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I—DERIVATIONS ON FINITE
DIMENSIONAL ALGEBRAS

Sophus Lie (1842—-1899)

Marius Sophus Lie was a Norwegian mathe-
matician. He largely created the theory of con-
tinuous symmetry, and applied it to the study
of geometry and differential equations.



Pascual Jordan (1902—-1980)

Pascual Jordan was a German theoretical and
mathematical physicist who made significant
contributions to quantum mechanics and quan-
tum field theory.



LET C DENOTE THE ALGEBRA OF
CONTINUOUS FUNCTIONS ON A
LOCALLY COMPACT HAUSDORFF

SPACE.

DEFINITION 1
A DERIVATION ON C IS A LINEAR
MAPPING ¢ : C — C SATISFYING THE
"“PRODUCT"” RULE:

5(f+g) =46(f)+d(9)
§(cf) = co(f)
6(fg) =4(f)g+ fo(g)

THEOREM 1
There are no (non-zero) derivations on C.

In other words,
Every derivation of C is identically zero



THEOREM 1A
(1955-Singer and Wermer)
Every continuous derivation on C is zero.

Theorem 1B
(1960-Sakai)
Every derivation on C is continuous.

John Wermer Soichiro Sakai
(b. 1925) (b. 1926)



Isadore Singer (b. 1924)

Isadore Manuel Singer is an Institute
Professor in the Department of Mathematics
at the Massachusetts Institute of Technology.
He is noted for his work with Michael Atiyah

in 1962, which paved the way for new
interactions between pure mathematics and

theoretical physics.



LET M,(C) DENOTE THE ALGEBRA OF
ALL n by n COMPLEX MATRICES, OR
MORE GENERALLY, ANY FINITE
DIMENSIONAL SEMISIMPLE
ASSOCIATIVE ALGEBRA. .

DEFINITION 2
A DERIVATION ON My,(C) WITH
RESPECT TO MATRIX MULTIPLICATION

IS A LINEAR MAPPING ¢ WHICH
SATISFIES THE PRODUCT RULE

5(AB) = 6(A)B + A8(B)

PROPOSITION 2
FIX A MATRIX A in M,(C) AND DEFINE

S4(X) = AX — XA,

THEN 04 IS A DERIVATION WITH
RESPECT TO MATRIX MULTIPLICATION



THEOREM 2
(1942 Hochschild)

EVERY DERIVATION ON M,(C) WITH
RESPECT TO MATRIX MULTIPLICATION
IS OF THE FORM §4 FOR SOME A IN
Mn(C).

Gerhard Hochschild (1915—2010)

(Photo 1968)
Gerhard Paul Hochschild was an American
mathematician who worked on Lie groups,
algebraic groups, homological algebra and
algebraic number theory.



Joseph Henry Maclagan Wedderburn
(1882—1948)

Scottish mathematician, who taught at
Princeton University for most of his career. A
significant algebraist, he proved that a finite

division algebra is a field, and part of the

Artin—Wedderburn theorem on simple
algebras. He also worked on group theory and
matrix algebra.



Amalie Emmy Noether (1882—-1935)

'r'+.

Amalie Emmy Noether was an influential
German mathematician known for her
groundbreaking contributions to abstract
algebra and theoretical physics. Described as
the most important woman in the history of
mathematics, she revolutionized the theories
of rings, fields, and algebras. In physics,
Noether's theorem explains the fundamental
connection between symmetry and
conservation laws.



RECOMMENDED READING

Gerhard Hochschild
A mathematician of the XXth Century

Walter Ferrer Santos
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Gerhard Hochschild (1915—2010)
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DEFINITION 3
A DERIVATION ON M,(C) WITH
RESPECT TO BRACKET MULTIPLICATION

[X,Y]=XY -YX

IS A LINEAR MAPPING ¢ WHICH
SATISFIES THE PRODUCT RULE

6([A, B]) = [6(A), B] 4 [A,6(B)]

PROPOSITION 3
FIX A MATRIX A in M,(C) AND DEFINE

S4(X)=[A, X] = AX — X A.

THEN 64 IS A DERIVATION WITH
RESPECT TO BRACKET
MULTIPLICATION



THEOREM 3
(1942 Hochschild, Zassenhaus)
EVERY DERIVATION ON M,(C)* WITH
RESPECT TO BRACKET
MULTIPLICATION IS OF THE FORM 64
FOR SOME A IN M,(C).

Hans Zassenhaus (1912—-1991)

Hans Julius Zassenhaus was a German
mathematician, known for work in many parts
of abstract algebra, and as a pioneer of
computer algebra.

*not a semisimple Lie algebra: trace(X) I is a derivation
which is not inner



DEFINITION 4
A DERIVATION ON M,(C) WITH
RESPECT TO CIRCLE MULTIPLICATION

XoY =(XY+YX)/2

IS A LINEAR MAPPING ¢ WHICH
SATISFIES THE PRODUCT RULE

0(AoB) =6(A)oB+ Aod(B)

PROPOSITION 4
FIX A MATRIX A in M,(C) AND DEFINE

S4(X)=AX — XA.

THEN 04 IS A DERIVATION WITH
RESPECT TO CIRCLE MULTIPLICATION



THEOREM 4
(1972-Sinclair)

EVERY DERIVATION ON M,(C) WITH
RESPECT TO CIRCLE MULTIPLICATION
IS OF THE FORM 64, FOR SOME A IN
M, (C).

REMARK
(1937-Jacobson)

THE ABOVE PROPOSITION AND
THEOREM NEED TO BE MODIFIED FOR
THE SUBALGEBRA (WITH RESPECT TO

CIRCLE MULTIPLICATION) OF
HERMITIAN MATRICES.



Alan M. Sinclair (retired)

Nathan Jacobson was an American
mathematician who was recognized as one of
the leading algebraists of his generation, and
he was also famous for writing more than a

dozen standard monographs.



Table 1
My (C) (SEMISIMPLE ALGEBRAS)

matrix bracket circle
ab=axb|[a,b] =ab—ba | aob = ab+ ba
Th. 2 Th.3 Th.4
da () da () da ()
ar — Ta ar — Ta ar — Ta




Table 2
ALGEBRAS

commutative algebras
ab = ba

associative algebras
a(bc) = (ab)c

Lie algebras
a’ =

(ab)c 4+ (bc)a + (ca)b =0

Jordan algebras
ab = ba

a(a?b) = a?(ab)



DERIVATIONS ON C*-ALGEBRAS

THE ALGEBRA M,(C), WITH MATRIX
MULTIPLICATION, AS WELL AS THE
ALGEBRA C, WITH ORDINARY
MULTIPLICATION, ARE EXAMPLES OF
C*-ALGEBRAS (FINITE DIMENSIONAL;
resp. COMMUTATIVE).

THE FOLLOWING THEOREM THUS
EXPLAINS THEOREMS 1 AND 2.

THEOREM (1966-Sakai, Kadison)
EVERY DERIVATION OF A C*-ALGEBRA
IS OF THE FORM z +— ar — xra FOR SOME

a IN THE WEAK CLOSURE OF THE

C*-ALGEBRA



Irving Kaplansky (1917—2006)

Kaplansky made major contributions to group
theory, ring theory, the theory of operator
algebras and field theory.



Richard Kadison (b. 1925)

Richard V. Kadison is an American
mathematician known for his contributions to
the study of operator algebras.



II—DERIVATIONS ON OPERATOR
ALGEBRAS

TWO BASIC QUESTIONS ON
DERIVATIONS OF BANACH ALGEBRAS
(AND TRIPLES)

A— Aand A— M (MODULE)

e AUTOMATIC CONTINUITY?
e INNER?

CONTEXTS

(i) C*-ALGEBRAS
(associative Banach algebras)

(i) JC*-ALGEBRAS
(Jordan Banach algebras)

(iii) JC*-TRIPLES
(Banach Jordan triples)

Could also consider:
(ii') Banach Lie algebras
(iii")Banach Lie triple systems
(i")Banach associative triple systems




(i) C*-ALGEBRAS
derivation: D(ab) = a- Db+ Da-b

inner derivation: ad x(a) =z-a—a-x (x € M)

e AUTOMATIC CONTINUITY RESULTS

KAPLANSKY 1949: C(X)
SAKAI 1960
RINGROSE 1972: (module)

e INNER DERIVATION RESULTS

SAKAI, KADISON 1966
CONNES 1976 (module)
HAAGERUP 1983 (module)



THEOREM (Sakai 1960)
Every derivation from a C*-algebra into itself
IS continuous.

THEOREM (Ringrose 1972)
Every derivation from a C*-algebra into a
Banach A-bimodule is continuous.

THEOREM (1966-Sakai, Kadison)
EVERY DERIVATION OF A C*-ALGEBRA
IS OF THE FORM z +— axr — xa FOR SOME

a IN THE WEAK CLOSURE OF THE

C*-ALGEBRA



John Ringrose (b. 1932)

John Ringrose is a leading world expert on
non-self-adjoint operators and operator
algebras. He has written a number of
influential texts including Compact
non-self-adjoint operators (1971) and, with R
V Kadison, Fundamentals of the theory of
operator algebras in four volumes published in
1983, 1986, 1991 and 1992.



THEOREM (1976-Connes)
EVERY AMENABLE C*-ALGEBRA IS
NUCLEAR.
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Alain Connes is the leading specialist on
operator algebras.

In his early work on von Neumann algebras in
the 1970s, he succeeded in obtaining the
almost complete classification of injective

factors.

Following this he made contributions in
operator K-theory and index theory, which
culminated in the Baum-Connes conjecture.

He also introduced cyclic cohomology in the
early 1980s as a first step in the study of
noncommutative differential geometry.

Connes has applied his work in areas of
mathematics and theoretical physics,
including number theory, differential geometry
and particle physics.



THEOREM (1983-Haagerup)
EVERY NUCLEAR C*-ALGEBRA IS
AMENABLE.

THEOREM (1983-Haagerup)
EVERY C*-ALGEBRA IS WEAKLY
AMENABLE.

Uffe Haagerup b. 1950

Haagerup’'s research is in operator theory, and
covers many subareas in the subject which
are currently very active - random matrices,
free probability, C*-algebras and applications

to mathematical physics.



DIGRESSION #1
A BRIDGE TO JORDAN ALGEBRAS

A Jordan derivation from a Banach algebra A
into a Banach A-module is a linear map D
satisfying D(a?) = aD(a) + D(a)a, (a € A), or
equivalently,

D(ab+ ba) = aD(b) + D(b)a + D(a)b+ bD(a),
(a,b e A).

Sinclair proved in 1970 that a bounded
Jordan derivation from a semisimple Banach
algebra to itself is a derivation, although this

result fails for derivations of semisimple

Banach algebras into a Banach bi-module.

Nevertheless, a celebrated result of B.E.
Johnson in 1996 states that every bounded
Jordan derivation from a C*-algebra A to a

Banach A-bimodule is an associative
derivation.



In view of the intense interest in automatic
continuity problems in the past half century,
it is therefore somewhat surprising that the
following problem has remained open for
fifteen years.

PROBLEM
Is every Jordan derivation from a C*-algebra
A to a Banach A-bimodule automatically
continuous (and hence a derivation, by
Johnson’s theorem)?

In 2004, J. Alaminos, M. Bresar and A.R.
Villena gave a positive answer to the above
problem for some classes of C*-algebras
including the class of abelian C*-algebras



Combining a theorem of Cuntz from 1976
with the theorem just quoted vields

THEOREM
Every Jordan derivation from a C*-algebra
A to a Banach A-module is continuous.

In the same way, using the solution in 1996
by Hejazian-Niknam in the commutative case
we have

THEOREM
Every Jordan derivation from a
C*-algebra A to a Jordan Banach
A-module is continuous.
(Jordan module will be defined below)

These two results will also be among the

consequences of our results on automatic

continuity of derivations into Jordan triple
modules.

(END OF DIGRESSION)



(i) JC*-ALGEBRA

derivation: D(aob) =ao Db+ Daob
inner derivation: > ;[L(x;)L(a;) — L(a;)L(x;)]

(a:z- e M,a; € A)
b— > ilr;o(a;0b) —a;o(x;00b)]

e AUTOMATIC CONTINUITY RESULTS

UPMEIER 1980
HEJAZIAN-NIKNAM 1996 (module)
ALAMINOS-BRESAR-VILLENA 2004

(module)
e INNER DERIVATION RESULTS

JACOBSON 1951 (module)
UPMEIER 1980



THEOREM (1951-Jacobson)
EVERY DERIVATION OF A FINITE
DIMENSIONAL SEMISIMPLE JORDAN
ALGEBRA INTO A (JORDAN) MODULE
IS INNER
(Lie algebras, Lie triple systems)

THEOREM (1980-Upmeier)
EVERY DERIVATION OF A REVERSIBLE
JC*-ALGEBRA EXTENDS TO A
DERIVATION OF ITS ENVELOPING
C*-ALGEBRA. (IMPLIES SINCLAIR)

THEOREM (1980-Upmeier)
1. Purely exceptional JBW-algebras have the
inner derivation property
2. Reversible JBW-algebras have the inner
derivation property
3. ®L*>(S;,U;) has the inner derivation
property if and only if sup; dim U; < o0,
Uj spin factors.



Nathan Jacobson (1910-1999)




Digression #2—LIE DERIVATIONS

Miers, C. Robert
Lie derivations of von Neumann algebras.
DukeMath. J. 40 (1973), 403—4009.

If M is a von Neumann algebra, [M, M] the
Lie algebra linearly generated by
{[X,)Y]=XY-YX: :X,Y €M} and
L:[M,M]— M a Lie derivation, i.e., L is
linear and L[X,Y] =[LX,Y]+ [X,LY], then
the author shows that L has an extension
D : M — M that is a derivation of the
associative algebra.

The proof involves matrix-like computations.



A theorem of S. Sakai [Ann. of Math. (2) 83
(1966), 273—279] now states that
DX = [A, X] with A € M fixed.

Using this the author finally shows that if
L : M — M is a Lie derivation, then
L =D+ X\, where D is an associative
derivation and X\ is a linear map into the
center of M vanishing on [M, M].

For primitive rings with nontrivial idempotent
and characteristic = 2 a slightly weaker result
is due to W. S. Martindale, III [Michigan
Math. J. 11 (1964), 183187].

Reviewed by Gerhard Janssen



Miers, C. Robert
Lie triple derivations of von Neumann
algebras.
Proc. Amer. Math. Soc. 71 (1978), no. 1,
57—61.

Authors summary: A Lie triple derivation of
an associative algebra M is a linear map
L: M — M such that

L{[X,Y], Z] = [[L(X),Y], Z]+

[[X, L(Y)], 2] + [[X, Y], L(Z)]
for all X,Y,Z € M.

We show that if M is a von Neumann algebra
with no central Abelian summands then there
exists an operator A € M such that
L(X)=[AX]+XNX) where A\: M — Z); is a
linear map which annihilates brackets of
operators in M.

Reviewed by Jozsef Szucs



THEOREM
(JOHNSON 1996)

EVERY CONTINUOUS LIE DERIVATION
OF A SYMMERTICALLY AMENABLE
BANACH ALGEBRA AINTO A BANACH
BIMODULE X IS THE SUM OF AN
ASSOCIATIVE DERIVATION AND A
“TRIVIAL" DERIVATION

(TRIVIAL=ANY LINEAR MAP WHICH

VANISHES ON COMMUTATORS AND

MAPS INTO THE “CENTER” OF THE
MODULE).



The continuity assumption can be dropped if
X = A and A is a C*-algebra or a semisimple
symmetrically amenable Banach algebra

Mathieu, Martin; Villena, Armando R.
The structure of Lie derivations on
C*-algebras.

J. Funct. Anal. 202 (2003), no. 2, 504-525.

Alaminos, J.; Mathieu, M.; Villena, A. R.

Symmetric amenability and Lie derivations.

Math. Proc. Cambridge Philos. Soc. 137
(2004), no. 2, 433—4309.



“It remains an open question whether an
analogous result for Lie derivations from A
into a Banach A-bimodule holds when A is an
arbitrary C*-algebra and when A is an
arbitrary symmetrically amenable Banach
algebra.”

“It is also an interesting open question
whether or not every Lie derivation on a
semisimple Banach algebra to itself has this
form.”

(H.G. Dales)
END OF DIGRESSION



III—COHOMOLOGY OF FINITE
DIMENSIONAL ALGEBRAS

ASSOCIATIVE ALGEBRAS
HOCHSCHILD
ANNALS OF MATHEMATICS 1945

Let M be an associative algebra and X a
two-sided M-module. For n > 1, let
L™"(M, X) = all n-linear maps
(LO(M, X) = X)

Coboundary operator

9:L" — L™t (for n > 1)

8¢(CL1, '. " an—|—1) — CL1¢(CL2, Ty CLn_I_]_)
+ Z(_l)]¢(ala Ty 05-1,805Q541,° "7 an—l—l)
+(_1)n+1§b(a17 T a’n)an—l-l
For n = O,
0:X — L(M,X) dx(a) = ax — xa

Since 0o 0 =0,
Im(d: L" 1 — L") C ker(d: L™ — L"T1)

H™(M,X) = kerd/Img is a vector space.



For n =1, kero =

{¢: M — X :ar1é(a2) — ¢(ara2) + ¢(a1)ap = 0}
— the space of derivations from M to X

0:X — L(M,X) Jx(a) = ax — za
Imo = the space of inner derivations

Thus HY(M, X) measures how close
derivations are to inner derivations.

An associative algebra B is an extension of
associative algebra A if there is a
homomorphism o of B onto A. The extension
splits if B = kero @ A* where A* is an algebra
isomorphic to A, and is singular if
(kero)? = 0.

PROPOSITION
There is a one to one correspondence

between isomorphism classes of singular
extensions of A and H2(A, A)



LIE ALGEBRAS
JACOBSON
LIE ALGEBRAS 1962

If L is a Lie algebra, then an L-module is a
vector space M and a mapping of M x L into
M, (m,z) — max, satisfying

(m1 4+ mo)x = mix + mox

a(mz) = (am)x = m(ax)
m|z1, z2] = (mz1)zo — (Mmz2)2]1.

Let L be a Lie algebra, M an L-module. If
1 > 1, an -dimensional M-cochain for L is a
skew symmetric i-linear mapping f of
LxLx---xL into M. Skew symmetric
means that if two arguments in f(xq, -, x;)
are interchanged, the value of f changes sign.
A O-dimensional cochain is a constant
function from L to M.



The coboundary operator § (for ¢ > 1) is:

5(f)(£131, T 7xi—|—1)
‘11 _ R
:Zzil(_l)z—l_lf(a?la B R 7 PR 7$i—|—1)$q
1+1
+ Z (_1)T+qf(x17 e 7§CI7 e 7£7“7 "y L1, [wébx”'“])'
q<r=1

and for i = 0, §(f)(xz) = ux (module action),
if fis the constant u € M.

One verifies that §2 = 0 giving rise to
cohomology groups

HY(L,M) = Z"(L,M)/B*(L, M)

If i =0 we take B! =0 and HO(L, M) =
ZO(L, M) ={u€ M :ux=0,Yz € L}.



THEOREM (WHITEHEAD’S LEMMAS)
If L is a finite dimensional semisimple Lie
algebra over a field of characteristic O, then

HYL, M) = H%(L,M) =0

for every finite dimensional module M of L.

THEOREM (WHITEHEAD)
If L is a finite dimensional semisimple Lie
algebra over a field of characteristic 0, then

HY'(L,M) =0 (Vi > 0)

for every finite dimensional irreducible module
M of L such that ML # 0.




JORDAN ALGEBRAS

GERSTENHABER
PROCEEDING OF THE NATIONAL
ACADEMY OF SCIENCES 1964

GLASSMAN /JACOBSON
JOURNAL OF ALGEBRA 1970

Let A be an algebra defined by a set of
identities and let M be an A-module. A
singular extension of length 2 is, by definition,
a null extension of A by M. So we need to
know what a null extension is.

It is simply a short exact sequence
0—- MG E ﬂ A—0O

where, provisionally, M is an algebra (rather
than an A-module) with M2 = 0.



If n > 2, a singular extension of length n is an
exact sequence of bimodules

O—-— M —-M,_ {—--—>M,—FE—>A—0

Morphisms, equivalences, addition, and scalar
multiplication of equivalence classes of
singular extensions can be defined.

Then for n > 2, H*(A, M) := equivalence
classes of singular extensions of length n

These definitions are equivalent to the
classical ones in the associative and Lie cases.



IV. COHOMOLOGY OF BANACH
ALGEBRAS
Let M be a Banach algebra and X a Banach
M-module.
For n > 1, let
L™"(M,X) = all continuous n-linear maps
(L°(M, X) = X)

Coboundary operator
o: L™ — L™l (for n > 1)

Op(ay,- -+, ant1) = arplag, -, any1)
+>(=1)¢(a1, +,aj-1,aa41, "+, ap41)
+(—=1)"T1¢(a1, -, an)an+1
For n = O,

0:X — L(M,X) Jx(a) = ax — xa
SO
Imo = the space of inner derivations



Since 0o 0 =0,
Im(o: L" 1 — L") C ker(d: L™ — L"T1)

H™(M, X) = kerd/Imo is a vector space.

For n =1, kerg =
{¢p: M — X :a1¢(az) — ¢(araz) + ¢(a1)ar = 0}

— the space of continuous derivations from
M to X

T hus,

derivations from M to X
inner derivations from M to X

HY (M, X) =

measures how close continuous derivations
are to inner derivations.

(What do H2(M, X), H3(M, X),...measure?)



Sneak Peak at Banach algebra
cohomology

HY(C(Q),E) = H?>(C(R),E) =0
(Kamowitz 1962 A PIONEER!)

(Question: H3(C(),E) =7)

H1(A,B(H)) =077 (AC B(H))
“The major open question in the theory of
derivations on C*-algebras”

A derivation from A into B(H) is inner if
and only if it is completely bounded.
(Christensen 1982)

Barry Johnson, “Cohomology of Banach
algebras’ , Memoirs of the American Math-
ematical Society 1972



Barry Johnson (1942—-2002)
.-I:'- JI-.:-;-H“'-':-:la:l"...lll"!h!l { _.. T




1,2 and 3 DIMENSIONAL COHOMOLOGY
FOR BANACH JORDAN ALGEBRAS;
PERTURBATION THEORY
Dosi-RMJM 2009 pp516-520

DEFINITION:

A BANACH ALGEBRA'IS STABLE IF ANY
TWO SUFFICIENTLY CLOSE BANACH
ALGEBRA MULTIPLICATIONS ARE
TOPOLOGICALLY ALGEBRAICALLY
ISOMORPHIC



MORE PRECISELY

If m is a Banach algebra multiplication on A,
then [[m(z, y)[| < [[m|ll|lzl||y]l-

THEOREM
If H2(A, A) = H3(A, A) = 0, then there exists
e > 0 such that if ||m1 — my]|| < e then (A, mq)
and (A, mo) are topologically algebraically
isomorphic.

e Johnson, Proc. Lon. Math. Soc. 1977
e Raeburn and Taylor, Jour. Funct. Anal.
1977






The origin of perturbation theory is
deformation theory.

Let c,i?j be the structure constants of a finite
dimensional Lie algebra L.

Let cffj(e) — cfj

Stability means (L,cfj(e)) is isomorphic to
(L,cfj) if € is sufficiently small.

THEOREM
(Gerstenhaber, Ann. of Math. 1964)
Finite dimensional semisimple Lie algebras are
stable.



ANAR DOSI (ALSO USES DOSIEV)
(Middle East Technical University, TURKEY))

THEOREM
IF L IS A BANACH LIE ALGEBRA AND
H?(L,L) = H3(L,L) =0, THEN L IS A
STABLE BANACH LIE ALGEBRA

THEOREM
SIMILAR FOR BANACH JORDAN
ALGEBRAS (WITH APPROPRIATE
DEFINITIONS OF LOW DIMENSIONAL
COHOMOLOGY GROUPS)



Survey of operator algebra cohomology
1971-2009

Ringrose, presidential address
Bull. LMS 1996

Sinclair and Smith: Survey
Contemporary Mathematics 2004



Hochschild cohomology involves an
associative algebra A and A-bimodules X and
gives rise to

n-cochains L™(A, X),
coboundary operators Ap,
n-coboundaries B",
n-cocycles Z™ and
cohomology groups H"(A, X).

If A is a Banach algebra and X is a Banach
A-bimodule (=Banach space with module
actions jointly continuous) we have the
continuous versions of the above concepts

LY, BY ., Z}

C C Cc

H'(A, X).

Warning: B[ is not always closed, so H is
still only a vector space.



Let A be a C*-algebra of operators acting on
a Hilbert space H and let X be a dual normal
A-module (X is a dual space and the module
actions are separately ultra
weakly-weak*-continuous). We now have

normal n-cochains L' (A, X )= bounded and sep-
arately weakly continuous n-cochains
coboundary operators Aj,,

normal n-coboundaries B)},

normal n-cocycles Z, and

normal cohomology groups H7'(A, X).



For a C*-algebra acting on a Hilbert space we
thus have three possible cohomology theories:

e the purely algebraic Hochschild theory H™
e the bounded theory H
e the normal theory H}

THEOREM 1C (1971)
Hy (A, X) ~ Hij(R, X)
(R =ultraweak closure of A)

THEOREM 2C (1972)
Hyp (A, X) ~ Hy (A, X)

By Theorems 1C and 2C, due to
Johnson-Kadison-Ringrose, all four
cohomology groups

are isomorphic.



THEOREM 3C (1971)
(Johnson-Kadison-Ringrose)
HY(R,X)=0Vn>1
(R =hyperfinite von Neumann algebra)

THEOREM 4C (1978)
(Connes)
If R is a von Neumann algebra with a
separable predual, and H1(R, X) = 0 for
every dual normal R-bimodule X, then
R is hyperfinite.



At this point, there were two outstanding
problems of special interest;

Problem A
H*(R,R) =0Vn>17
for every von Neumann algebra R
Problem B
HY(R,B(H)) =0Vn>17
for every von Neumann algebra R acting on a
Hilbert space H

(Problem C will come later)

ENTER COMPLETE BOUNDEDNESS



FAST FORWARD ONE DECADE

“The main obstacle to advance was a paucity
of information about the general bounded
linear (or multilinear) mapping between
operator algebras. The major breakthrough,
leading to most of the recent advances, came
through the development of a rather detailed
theory of completely bounded mappings.”
(Ringrose)

Let A be a C*-algebra and let S be a von
Neumann algebra, both acting on the same
Hilbert space H with A C S. We can view S

as a dual normal A-module with A acting on S
by left and right multiplication. We now have

completely bounded n-cochains L7, (A, S)
coboundary operators Ay,

completely bounded n-coboundaries B?b,
completely bounded n-cocycles Z;'
completely bounded cohomology groups H'; (A, S).



Let A be a C*-algebra and let S be a von
Neumann algebra, both acting on the same
Hilbert space H with A C S. We can view S

as a dual normal A-module with A acting on S
by left and right multiplication. We now have

completely bounded n-cochains L7, (A, S)
coboundary operators Ap,

completely bounded n-coboundaries BZ}b,
completely bounded n-cocycles Z;

completely bounded cohomology groups H'j (A, S).

For a C*-algebra A and a von Neumann
algebra S with A C S C B(H) we thus have
two new cohomology theories:

the completely bounded theory H;

the completely bounded normal theory H?bw



By straightforward analogues of Theorems 1C
and 2C, all four cohomology groups

Hi (A, S) (A,S), HG(R,S) , (R,S)

cbw cbw

are isomorphic, where R is the ultraweak
closure of A.

THEOREM 5C (1987)
(Christensen-Effros-Sinclair)
H%(R,B(H)) =0Vn>1
(R =any von Neumann algebra acting on H)

THEOREM 6C (1987)f
(Christensen-Sinclair)
H%(R,R)=0Vn>1

(R =any von Neumann algebra)

funpublished as of 2004



“Cohomology and complete boundedness
have enjoyed a symbiotic relationship where
advances in one have triggered progress in

the other” (Sinclair-Smith)

Theorems 7C and 8C are due to
Christensen-Effros-Sinclair.

THEOREM 7C (1987)
HY(R,R) =0 Vn>1

(R = von Neumann algebra of type I, I,
111, or of type I17 and stable under tensoring
with the hyperfinite factor)

THEOREM 8C (1987)
H"(R,B(H)) =0 v¥n > 1

(R = von Neumann algebra of type I, I,
111, or of type I17 and stable under tensoring
with the hyperfinite factor, acting on a
Hilbert space H)



THEOREM 9C (1998)
(Sinclair-Smith based on earlier work of
Christensen,Pop,Sinclair,Smith)
HY(R,R)=0Vn>1
(R = von Neumann algebra of type II; with a
Cartan subalgebra and a separablef predual)

THEOREM 10C (2003)
(Christensen-Pop-Sinclair-Smith n > 3)
H"(R,R) = H»(R,B(H)) =0 ¥Yn > 1
(R = von Neumann algebra factor of type Iy
with property I, acting on a Hilbert space H)

(n = 1:Kadison-Sakai '66 and Christensen '86
n = 2: Christensen-Sinclair '87, '01)

IThe separability assumption was removed in 2009—
Jan Cameron



We can now add a third problem (C) to our
previous two (A,B)

Problem A
HY(R,R) =0 Vn > 17
for every von Neumann algebra R
Problem B
H*(R,B(H)) =0Vn>17
for every von Neumann algebra R acting on a
Hilbert space H

Problem C
H*(R,R)) =0 V¥Yn > 27
(R is a von Neumann algebra of type I17)

A candidate is the factor arising from the free
group on 2 generators.



V—DERIVATIONS ON FINITE
DIMENSIONAL TRIPLE SYSTEMS

DEFINITION 5

A DERIVATION ON My, »(C) WITH
RESPECT TO

TRIPLE MATRIX MULTIPLICATION

IS A LINEAR MAPPING 6 WHICH
SATISFIES THE (TRIPLE) PRODUCT
RULE

S(AB*C) =
5(A)B*C 4+ AS(B)*C + AB*§(C)

PROPOSITION 5
FOR TWO MATRICES
Ae Mn(C),BeM,(C), WITH
A* = —A, B* = —B,

DEFINE 64 p(X) =

AX 4+ XB

THEN 464 p IS A DERIVATION WITH
RESPECT TO TRIPLE MATRIX
MULTIPLICATION



THEOREM 5
EVERY DERIVATION ON My, (C) WITH
RESPECT TO TRIPLE MATRIX
MULTIPLICATION IS A SUM OF
DERIVATIONS OF THE FORM 64 g.

REMARK
THESE RESULTS HOLD TRUE AND ARE
OF INTEREST FOR THE CASE m = n.



TRIPLE BRACKET MULTIPLICATION

LET'S GO BACK FOR A MOMENT TO
SQUARE MATRICES AND THE BRACKET
MULTIPLICATION.

MOTIVATED BY THE LAST REMARK,
WE DEFINE THE TRIPLE BRACKET
MULTIPLICATION TO BE [[X, Y], Z]

DEFINITION 6
A DERIVATION ON M,(C) WITH
RESPECT TO
TRIPLE BRACKET MULTIPLICATION

IS A LINEAR MAPPING 6 WHICH
SATISFIES THE TRIPLE PRODUCT RULE

6([[A, B, C]) =
[[6CA), B], C] + [[A,6(B)], C] + [[A, B], 6(C)]



PROPOSITION 6
FIX TWO MATRICES A, B IN M,(C) AND
DEFINE 64 p(X) = [[A, B], X]
THEN 64 5 IS A DERIVATION WITH
RESPECT TO TRIPLE BRACKET
MULTIPLICATION.

THEOREM 6
EVERY DERIVATION OF M,(C)% WITH
RESPECT TO TRIPLE BRACKET
MULTIPLICATION IS A SUM OF
DERIVATIONS OF THE FORM 64 p.

Snot a semisimple Lie triple system, as in Theorem 3



TRIPLE CIRCLE MULTIPLICATION

LET'S RETURN TO RECTANGULAR
MATRICES AND FORM THE TRIPLE
CIRCLE MULTIPLICATION

(AB*C + CB*A)/2

For sanity’'s sake, let us write this as

{A,B,C} = (AB*C + CB*A) /2

DEFINITION 7

A DERIVATION ON My, »(C) WITH
RESPECT TO

TRIPLE CIRCLE MULTIPLICATION

IS A LINEAR MAPPING 6 WHICH
SATISFIES THE TRIPLE PRODUCT RULE

S({A,B,CH)=
10(A), B,C} +{A,6(B),C} +{B, A,6(C)}



PROPOSITION 7
FIX TWO MATRICES A, B IN My n(C) AND
DEFINE

54.5(X) = {A, B, X} — {A, B, X}

THEN 64 p IS A DERIVATION WITH
RESPECT TO TRIPLE CIRCLE
MULTIPLICATION.

THEOREM 7
EVERY DERIVATION OF My, (C) WITH
RESPECT TO TRIPLE CIRCLE
MULTIPLICATION IS A SUM OF
DERIVATIONS OF THE FORM 64 p.



Table 39
Mpmn(C) (SS TRIPLE SYSTEMS)

triple triple triple

matrix | bracket circle
ab*c [[a,b],c] | ab*c + cb*a

Th. 5 Th.6 Th.7

5a,b($) 5a,b($) 5a,b($)

ab®x abx ab®x
+xb*a ~+xba ~+xb*a
—ba*x —bax —ba*x
—xa™b —xab —xa™b
(sums) | (sums) (sums)
(m =n)

YNote: for triple matrix and triple circle multiplication,
(ab* — ba™)* = —(ab® — ba™)

and
(b*a — a™b)* = —(b*a — a™b)



Table 1

Mn(C) (SS ALGEBRAS)

matrix bracket circle
ab=axb|[a,b] =ab—ba | aob = ab+ ba
Th. 2 Th.3 Th.4
da () da () da ()
axr — xa ax — xra ax — xa
Table 3

Mmn(C) (SS TRIPLE SYSTEMS)

triple triple triple
matrix | bracket circle
ab*c [[a,b],c] | ab*c + cb*a
Th. 5 Th.6 Th.7
5a,b(x) 5a,b(x) 5a,b($)
ab®x abx ab®x
~+xb*a ~+xba ~+xb*a
—ba*x —bazx —ba*x
—xa™b —xab —xa*b
(sums) | (sums) (sums)
(m =n)




AXIOMATIC APPROACH FOR TRIPLE
SYSTEMS

AN TRIPLE SYSTEM IS DEFINED TO BE
A SET (ACTUALLY A VECTOR SPACE)
WITH ONE BINARY OPERATION,
CALLED ADDITION AND ONE TERNARY
OPERATION CALLED
TRIPLE MULTIPLICATION




ADDITION IS DENOTED BY
a-+ b
AND IS REQUIRED TO BE
COMMUTATIVE AND ASSOCIATIVE

at+b=b+a, (a+b)+c=a+ (b+c)

TRIPLE MULTIPLICATION IS DENOTED
abc
AND IS REQUIRED TO BE LINEAR IN
EACH VARIABLE

(a + b)ed = acd + bed
a(b—+ c)d = abd + acd
ab(c + d) = abc + abd



IMPORTANT BUT SIMPLE EXAMPLES
OF TRIPLE SYSTEMS CAN BE FORMED
FROM ANY ALGEBRA

IF ab DENOTES THE ALGEBRA
PRODUCT, JUST DEFINE A TRIPLE
MULTIPLICATION TO BE (ab)c

LET'S SEE HOW THIS WORKS IN THE
ALGEBRAS WE INTRODUCED IN
SECTION I

C; fgh = (fg)h, OR fgh = (fg)h
(Mn(C), x): abe = abc OR abc = ab*c
(Mn(C),[,]); abe = [[a, ], c]
(Mn(C),0): abe = (aob)oc



A TRIPLE SYSTEM IS SAID TO BE
ASSOCIATIVE (RESP. COMMUTATIVE) IF
THE MULTIPLICATION IS ASSOCIATIVE

(RESP. COMMUTATIVE)

(RECALL THAT ADDITION IS ALWAYS
COMMUTATIVE AND ASSOCIATIVE)

IN THE TRIPLE CONTEXT THIS MEANS
THE FOLLOWING

ASSOCIATIVE
ab(cde) = (abc)de = a(bed)e

OR ab(cde) = (abc)de = a(dcb)e

COMMUTATIVE: abc = cba



AXIOMATIC APPROACH FOR TRIPLE
SYSTEMS

THE AXIOM WHICH CHARACTERIZES
TRIPLE MATRIX MULTIPLICATION IS

(abc)de = ab(cde) = a(dcb)e

THESE ARE CALLED
ASSOCIATIVE TRIPLE SYSTEMS
or
HESTENES ALGEBRAS



Magnus Hestenes (1906—1991)

Magnus Rudolph Hestenes was an American
mathematician. Together with Cornelius
Lanczos and Eduard Stiefel, he invented the
conjugate gradient method.

| oo AN



THE AXIOMS WHICH CHARACTERIZE
TRIPLE BRACKET MULTIPLICATION ARE

aab =0
abc + bca + cab = 0
de(abc) = (dea)bec + a(deb)c + ab(dec)
THESE ARE CALLED
LIE TRIPLE SYSTEMS
(NATHAN JACOBSON, MAX KOECHER)



Max Koecher (1924—1990)

Max Koecher was a German mathematician.
His main research area was the theory of
Jordan algebras, where he introduced the

KantorKoecherTits construction.

Nathan Jacobson (1910—-1999)




THE AXIOMS WHICH CHARACTERIZE
TRIPLE CIRCLE MULTIPLICATION ARE

abc = cba

de(abc) = (dea)bc — a(edb)c + ab(dec)

THESE ARE CALLED
JORDAN TRIPLE SYSTEMS

Ottmar Loos + Erhard Neher



Table 4
TRIPLE SYSTEMS

associative triple systems
(abc)de = ab(cde) = a(dcb)e

Lie triple systems
aab =0
abc + bca + cab = 0
de(abc) = (dea)be + a(deb)c + ab(dec)

Jordan triple systems
abc = cba

de(abc) = (dea)bc — a(edb)c + ab(dec)



VI—DERIVATIONS ON BANACH
TRIPLES

(iii) JC*-TRIPLE
derivation:
D{a,b,c} = {Da.b,c} 4+ {a, Db,c} + {a,b, Dc}
{z,y,2} = (zy*z + 2y"2) /2
inner derivation: > ;[L(x;,a;) — L(a;,x;)]
(x; € M,a; € A)
b— > [{zs, ai, b} — {a;, i, b}]
o AUTOMATIC CONTINUITY RESULTS

BARTON-FRIEDMAN 1990
(NEW) PERALTA-RUSSO 2010 (module)

e INNER DERIVATION RESULTS

HO-MARTINEZ-PERALTA-RUSSO 2002
MEYBERG 1972
KUHN-ROSENDAHL 1978 (module)

(NEW) HO-PERALTA-RUSSO 2011
(module, weak amenability)



KUDOS TO:
Lawrence A. Harris (PhD 1969)

1974 (infinite dimensional holomorphy)
1981 (spectral and ideal theory)



AUTOMATIC CONTINUITY RESULTS

THEOREM (1990 Barton-Friedman)
EVERY DERIVATION OF A JB*TRIPLE IS
CONTINUOUS

THEOREM (2010 Peralta-Russo)
NECESSARY AND SUFFICIENT
CONDITIONS UNDER WHICH A

DERIVATION OF A JB*-TRIPLE INTO A
JORDAN TRIPLE MODULE IS
CONTINUOUS

(JB*-triple and Jordan triple module are
defined below)



Tom Barton (b. 1955)

Tom Barton is Senior Director for
Architecture, Integration and CISO at the
University of Chicago. He had similar
assignments at the University of Memphis,
where he was a member of the mathematics
faculty before turning to administration.



Yaakov Friedman (b. 1948)

Yaakov Friedman is director of research at
Jerusalem College of Technology.
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Antonio Peralta (b. 1974)
Bernard Russo (b. 1939)

GO LAKERS!



PREVIOUS INNER DERIVATION
RESULTS

THEOREM (1972 Meyberg)
EVERY DERIVATION OF A FINITE
DIMENSIONAL SEMISIMPLE JORDAN
TRIPLE SYSTEM IS INNER
(Lie algebras, Lie triple systems)

THEOREM (1978 Kuhn-Rosendahl)
EVERY DERIVATION OF A FINITE
DIMENSIONAL SEMISIMPLE JORDAN
TRIPLE SYSTEM INTO A JORDAN
TRIPLE MODULE IS INNER
(Lie algebras)



THEOREM 2002
(Ho-Martinez-Peralta-Russo)
CARTAN FACTORS OF TYPE Inn,

II (even or o), and III HAVE THE INNER
DERIVATION PROPERTY

THEOREM 2002
(Ho-Martinez-Peralta-Russo)
INFINITE DIMENSIONAL CARTAN
FACTORS OF TYPE Iyn,m #n, and IV
DO NOT HAVE THE INNER DERIVATION
PROPERTY.



HO-PERALTA-RUSSO WORK ON
TERNARY WEAK AMENABILITY FOR
C*-ALGEBRAS AND JB*-TRIPLES

1. COMMUTATIVE C*-ALGEBRAS ARE
TERNARY WEAKLY AMENABLE (TWA)

2. COMMUTATIVE JB*TRIPLES ARE
APPROXIMATELY WEAKLY AMENABLE

3. B(H),K(H) ARE TWA IF AND ONLY IF
FINITE DIMENSIONAL

4. CARTAN FACTORS OF TYPE Imn OF
FINITE RANK WITH m #=n, AND OF
TYPE IV ARE TWA IF AND ONLY IF

FINITE DIMENSIONAL



SAMPLE LEMMA

The C*-algebra A = K(H) of all compact
operators on an infinite dimensional
Hilbert space H is not Jordan weakly

amenable.

We shall identify A* with the trace-class
operators on H.

Supposing that A were Jordan weakly
amenable, let ¢ € A* be arbitrary. Then D,
(= ad) is an associative derivation and
hence a Jordan derivation, so by assumption
would be an inner Jordan derivation. Thus
there would exist ¢; € A* and b; € A such that

Dy(x) = Z [pjo(bjox) —bjo(pjox)]
=1

for all z € A.
For =,y € A, a direct calculation yields

1 n
Yoy —yz) = — (Z bjw; — w%) (zy — yz).
j=1



It is known (Pearcy-Topping 1971) that every
compact operator on a separable (which we
may assume WLOG) infinite dimensional
Hilbert space is a finite sum of commutators
of compact operators.

By the just quoted theorem of Pearcy and
Topping, every element of K(H) can be
written as a finite sum of commutators
[z,y] = zy — yx of elements z,y in K(H).

Thus, it follows that the trace-class operator

1 n
p=—7 (Z bjej — %‘bj)

is a finite sum of commutators of compact
and trace-class operators, and hence has
trace zero. This is a contradiction, since o
was arbitrary.



PROPOSITION
The JB*-triple A = M,(C) is ternary
weakly amenable.

By a Proposition which is a step in the proof
that commutative C*-algebras are ternary
weakly amenable,

Di(A, A*) = Inn, (A, A*) o x + Inny(A, A™),
SO it suffices to prove that
Inny(A, A*) ox C Inni(A, A*).

As in the proof of the Lemma, if
D € Innj (A, A*) so that Dz = ¢z — xv for
some ¥ € A*, then

Tr(¥)

Y = [p1,b1] — [w2, b2] +

where by, b> are self adjoint elements of A and
w1 and o are self adjoint elements of A*.

1,

It is easy to see that, for each x € A, we have
D(x*) =
{w1,2b1,x} — {2b1, 1,7}
—{¥2,2b2,z} + {2b2, p2,x},
so that
Dox e Inni(A, A®).



VII—COHOMOLOGY OF FINITE
DIMENSIONAL TRIPLE SYSTEMS

. Cohomology of Lie triple systems and lie alge-
bras with involution, B. Harris, TAMS 1961

. Cohomology of associative triple systems, Re-
nate Carlsson, PAMS 1976

. On the representation theory of Lie triple sys-
tems, T.L.Hodge and B.J. Parshall, Trans. A.M.S.
2002

WEDDERBURN DECOMPOSITION

. Der Wedderburnsche Hauptsatz fur alternative
Tripelsysteme und Paare, Renate Carlsson, Math.
Ann 1977

. Wedderburnzerlegung fur Jordan-Paare, Oda
Kuhn und Adelheid Rosendahl, Manus. Math
1978



1
Cohomology of Lie triple systems and lie
algebras with involution
B. Harris, TAMS 1961

MATHEMATICAL REVIEWS

A Lie triple system T is a subspace of a Lie
algebra L closed under the ternary operation
[xyz] = [z, [y, z]] or, equivalently, it is the
subspace of L consisting of those elements «x
such that o(x) = —z, where o is an involution
of L.

A T-module M is a vector space such that
the vector-space direct sum T°@® M is itself a
Lie triple system in such a way that
1. T is a subsystem
2. [zyz] € M if any of z,y,z isin M
3. [zyz] = O if two of z,y,z are in M.



A universal Lie algebra L. (T) and an
Ly (T)-module Mg can be constructed in such
a way that both are operated on by an
involution o and so that T' and M consist of
those elements of L, (T) and Ms which are
mapped into their negatives by o.

Now suppose L is a Lie algebra with
involution ¢ and N is an L-oc module. Then o
operates on H™ (L, N) so that

H"(L,N) = H%.(L,N) ® H"(L, N)

with both summands invariant under o.

The cohomology of the Lie triple system is



The author investigates these groups for
n=20,1,2.

e HO(T, M) =0 for all T and M

e HI(T, M) = derivations of T into M modulo
inner derivations

e H2(T,M) = factor sets of T into M modulo
trivial factor sets.

Turning to the case of finite-dimensional
simple T and ground field of characteristic O,
one has the Whitehead lemmas

HY(T,M)=0= HXT,M)

Weyl's theorem: Every finite-dimensional
module is semi-simple.

The paper ends by showing that if in
addition, the ground field & is algebraically
closed, then H3(T,®) is 0 or not 0, according
as L, (T) is simple or not.



2
On the representation theory of Lie triple
systems,
Hodge, Terrell L., Parshall, Brian,
Trans. Amer. Math. Soc. 354 (2002),
no. 11, 4359-4391

The authors of the paper under review study
representations of Lie triple systems, both
ordinary and restricted.

The theory is based on the connection
between Lie algebras and Lie triple systems.

In addition, the authors begin the study of
the cohomology theory for Lie triple systems
and their restricted versions.

They also sketch some future applications
and developments of the theory.

Reviewed by Plamen Koshlukov



3
Cohomology of associative triple systems,
Renate Carlsson, PAMS 1976

MATHEMATICAL REVIEWS

A cohomology for associative triple systems is
defined, with the main purpose to get quickly
the cohomological triviality of
finite-dimensional separable objects over fields
of characteristic # 2, i.e., in particular the
Whitehead lemmas and the Wedderburn
principal theorem.

This is achieved by embedding an associative
triple system A in an associative algebra U(A)
and associating with every trimodule M for A
a bimodule M, for U(A) such that the
cohomology groups H™(A, M) are subgroups
of the classical cohomology groups
H™(U(A), My).



Since U(A) is chosen sufficiently close to A,
in order to inherit separability, the
cohomological triviality of separable A is an
immediate consequence of the associative
algebra theory.

The paper does not deal with functorialities,
not even with the existence of a long exact
cohomology sequence.



VIII—COHOMOLOGY OF BANACH
TRIPLE SYSTEMS
(PROSPECTUS)

Lie derivations into a module; automatic con-
tinuity and weak amenability
(Harris,Miers,Mathieu,Villena)

Cohomology of commutative JB*-triples
(Kamowitz,Carlsson)

Cohomology of TROs (Zalar,Carlsson)
Wedderburn decompositions for JB*-triples (Kihn-
Rosendahl)

Low dimensional cohomology for JBW?*-triples
and algebras-perturbation

(Dosi,McCrimmon)

Structure group of JB*-triple (McCrimmon—
derivations)

Alternative Banach triples (Carlsson,Braun)
Completely bounded triple cohomology (Tim-
oney et.al.,Christensen et.al)

Local derivations on JB*algebras and triples
(Kadison,Johnson,Ajupov,. . .)

Chu’s work on Koecher-Kantor-Tits construc-
tion



