx

0
(a) = x0a− ax0 is a bounded (associative or

binary) derivation. Derivations of this form are called inner.

The set of all inner derivations from A to X will be denoted by Innb(A,X ).

When x0 is an element in a Jordan Banach A-module, X , over a Jordan Banach
algebra, A, for each b ∈ A, the mapping δx

0
,b : A→ X ,

δx
0
,b(a) := (x0 ◦ a) ◦ b − (b ◦ a) ◦ x0 , (a ∈ A),

is a bounded derivation. Finite sums of derivations of this form are called inner.

The set of all inner Jordan derivations from A to X is denoted by InnJ(A,X )
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Let E be a complex (resp., real) Jordan triple and let X be a triple E -module. For
each b ∈ E and each x0 ∈ X , we conclude, via the main identity for Jordan triple
modules, that the mapping δ = δ(b, x0) : E → X , defined by

δ(a) = δ(b, x0)(a) := {b, x0 , a} − {x0 , b, a} (a ∈ E ), (4)

is a ternary derivation from E into X . Finite sums of derivations of the form
δ(b, x0) are called inner triple derivations.

The set of all inner ternary derivations from E to X is denoted by Innt(E ,X ) .
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Our proof of Theorem 3 below uses the following proposition, due to Ho,Peralta,
and Russo 2012.

Proposition

Let A be a unital Banach ∗-algebra equipped with the ternary product given by
{a, b, c} = 1

2 (ab∗c + cb∗a) and the Jordan product a ◦ b = (ab + ba)/2.

(a) Let D be an element in Innb(A,A), that is, D = ad a for some a in
A. Then D is a *-derivation whenever a∗ = −a. Conversely, if D is
a *-derivation, then a∗ = −a + z for some z in the center of A.

(b) Dt(A,A) = D∗J (A,A) + Innt(A,A).

Theorem 3
Let M be any von Neumann algebra. Then

I Every Jordan derivation of M is an inner Jordan derivation.

I Every triple derivation of M is an inner triple derivation.
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Proof of Theorem 3 (Pluta-R)

To prove the second statement, it suffices, by Proposition (b), to show that
D∗J (M,M) ⊂ Innt(M,M). Suppose δ is a self-adjoint Jordan derivation of M. By
Theorem 2, δ is an inner associative derivation so by Proposition (a),
δ(x) = ax − xa where a∗ + a = z is a self adjoint element of the center of M. a

Since M = Z (M) + [M,M], where Z (M) denotes the center of M, we can write
a = z ′ +

∑
j [bj + icj , b

′
j + ic ′j ], where bj , b

′
j , cj , c

′
j are self adjoint elements of M

and z ′ ∈ Z (M). It follows that
0 = a∗ + a− z = (z ′)∗ + z ′ − z + 2i

∑
j([cj , b

′
j ] + [bj , c

′
j ]) so that∑

j([cj , b
′
j ] + [bj , c

′
j ]) belongs to the center of M. We now have

δ = ad a = ad
∑
j

([bj , b
′
j ]− [cj , c

′
j ]) (5)

and therefore a direct calculation shows that δ is equal to the inner triple
derivation ∑

j

(
L(bj , 2b

′
j)− L(2b′j , bj)− L(cj , 2c

′
j ) + L(2c ′j , cj)

)
.

aYou would need Theorem 1 in situations more general than Mn(C).
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Proof of the first statement

We have just shown that a self adjoint Jordan derivation δ of M has the form (5).
Then another direct calculation shows that δ is equal to the inner Jordan
derivation

4
∑
j

(
L(bj)L(b′j)− L(b′j)L(bj)− L(cj)L(c ′j ) + L(c ′j )L(cj)

)
.

If δ is any Jordan derivation, so are δ∗ and iδ, so δ is an inner Jordan derivation.

Details

Let δ = ad [b, b′]. Then
δ(x) = (bb′ − b′b)x − x(bb′ − b′b) = bb′x − b′bx − xbb′ + xb′b

(L(b, 2b′)− L(2b′, b))(x) = (b(2b′)∗x + x(2b′)∗b)/2− (2b′(b′)∗x + xb∗2b′)/2 =
bb′x − b′bx − xbb′ + xb′b

4(L(b)L(b′)− L(b′)L(b))(x) = 4b ◦ (b′ ◦ x)− 4b′ ◦ (b ◦ x) =
b(b′x +xb′) + (b′x +xb′)b−b′(bx +xb)− (bx +xb)b′ = bb′x−b′bx−xbb′+xb′b
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Ternary Weak Amenability (Ho-Peralta-R)

Proposition

Let A be a unital Banach ∗-algebra equipped with the ternary product given by
{a, b, c} = 1

2 (ab∗c + cb∗a) and the Jordan product a ◦ b = (ab + ba)/2. Then

Dt(A,A
∗) ⊂ D∗J (A,A∗) ◦ ∗+ Innt(A,A∗).

Proposition

Every commutative (real or complex) C∗-algebra A is
ternary weakly amenable, that is Dt(A,A

∗) = Innt(A,A∗) ( 6= 0 btw).

Proposition

The C∗-algebra A = Mn(C) is ternary weakly amenable (Hochschild 1945) and
Jordan weakly amenable (Jacobson 1951).

Question

Is C0(X ,Mn(C)) ternary weakly amenable?
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Negative results

Proposition

The C∗-algebra A = K (H) of all compact operators on an infinite dimensional
Hilbert space H is not ternary weakly amenable.

Proposition

The C∗-algebra A = B(H) of all bounded operators on an infinite dimensional
Hilbert space H is not ternary weakly amenable.
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Non algebra results

Theorem

Let H and K be two complex Hilbert spaces with dim(H) =∞ > dim(K ). Then
the rectangular complex Cartan factor of type I, B(H,K ), and all its real forms
are not ternary weakly amenable. (triple product: {xyz} = (xy∗z + zy∗x)/2 )

Theorem

Every commutative (real or complex) JB∗-triple (def: ‖{xxx}‖ = ‖x‖3 and
L(x , x) hermitian positive) E is approximately ternary weakly amenable, that
is, Innt(E ,E∗) is a norm-dense subset of Dt(E ,E

∗).

Commutative Jordan Gelfand Theory (Kaup,Friedman-R)

Given a commutative (complex) JB∗-triple E , there exists a principal T-bundle
Λ = Λ(E ), i.e. a locally compact Hausdorff space Λ together with a continuous
mapping T× Λ→ Λ, (t, λ) 7→ tλ such that s(tλ) = (st)λ, 1λ = λ and
tλ = λ⇒ t = 1, satisfying that E is JB∗-triple isomorphic to

CT0 (Λ) := {f ∈ C0(Λ) : f (tλ) = tf (λ),∀t ∈ T, λ ∈ Λ}.
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Normal ternary weak amenability

Corollary

Let M be a von Neumann algebra and consider the submodule M∗ ⊂ M∗. Then

Dt(M,M∗) = Inn∗b(M,M∗) ◦ ∗+ Innt(M,M∗).

Note
L∞ is ternary weakly amenable and normally ternary weakly amenable, that is,
Dt(L

∞, L1) = Innt(L∞, L1).

Question

Is L∞ ⊗Mn(C) normally ternary weakly amenable?
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Main results: Pluta-R 2013

Theorem
If M is a properly infinite factor, then the real vector space of triple derivations of
M into M∗, modulo the norm closure of the inner triple derivations, has dimension
1.

Dt(M,M∗)/Innt(M,M∗) ∼ R

Theorem
If M is a von Neumann algebra, then M is finite if and only if every triple
derivation of M into M∗ is approximated in norm by inner triple derivations.

Dt(M,M∗) = Innt(M,M∗)

compare: Bunce-Pashcke,Haagerup 1983

If M is a von Neumann algebra, then every derivation of M into M∗ is inner.

Db(M,M∗)/Innb(M,M∗) = 0
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Nonassociative algebras

Table 1 (FASHIONABLE) ALGEBRAS

commutative algebras ab = ba

associative algebras a(bc) = (ab)c

Lie algebras a2 = 0 , (ab)c + (bc)a + (ca)b = 0

Jordan algebras ab = ba, a(a2b) = a2(ab)

In the rest of this talk we shall mainly be concerned with associative
algebras, in fact, primarily the algebra of n by n matrices under matrix
multiplication.
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Review of Cohomology (associative algebras)

NOTATION
n is a positive integer, n = 1, 2, · · ·
f is a function of n variables
F is a function of n + 1 variables (n + 2 variables?)
x1, x2, · · · , xn+1 belong to an algebra A
f (y1, . . . , yn) and F (y1, · · · , yn+1) also belong to A

The basic formula of homological algebra

F (x1, . . . , xn, xn+1) =
x1f (x2, . . . , xn+1)
−f (x1x2, x3, . . . , xn+1)
+f (x1, x2x3, x4, . . . , xn+1)
− · · ·
±f (x1, x2, . . . , xnxn+1)
∓f (x1, . . . , xn)xn+1
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HIERARCHY

x1, x2, . . . , xn are points (or vectors)
f and F are functions—they take points to points
T , defined by T (f ) = F is a transformation—takes functions to functions
points x1, . . . , xn+1 and f (y1, . . . , yn) will belong to an algebra A
functions f will be either constant, linear or multilinear (hence so will F )
transformation T is linear

SHORT FORM OF THE FORMULA

(Tf )(x1, . . . , xn, xn+1)

= x1f (x2, . . . , xn+1)

+
n∑

j=1

(−1)j f (x1, . . . , xjxj+1, . . . , xn+1)

+(−1)n+1f (x1, . . . , xn)xn+1
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FIRST CASES
n = 0
If f is any constant function from A to A, say, f (x) = b for all x in A, where b is
a fixed element of A, we have, consistent with the basic formula, a linear function
T0(f ):

T0(f )(x1) = x1b − bx1

n = 1
If f is a linear function from A to A, then T1(f ) is a bilinear function

T1(f )(x1, x2) = x1f (x2)− f (x1x2) + f (x1)x2

n = 2
If f is a bilinear function from A× A to A, then T2(f ) is a trilinear function

T2(f )(x1, x2, x3) =

x1f (x2, x3)− f (x1x2, x3) + f (x1, x2x3)− f (x1, x2)x3
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FIRST COHOMOLOGY GROUP

Kernel and Image of a linear transformation

G : X → Y
Since X and Y are vector spaces, they are in particular, commutative groups.
Kernel of G (also called nullspace of G ) is
kerG = {x ∈ X : G (x) = 0}
This is a subgroup of X
Image of G is
imG = {G (x) : x ∈ X}
This is a subgroup of Y

G = T0

X = A (the algebra)
Y = L(A) (all linear transformations on A)
T0(f )(x1) = x1b − bx1
kerT0 = {b ∈ A : xb − bx = 0 for all x ∈ A} (center of A)
imT0 = the set of all linear maps of A of the form x 7→ xb − bx ,
in other words, the set of all inner derivations of A
kerT0 is a subgroup of A
imT0 is a subgroup of L(A)
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G = T1

X = L(A) (linear transformations on A)
Y = L2(A) (bilinear transformations on A× A)
T1(f )(x1, x2) = x1f (x2)− f (x1x2) + f (x1)x2
kerT1 = {f ∈ L(A) : T1f (x1, x2) = 0 for all x1, x2 ∈ A} = the set of all
derivations of A
imT1 = the set of all bilinear maps of A× A of the form

(x1, x2) 7→ x1f (x2)− f (x1x2) + f (x1)x2,

for some linear function f ∈ L(A).
kerT1 is a subgroup of L(A)
imT1 is a subgroup of L2(A)
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G = T2

X = L2(A) (bilinear transformations on A× A)
Y = L3(A) (trilinear transformations on A× A× A)
T2(f )(x1, x2, x3) = x1f (x2, x3))− f (x1x2, x3) + f (x1x2, x3)− f (x1, x2)x3
kerT2 = {f ∈ L2(A) : T2f (x1, x2, x3) = 0 for all x1, x2, x3 ∈ A}
imT2 = the set of all trilinear maps of A× A× A of the form

(x1, x2, x3) 7→ x1f (x2, x3))− f (x1x2, x3) + f (x1x2, x3)− f (x1, x2)x3

for some bilinear function f ∈ L(A).
kerT2 is a subgroup of L2(A)
imT2 is a subgroup of L3(A)
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L0(A)
T0−→ L(A)

T1−→ L2(A)
T2−→ L3(A) · · ·

FACTS: T1 ◦ T0 = 0
T2 ◦ T1 = 0
· · ·
Tn+1 ◦ Tn = 0
· · ·

Therefore

imTn ⊂ kerTn+1 ⊂ Ln(A)
and therefore
imTn is a subgroup of kerTn+1

TERMINOLOGY
imTn−1 = the set of n-coboundaries
kerTn = the set of n-cocycles
and therefore
every n-coboundary is an n-cocycle.
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imT0 ⊂ kerT1

says
Every inner derivation (1-coboundary) is a derivation (1-cocycle).

imT1 ⊂ kerT2

says
for every linear map f , the bilinear map Fdefined by

F (x1, x2) = x1f (x2)− f (x1x2) + f (x1)x2

(2-coboundary) satisfies the equation

x1F (x2, x3)− F (x1x2, x3) + F (x1, x2x3)− F (x1, x2)x3 = 0

for every x1, x2, x3 ∈ A (2-cocycle).
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The cohomology groups of A are defined as the quotient groups

Hn(A) =
kerTn

imTn−1
=

n-cocycles

n-coboundaries
(n = 1, 2, . . .)

Thus

H1(A) =
kerT1

imT0
=

1-cocycles

1-coboundaries
=

derivations

inner derivations

H2(A) =
kerT2

imT1
=

2-cocycles

2-coboundaries
=

null extensions

split null extensions

The theorem that every derivation of Mn(R) is inner (that is, of the form δa for
some a ∈ Mn(R), Theorem 1) can now be restated as:
”the cohomology group H1(Mn(R)) is the trivial one element group”

The theorem that every null extension of Mn(R) is a split null extension
(Corollary 2 of Theorem 4 below for n = 2) can be stated as:
”the cohomology group H2(Mn(R)) is the trivial one element group”
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H2(M2,M2) = 0

DEFINITION
Let ρ be a linear transformation on M2. We define linear transformations σ1 and
σ2 on M2 by

σ1(A) = E11ρ(E11A) + E21ρ(E12A)

and
σ2(A) = E12ρ(E21A) + E22ρ(E22A)

recall LEMMA 1

σ1(A) = Aσ1(I ) and σ2(A) = Aσ2(I )

We only need σ1 or σ2, not both. We’ll go with σ1.
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DEFINITION
Let f be a bilinear transformation on M2 ×M2. We define bilinear transformations
τ1 and τ2 on M2 ×M2 by

τ1(A,B) = E11f (E11A,B) + E21f (E12A,B)

and
τ2(A,B) = E12f (E21A,B) + E22f (E22A,B)

LEMMA 2

τ1(A,B) = Aτ1(I ,B) and τ2(A,B) = Aτ2(I ,B)

We only need τ1 or τ2, not both. We’ll go with τ1.

PROOF OF LEMMA 2

For B fixed, let ρ(A) = f (A,B) and apply LEMMA 1 to this ρ. Namely, set
σ(A) = E11ρ(E11A) + E21ρ(E12A). Then σ(A) = τ1(A,B). By LEMMA 1,
σ(A) = Aσ(1) and τ1(A,B) = σ(A) = Aσ(1) = Aτ1(1,B). Q.E.D.
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THEOREM 4
Let f be a 2-cocycle: f is bilinear and

T2f (A,B,C ) = Af (B,C )− f (AB,C ) + f (A,BC )− f (A,B)C = 0

for all A,B,C in M2. Then there exists a linear transformation ξ on M2 such that
T1ξ = f , that is, f is a 2-coboundary.

COROLLARY 1

H2(M2,M2) = 0

COROLLARY 2

It E is any associative algebra containing an ideal J such that E/J is isomorphic
to M2 (E is then said to be an extension of M2), then there is a subalgebra B of
E such that E = B ⊕M2 (E is a split extension) a

aThere is always a subspace B such that E = B ⊕M2
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PROOF OF THEOREM 4
(Kadison and Ringrose, Acta Math 1972)

Define a bilinear map τ(A,B) = E11f (E11A,B) + E21f (E12A,B) and then define a
linear map ξ(B) = τ(1,B). Now just verify that T1(ξ) = f . Q.E.D.

T1ξ(A,B) = Aξ(B)− ξ(AB) + ξ(A)B

= Aτ(1,B)− τ(1,AB) + τ(1,A)B

= τ(A,B)− τ(1,AB) + τ(1,A)B

= E11f (E11A,B) + E21f (E12A,B)

− E11f (E11,AB)− E21f (E12,AB)

+ E11f (E11,A)B + E21f (E12,A)B

T2f (E11,A,B) = E11f (A,B)− f (E11A,B) + f (E11,AB)− f (E11,A)B = 0

T2f (E12,A,B) = E12f (A,B)− f (E12A,B) + f (E12,AB)− f (E12,A)B = 0
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0 = E11T2f (E11,A,B) + E21T2f (E12,A,B)

0 = E11[E11f (A,B)− f (E11A,B) + f (E11,AB)− f (E11,A)B]

+ E21[E12f (A,B)− f (E12A,B) + f (E12,AB)− f (E12,A)B]

FROM THE PRECEDING PAGE

T1ξ(A,B) = E11f (E11A,B) + E21f (E12A,B)− E11f (E11,AB)

− E21f (E12,AB) + E11f (E11,A)B + E21f (E12,A)B

Add these two equations to get

T1ξ(A,B) = E11f (A,B) + E22f (A,B) = f (A,B) Q.E.D. (again)
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Some miscellaneous facts
(M is a module)

I H1(C) = 0, H2(C) = 0

I H1(C,M) = 0, H2(C,M) = 0
(Kamowitz 1962)

I Hn(Mk(R),M) = 0 ∀n ≥ 1, k ≥ 2

I Hn(A) = Hn−1(A, L(A)) for n ≥ 2
(Hochschild 1945)
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EXTENSIONS

Let A be an algebra. Let M be another algebra which contains an ideal I and let
g : M → A be a homomorphism.
In symbols,

I
⊂→ M

g→ A
This is called an extension of A by I if

I ker g = I

I im g = A

It follows that M/I is isomorphic to A
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EXAMPLE 1

Let A be an algebra.
Define an algebra M = A⊕ A to be the set A× A with addition
(a, x) + (b, y) = (a + b, x + y)
and product
(a, x)(b, y) = (ab, xy)

I {0} × A is an ideal in M

I ({0} × A)2 6= 0

I g : M → A defined by g(a, x) = a is a homomorphism

I M is an extension of {0} × A by A.
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EXAMPLE 2

Let A be an algebra and let h ∈ kerT2 ⊂ L2(A).
Recall that this means that for all x1, x2, x3 ∈ A,
x1f (x2, x3)− f (x1x2, x3)
+f (x1, x2x3)− f (x1, x2)x3 = 0
Define an algebra Mh to be the set A× A with addition
(a, x) + (b, y) = (a + b, x + y)
and the product
(a, x)(b, y) = (ab, ay + xb + h(a, b))
Because h ∈ kerT2, this algebra is
ASSOCIATIVE!
whenever A is associative.
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THE PLOT THICKENS

I {0} × A is an ideal in Mh

I ({0} × A)2 = 0

I g : Mh → A defined by g(a, x) = a is a homomorphism

I Mh is an extension of {0} × A by A.
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EQUIVALENCE OF EXTENSIONS

Extensions
I
⊂→ M

g→ A
and

I
⊂→ M ′

g ′

→ A
are said to be equivalent if
there is an isomorphism ψ : M → M ′

such that

I ψ(x) = x for all x ∈ I

I g = g ′ ◦ ψ
(Is this an equivalence relation?)
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EXAMPLE 2—continued

Let h1, h2 ∈ kerT2.
We then have two extensions of A by {0} × A, namely

{0} × A
⊂→ Mh1

g1→ A
and
{0} × A

⊂→ Mh2
g2→ A

Now suppose that h1 is equivalent1 to h2,
h1 − h2 = T1f for some f ∈ L(A)

I The above two extensions are equivalent.

I We thus have a mapping from H2(A,A) into the set of equivalence classes of
extensions of A by the ideal {0} × A

1This is the same as saying that [h1] = [h2] as elements of H2(A,A) = kerT2/imT1
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GRADUS AD PARNASSUM (COHOMOLOGY)
1. Verify that there is a one to one correspondence between partitions of a set

X and equivalence relations on that set.
Precisely, show that

I If X = ∪Xi is a partition of X , then
R := {(x , y) ∈ X × X : x , y ∈ Xi for some i} is an equivalence relation whose
equivalence classes are the subsets Xi .

I If R is an equivalence relation on X with equivalence classes Xi , then X = ∪Xi

is a partition of X .

2. Verify that Tn+1 ◦ Tn = 0 for n = 0, 1, 2. Then prove it for all n ≥ 3.

3. Show that if f : G1 → G2 is a homomorphism of groups, then G1/ ker f is
isomorphic to f (G1)
Hint: Show that the map [x ] 7→ f (x) is an isomorphism of G1/ ker f onto
f (G1)

4. Show that if h : A1 → A2 is a homomorphism of algebras, then A1/ ker h is
isomorphic to h(A1)
Hint: Show that the map [x ] 7→ h(x) is an isomorphism of A1/ ker h onto
h(A1)
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5. Show that the algebra Mh in Example 2 is associative.
Hint: You use the fact that A is associative AND the fact that,
since h ∈ kerT2, h(a, b)c + h(ab.c) = ah(b, c) + h(a, bc)

6. Show that equivalence of extensions is actually an equivalence
relation.
Hint:

I reflexive: ψ : M → M is the identity map
I symmetric: replace ψ : M → M ′ by its inverse ψ−1 : M ′ → M
I transitive: given ψ : M → M ′ and ψ′ : M ′ → M ′′ let
ψ′′ = ψ′ ◦ ψ : M → M ′′

7. Show that in example 2, if h1 and h2 are equivalent bilinear maps,
that is, h1 − h2 = T1f for some linear map f , then Mh1 and Mh2

are equivalent extensions of {0} × A by A. Hint: ψ : Mh1 → Mh2

is defined by

ψ(a, x) = (a, x + f (a))
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Cohomology groups were defined in various contexts as follows

I associative algebras (1945)

I Lie algebras (1952)

I Lie triple systems (1961,2002)

I Jordan algebras (1971)

I associative triple systems (1976)

I Jordan triple systems (1982)
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FASHIONABLE TRIPLE SYSTEMS

Table 4
TRIPLE SYSTEMS
associative triple systems
(abc)de = ab(cde) = a(dcb)e

Lie triple systems
aab = 0
abc + bca + cab = 0
de(abc) = (dea)bc + a(deb)c + ab(dec)

Jordan triple systems
abc = cba
de(abc) = (dea)bc − a(edb)c + ab(dec)
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DERIVATIONS INTO A MODULE

CONTEXTS
(i) ASSOCIATIVE ALGEBRAS
(ii) LIE ALGEBRAS
(iiI) JORDAN ALGEBRAS
Could also consider:
(i’) ASSOCIATIVE TRIPLE SYSTEMS
(ii’) LIE TRIPLE SYSTEMS
(iii’) JORDAN TRIPLE SYSTEMS

Bernard Russo (UCI) Associative, Jordan, and triple derivations 55 / 71



(i) ASSOCIATIVE ALGEBRAS

derivation: D(ab) = a · Db + Da · b
inner derivation: (ad x)(a) = x · a− a · x (x ∈ M)
THEOREM (Noether,Wedderburn) (early 20th century)) 2

EVERY DERIVATION OF SEMISIMPLE ASSOCIATIVE ALGEBRA IS INNER,
THAT IS, OF THE FORM x 7→ ax − xa FOR SOME a IN THE ALGEBRA
THEOREM (Hochschild 1942)
EVERY DERIVATION OF SEMISIMPLE ASSOCIATIVE ALGEBRA INTO A
MODULE IS INNER, THAT IS, OF THE FORM x 7→ ax − xa FOR SOME a IN
THE MODULE

2The operational word here, and in all of these results is SEMISIMPLE—think
primes, fundamental theorem of arithmetic
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(iii) JORDAN ALGEBRAS

derivation: D(a ◦ b) = a ◦ Db + Da ◦ b
inner derivation:

∑
i [L(xi )L(ai )− L(ai )L(xi )]

(xi ∈ M, ai ∈ A)
b 7→

∑
i [xi ◦ (ai ◦ b)− ai ◦ (xi ◦ b)]

THEOREM (1949-Jacobson)
EVERY DERIVATION OF A FINITE DIMENSIONAL SEMISIMPLE JORDAN
ALGEBRA INTO ITSELF IS INNER
THEOREM (1951-Jacobson)
EVERY DERIVATION OF A FINITE DIMENSIONAL SEMISIMPLE JORDAN
ALGEBRA INTO A (JORDAN) MODULE IS INNER
(Lie algebras, Lie triple systems)
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(iii’) JORDAN TRIPLE SYSTEMS

derivation: D{a, b, c} = {Da.b, c}+ {a,Db, c}+ {a, b,Dc}
{x , y , z} = (xy∗z + zy∗x)/2
inner derivation:

∑
i [L(xi , ai )− L(ai , xi )]

(xi ∈ M, ai ∈ A)
b 7→

∑
i [{xi , ai , b} − {ai , xi , b}]

THEOREM (1972 Meyberg)
EVERY DERIVATION OF A FINITE DIMENSIONAL SEMISIMPLE JORDAN
TRIPLE SYSTEM IS INNER
(Lie algebras, Lie triple systems)
THEOREM (1978 Kühn-Rosendahl)
EVERY DERIVATION OF A FINITE DIMENSIONAL SEMISIMPLE JORDAN
TRIPLE SYSTEM INTO A JORDAN TRIPLE MODULE IS INNER
(Lie algebras)

Bernard Russo (UCI) Associative, Jordan, and triple derivations 58 / 71



(i’) ASSOCIATIVE TRIPLE SYSTEMS

derivation: D(abtc) = abtDc + a(Db)tc + (Da)btc
inner derivation: see Table 3
The (non-module) result can be derived from the result for Jordan triple systems.
(See an exercise)
THEOREM (1976 Carlsson)
EVERY DERIVATION OF A FINITE DIMENSIONAL SEMISIMPLE
ASSOCIATIVE TRIPLE SYSTEM INTO A MODULE IS INNER
(reduces to associative ALGEBRAS)
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(ii) LIE ALGEBRAS

THEOREM (Zassenhaus)
(early 20th century)
EVERY DERIVATION OF A FINITE DIMENSIONAL SEMISIMPLE LIE
ALGEBRA INTO ITSELF IS INNER
THEOREM (Hochschild 1942)
EVERY DERIVATION OF A FINITE DIMENSIONAL SEMISIMPLE LIE
ALGEBRA INTO A MODULE IS INNER
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(ii’) LIE TRIPLE SYSTEMS

THEOREM (Lister 1952)
EVERY DERIVATION OF A FINITE DIMENSIONAL SEMISIMPLE LIE TRIPLE
SYSTEM INTO ITSELF IS INNER
THEOREM (Harris 1961)
EVERY DERIVATION OF A FINITE DIMENSIONAL SEMISIMPLE LIE TRIPLE
SYSTEM INTO A MODULE IS INNER
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Table 1 Mn(R) (ALGEBRAS)
associative Lie Jordan
ab = a× b [a, b] = ab − ba a ◦ b = ab + ba

Noeth,Wedd Zassenhaus Jacobson
1920 1930 1949

Hochschild Hochschild Jacobson
1942 1942 1951

Table 3 Mm,n(R) (TRIPLE SYSTEMS)

associative Lie Jordan
triple triple triple
abtc [[a, b], c] abtc + cbta

Lister Meyberg
1952 1972

Carlsson Harris Kühn-Rosendahl
1976 1961 1978
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Table 2 Mn(R) (ALGEBRAS)

matrix bracket circle
ab = a× b [a, b] = ab − ba a ◦ b = ab + ba

Th. 2 Th.3 Th.4
δa(x) δa(x) δa(x)

= = =
ax − xa ax − xa ax − xa
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COHOMOLOGY OF NONASSOCIATIVE ALGEBRAS

n = 0

ASSOCIATIVE

f : A→ A is a constant function, say f (x) = b for all x
T0(f ) : A→ A is a linear function
T0(f )(x1) = x1b − bx1

LIE

f : A→ A is a constant function, say f (x) = b for all x
T0(f ) : A→ A is a linear function
T0(f )(x1) = [b, x1]

JORDAN

f ∈ A× A is an ordered pair, say f = (a, b)
T0(f ) : A→ A is a linear function
T0(f )(x1) = a ◦ (b ◦ x1)− b ◦ (a ◦ x1)
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n = 1

ASSOCIATIVE
f : A→ A is a linear function
T1(f ) : A× A→ A is a bilinear function
T1(f )(x1, x2) = x1f (x2)− f (x1x2) + f (x1)x2

LIE
f : A→ A is a linear function
T1(f ) : A× A→ A is a skew-symmetric bilinear function
T1(f )(x1, x2) = −[f (x2), x1] + [f (x1), x2]− f ([x1, x2])

JORDAN
f : A→ A is a linear function
T1(f ) : A× A→ A is a symmetric bilinear function
T1(f )(x1, x2) = x1 ◦ f (x2)− f (x1 ◦ x2) + f (x1) ◦ x2
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n = 2

ASSOCIATIVE
f : A× A→ A is a bilinear function
T2(f ) : A× A× A→ A is a trilinear function
T2(f )(x1, x2, x3) = x1f (x2, x3)− f (x1x2, x3)− f (x1, x2x3) + f (x1, x2)x3

LIE
f : A× A→ A is a skew-symmetric bilinear function
T2(f ) : A× A× A→ A is a skew-symmetric trilinear function

T2(f )(x1, x2, x3) = [f (x2, x3), x1]− [f (x1, x3), x2] + [f (x1, x2), x3]

− f (x3, [x1, x2]) + f (x2, [x1, x3])− f (x1, [x2, x3])

JORDAN
JUST AHEAD
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OBJECTIVES

INTERPRETATION OF COHOMOLOGY GROUPS
FIRST COHOMOLOGY GROUP
DERIVATIONS ( AND INNER DERIVATIONS)

SECOND COHOMOLOGY GROUP
EXTENSIONS ( AND SPLIT EXTENSIONS)

VANISHING THEOREMS

FOR EACH CLASS OF ALGEBRAS (ASSOCIATIVE, LIE, JORDAN), UNDER
WHAT CONDITIONS IS Hn(A) = 0, ESPECIALLY FOR n = 1, 2
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Unified approach to second cohomology group

(Jacobson book on Jordan algebras 1968)

Basic setting

Let M, E and A be algebras satisfying the same set of axioms (associative, Lie,
Jordan).
Let α and β be algebra homomorphisms

M
α→ E

β→ A

such that

kerα = {0} (i.e., α is one-to-one)
Imα = ker β
Imβ = A (ı.e., β is onto)
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There is a linear transformation δ : A→ E such that β(δ(a)) = a for every a ∈ A.
Define the bilinear transformation h : A× A→ M, h(a, b) = δ(ab)− δ(a)δ(b)

THEOREM (Properties of h)

ASSOCIATIVE ALGEBRAS h(a, b)c + h(ab, c) = ah(b, c) + h(a, bc)
(Hochschild 2-cocycle)
Hochschild 2-coboundary: h(a, b) = af (b)− f (ab) + f (a)b

LIE ALGEBRAS h(a, a) = 0 and
h(a, b)c + h(ab, c) + h(b, c)a + h(bc, a) + h(c , a)b + h(ca, b) = 0
(Lie 2-cocycle)
Lie 2-coboundary: h(a, b) = −[f (b), a] + [f (a), b]− f ([a, b])
= −f (b)a + af (b) + f (a)b − bf (a)− f (ab) + f (ba)

JORDAN ALGEBRAS h(a, b) = h(b, a) and
(h(a, a)b)c + h(a2, b)a + h(a2b, a) = a2h(b, a) + h(a, a)(ba) + h(a2, ba)
(Jordan 2-cocycle)
Jordan 2-coboundary: h(a, b) = a ◦ f (b)− f (a ◦ b) + f (a) ◦ b
= ag(b) + g(b)a− g(ab)− g(ba) + g(a)b + bg(a)
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Beginning of the proof

Algebras defined by identities

If A is an algebra then a function f : A× · · · × A→ A is said to be an identity for
A if f (a1, · · · , an) = 0 for every set of n elements of A
Let I denote the set of identites defining a class of algebras. For example
I = {f } where f (x1, x2, x3) = (x1x2)x3 − x1(x2x3) defines the class of associative
algebras
I = {f , g} where f (x1) = x21 and g(x1, x2) = (x1x2)x3 + (x2x3)x1 + (x3x1)x2
defines the class of Lie algebras
I = {f , g} where f (x1, x2) = x1x2 − x2x1 and g(x1, x2) = (x21 x2)x1 − x21 (x2x1)
defines the class of Jordan algebras

AND SO FORTH . . .
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Whitehead Type Theorems

ASSOCIATIVE ALGEBRAS
H1 = H2 = 0

LIE ALGEBRAS
H1 = H2 = 0

JORDAN ALGEBRAS
H1 = H2 = 0
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