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I—DERIVATIONS ON FINITE

DIMENSIONAL ALGEBRAS

Sophus Lie (1842–1899)

Marius Sophus Lie was a Norwegian mathe-

matician. He largely created the theory of con-

tinuous symmetry, and applied it to the study

of geometry and differential equations.



Pascual Jordan (1902–1980)

Pascual Jordan was a German theoretical and

mathematical physicist who made significant

contributions to quantum mechanics and quan-

tum field theory.



LET C DENOTE THE ALGEBRA OF

CONTINUOUS FUNCTIONS ON A

LOCALLY COMPACT HAUSDORFF

SPACE.

DEFINITION 1

A DERIVATION ON C IS A LINEAR

MAPPING δ : C → C SATISFYING THE

“PRODUCT” RULE:

δ(f + g) = δ(f) + δ(g)

δ(cf) = cδ(f)

δ(fg) = δ(f)g+ fδ(g)

THEOREM 1

There are no (non-zero) derivations on C.

In other words,

Every derivation of C is identically zero



THEOREM 1A

(1955-Singer and Wermer)

Every continuous derivation on C is zero.

Theorem 1B

(1960-Sakai)

Every derivation on C is continuous.

John Wermer Soichiro Sakai

(b. 1925) (b. 1926)



Isadore Singer (b. 1924)

Isadore Manuel Singer is an Institute

Professor in the Department of Mathematics

at the Massachusetts Institute of Technology.

He is noted for his work with Michael Atiyah

in 1962, which paved the way for new

interactions between pure mathematics and

theoretical physics.



LET Mn(C) DENOTE THE ALGEBRA OF

ALL n by n COMPLEX MATRICES, OR

MORE GENERALLY, ANY FINITE

DIMENSIONAL SEMISIMPLE

ASSOCIATIVE ALGEBRA. .

DEFINITION 2

A DERIVATION ON Mn(C) WITH

RESPECT TO MATRIX MULTIPLICATION

IS A LINEAR MAPPING δ WHICH

SATISFIES THE PRODUCT RULE

δ(AB) = δ(A)B +Aδ(B)

.

PROPOSITION 2

FIX A MATRIX A in Mn(C) AND DEFINE

δA(X) = AX −XA.

THEN δA IS A DERIVATION WITH

RESPECT TO MATRIX MULTIPLICATION



THEOREM 2
(1942 Hochschild)

EVERY DERIVATION ON Mn(C) WITH
RESPECT TO MATRIX MULTIPLICATION

IS OF THE FORM δA FOR SOME A IN
Mn(C).

Gerhard Hochschild (1915–2010)

(Photo 1968)
Gerhard Paul Hochschild was an American
mathematician who worked on Lie groups,
algebraic groups, homological algebra and

algebraic number theory.



Joseph Henry Maclagan Wedderburn

(1882–1948)

Scottish mathematician, who taught at

Princeton University for most of his career. A

significant algebraist, he proved that a finite

division algebra is a field, and part of the

Artin–Wedderburn theorem on simple

algebras. He also worked on group theory and

matrix algebra.



Amalie Emmy Noether (1882–1935)

Amalie Emmy Noether was an influential

German mathematician known for her

groundbreaking contributions to abstract

algebra and theoretical physics. Described as

the most important woman in the history of

mathematics, she revolutionized the theories

of rings, fields, and algebras. In physics,

Noether’s theorem explains the fundamental

connection between symmetry and

conservation laws.



RECOMMENDED READING

Gerhard Hochschild

A mathematician of the XXth Century

Walter Ferrer Santos

arXiv:1104.0335v1 [math.HO] 2 Apr 2011

(Photo 1976)



Gerhard Hochschild (1915–2010)

(Photo 1986)

(Photo 2003)



DEFINITION 3

A DERIVATION ON Mn(C) WITH

RESPECT TO BRACKET MULTIPLICATION

[X,Y ] = XY − Y X

IS A LINEAR MAPPING δ WHICH

SATISFIES THE PRODUCT RULE

δ([A,B]) = [δ(A), B] + [A, δ(B)]

.

PROPOSITION 3

FIX A MATRIX A in Mn(C) AND DEFINE

δA(X) = [A,X] = AX −XA.

THEN δA IS A DERIVATION WITH

RESPECT TO BRACKET

MULTIPLICATION



THEOREM 3
(1942 Hochschild, Zassenhaus)

EVERY DERIVATION ON Mn(C)∗ WITH
RESPECT TO BRACKET

MULTIPLICATION IS OF THE FORM δA
FOR SOME A IN Mn(C).

Hans Zassenhaus (1912–1991)

Hans Julius Zassenhaus was a German
mathematician, known for work in many parts

of abstract algebra, and as a pioneer of
computer algebra.

∗not a semisimple Lie algebra: trace(X) I is a derivation
which is not inner



DEFINITION 4

A DERIVATION ON Mn(C) WITH

RESPECT TO CIRCLE MULTIPLICATION

X ◦ Y = (XY + Y X)/2

IS A LINEAR MAPPING δ WHICH

SATISFIES THE PRODUCT RULE

δ(A ◦B) = δ(A) ◦B +A ◦ δ(B)

PROPOSITION 4

FIX A MATRIX A in Mn(C) AND DEFINE

δA(X) = AX −XA.

THEN δA IS A DERIVATION WITH

RESPECT TO CIRCLE MULTIPLICATION



THEOREM 4

(1972-Sinclair)

EVERY DERIVATION ON Mn(C) WITH

RESPECT TO CIRCLE MULTIPLICATION

IS OF THE FORM δA FOR SOME A IN

Mn(C).

REMARK

(1937-Jacobson)

THE ABOVE PROPOSITION AND

THEOREM NEED TO BE MODIFIED FOR

THE SUBALGEBRA (WITH RESPECT TO

CIRCLE MULTIPLICATION) OF

HERMITIAN MATRICES.



Alan M. Sinclair (retired)

Nathan Jacobson (1910–1999)

Nathan Jacobson was an American
mathematician who was recognized as one of
the leading algebraists of his generation, and
he was also famous for writing more than a

dozen standard monographs.



Table 1

Mn(C) (SEMISIMPLE ALGEBRAS)

matrix bracket circle
ab = a× b [a, b] = ab− ba a ◦ b = ab+ ba

Th. 2 Th.3 Th.4
δa(x) δa(x) δa(x)
= = =

ax− xa ax− xa ax− xa



Table 2

ALGEBRAS

commutative algebras

ab = ba

associative algebras

a(bc) = (ab)c

Lie algebras

a2 = 0

(ab)c+ (bc)a+ (ca)b = 0

Jordan algebras

ab = ba

a(a2b) = a2(ab)



DERIVATIONS ON C∗-ALGEBRAS

THE ALGEBRA Mn(C), WITH MATRIX

MULTIPLICATION, AS WELL AS THE

ALGEBRA C, WITH ORDINARY

MULTIPLICATION, ARE EXAMPLES OF

C∗-ALGEBRAS (FINITE DIMENSIONAL;

resp. COMMUTATIVE).

THE FOLLOWING THEOREM THUS

EXPLAINS THEOREMS 1 AND 2.

THEOREM (1966-Sakai, Kadison)

EVERY DERIVATION OF A C∗-ALGEBRA

IS OF THE FORM x 7→ ax− xa FOR SOME

a IN THE WEAK CLOSURE OF THE

C∗-ALGEBRA



Irving Kaplansky (1917–2006)

Kaplansky made major contributions to group

theory, ring theory, the theory of operator

algebras and field theory.



Richard Kadison (b. 1925)

Richard V. Kadison is an American

mathematician known for his contributions to

the study of operator algebras.



II—DERIVATIONS ON OPERATOR

ALGEBRAS

TWO BASIC QUESTIONS ON

DERIVATIONS OF BANACH ALGEBRAS

(AND TRIPLES)

A→ A and A→M (MODULE)

• AUTOMATIC CONTINUITY?

• INNER?

CONTEXTS

(i) C*-ALGEBRAS

(associative Banach algebras)

(ii) JC*-ALGEBRAS

(Jordan Banach algebras)

(iii) JC*-TRIPLES

(Banach Jordan triples)

Could also consider:

(ii’) Banach Lie algebras

(iii’)Banach Lie triple systems

(i’)Banach associative triple systems



(i) C*-ALGEBRAS

derivation: D(ab) = a ·Db+Da · b

inner derivation: ad x(a) = x · a− a · x (x ∈M)

• AUTOMATIC CONTINUITY RESULTS

KAPLANSKY 1949: C(X)

SAKAI 1960

RINGROSE 1972: (module)

• INNER DERIVATION RESULTS

SAKAI, KADISON 1966

CONNES 1976 (module)

HAAGERUP 1983 (module)



THEOREM (Sakai 1960)

Every derivation from a C∗-algebra into itself

is continuous.

THEOREM (Ringrose 1972)

Every derivation from a C∗-algebra into a

Banach A-bimodule is continuous.

THEOREM (1966-Sakai, Kadison)

EVERY DERIVATION OF A C∗-ALGEBRA

IS OF THE FORM x 7→ ax− xa FOR SOME

a IN THE WEAK CLOSURE OF THE

C∗-ALGEBRA



John Ringrose (b. 1932)

John Ringrose is a leading world expert on

non-self-adjoint operators and operator

algebras. He has written a number of

influential texts including Compact

non-self-adjoint operators (1971) and, with R

V Kadison, Fundamentals of the theory of

operator algebras in four volumes published in

1983, 1986, 1991 and 1992.



THEOREM (1976-Connes)

EVERY AMENABLE C∗-ALGEBRA IS

NUCLEAR.

Alain Connes b. 1947



Alain Connes is the leading specialist on

operator algebras.

In his early work on von Neumann algebras in

the 1970s, he succeeded in obtaining the

almost complete classification of injective

factors.

Following this he made contributions in

operator K-theory and index theory, which

culminated in the Baum-Connes conjecture.

He also introduced cyclic cohomology in the

early 1980s as a first step in the study of

noncommutative differential geometry.

Connes has applied his work in areas of

mathematics and theoretical physics,

including number theory, differential geometry

and particle physics.



THEOREM (1983-Haagerup)
EVERY NUCLEAR C∗-ALGEBRA IS

AMENABLE.

THEOREM (1983-Haagerup)
EVERY C∗-ALGEBRA IS WEAKLY

AMENABLE.

Uffe Haagerup b. 1950

Haagerup’s research is in operator theory, and
covers many subareas in the subject which
are currently very active - random matrices,
free probability, C*-algebras and applications

to mathematical physics.



DIGRESSION #1

A BRIDGE TO JORDAN ALGEBRAS

A Jordan derivation from a Banach algebra A

into a Banach A-module is a linear map D

satisfying D(a2) = aD(a) +D(a)a, (a ∈ A), or

equivalently,

D(ab+ ba) = aD(b) +D(b)a+D(a)b+ bD(a),

(a, b ∈ A).

Sinclair proved in 1970 that a bounded

Jordan derivation from a semisimple Banach

algebra to itself is a derivation, although this

result fails for derivations of semisimple

Banach algebras into a Banach bi-module.

Nevertheless, a celebrated result of B.E.

Johnson in 1996 states that every bounded

Jordan derivation from a C∗-algebra A to a

Banach A-bimodule is an associative

derivation.



In view of the intense interest in automatic

continuity problems in the past half century,

it is therefore somewhat surprising that the

following problem has remained open for

fifteen years.

PROBLEM

Is every Jordan derivation from a C∗-algebra

A to a Banach A-bimodule automatically

continuous (and hence a derivation, by

Johnson’s theorem)?

In 2004, J. Alaminos, M. Brešar and A.R.

Villena gave a positive answer to the above

problem for some classes of C∗-algebras

including the class of abelian C∗-algebras



Combining a theorem of Cuntz from 1976

with the theorem just quoted yields

THEOREM

Every Jordan derivation from a C∗-algebra
A to a Banach A-module is continuous.

In the same way, using the solution in 1996

by Hejazian-Niknam in the commutative case

we have

THEOREM

Every Jordan derivation from a

C∗-algebra A to a Jordan Banach

A-module is continuous.

(Jordan module will be defined below)

These two results will also be among the

consequences of our results on automatic

continuity of derivations into Jordan triple

modules.

(END OF DIGRESSION)



(ii) JC*-ALGEBRA

derivation: D(a ◦ b) = a ◦Db+Da ◦ b

inner derivation:
∑
i[L(xi)L(ai)− L(ai)L(xi)]

(xi ∈M,ai ∈ A)

b 7→
∑
i[xi ◦ (ai ◦ b)− ai ◦ (xi ◦ b)]

• AUTOMATIC CONTINUITY RESULTS

UPMEIER 1980

HEJAZIAN-NIKNAM 1996 (module)

ALAMINOS-BRESAR-VILLENA 2004

(module)

• INNER DERIVATION RESULTS

JACOBSON 1951 (module)

UPMEIER 1980



THEOREM (1951-Jacobson)

EVERY DERIVATION OF A FINITE

DIMENSIONAL SEMISIMPLE JORDAN

ALGEBRA INTO A (JORDAN) MODULE

IS INNER

(Lie algebras, Lie triple systems)

THEOREM (1980-Upmeier)

EVERY DERIVATION OF A REVERSIBLE

JC*-ALGEBRA EXTENDS TO A

DERIVATION OF ITS ENVELOPING

C*-ALGEBRA. (IMPLIES SINCLAIR)

THEOREM (1980-Upmeier)

1. Purely exceptional JBW-algebras have the

inner derivation property

2. Reversible JBW-algebras have the inner

derivation property

3. ⊕L∞(Sj, Uj) has the inner derivation

property if and only if supj dimUj <∞,

Uj spin factors.



Nathan Jacobson (1910-1999)

Harald Upmeier (b. 1950)



Digression #2—LIE DERIVATIONS

Miers, C. Robert

Lie derivations of von Neumann algebras.

DukeMath. J. 40 (1973), 403–409.

If M is a von Neumann algebra, [M,M ] the

Lie algebra linearly generated by

{[X,Y ] = XY − Y X : X,Y ∈M} and

L : [M,M ] →M a Lie derivation, i.e., L is

linear and L[X,Y ] = [LX, Y ] + [X,LY ], then

the author shows that L has an extension

D : M →M that is a derivation of the

associative algebra.

The proof involves matrix-like computations.



A theorem of S. Sakai [Ann. of Math. (2) 83

(1966), 273–279] now states that

DX = [A,X] with A ∈M fixed.

Using this the author finally shows that if

L : M →M is a Lie derivation, then

L = D+ λ, where D is an associative

derivation and λ is a linear map into the

center of M vanishing on [M,M ].

For primitive rings with nontrivial idempotent

and characteristic 6= 2 a slightly weaker result

is due to W. S. Martindale, III [Michigan

Math. J. 11 (1964), 183187].

Reviewed by Gerhard Janssen



Miers, C. Robert

Lie triple derivations of von Neumann

algebras.

Proc. Amer. Math. Soc. 71 (1978), no. 1,

57–61.

Authors summary: A Lie triple derivation of

an associative algebra M is a linear map

L : M →M such that

L[[X,Y ], Z] = [[L(X), Y ], Z]+

[[X,L(Y )], Z] + [[X,Y ], L(Z)]

for all X,Y, Z ∈M .

We show that if M is a von Neumann algebra

with no central Abelian summands then there

exists an operator A ∈M such that

L(X) = [A,X] + λ(X) where λ : M → ZM is a

linear map which annihilates brackets of

operators in M .

Reviewed by Jozsef Szucs



THEOREM

(JOHNSON 1996)

EVERY CONTINUOUS LIE DERIVATION

OF A SYMMERTICALLY AMENABLE

BANACH ALGEBRA A INTO A BANACH

BIMODULE X IS THE SUM OF AN

ASSOCIATIVE DERIVATION AND A

“TRIVIAL” DERIVATION

(TRIVIAL=ANY LINEAR MAP WHICH

VANISHES ON COMMUTATORS AND

MAPS INTO THE “CENTER” OF THE

MODULE).



The continuity assumption can be dropped if

X = A and A is a C*-algebra or a semisimple

symmetrically amenable Banach algebra

Mathieu, Martin; Villena, Armando R.

The structure of Lie derivations on

C*-algebras.

J. Funct. Anal. 202 (2003), no. 2, 504–525.

Alaminos, J.; Mathieu, M.; Villena, A. R.

Symmetric amenability and Lie derivations.

Math. Proc. Cambridge Philos. Soc. 137

(2004), no. 2, 433–439.



“ It remains an open question whether an

analogous result for Lie derivations from A

into a Banach A-bimodule holds when A is an

arbitrary C*-algebra and when A is an

arbitrary symmetrically amenable Banach

algebra.”

“It is also an interesting open question

whether or not every Lie derivation on a

semisimple Banach algebra to itself has this

form.”

(H.G. Dales)

END OF DIGRESSION



III—COHOMOLOGY OF FINITE

DIMENSIONAL ALGEBRAS

ASSOCIATIVE ALGEBRAS

HOCHSCHILD

ANNALS OF MATHEMATICS 1945

Let M be an associative algebra and X a

two-sided M-module. For n ≥ 1, let

Ln(M,X) = all n-linear maps

(L0(M,X) = X)

Coboundary operator

∂ : Ln → Ln+1 (for n ≥ 1)

∂φ(a1, · · · , an+1) = a1φ(a2, · · · , an+1)

+
∑

(−1)jφ(a1, · · · , aj−1, ajaj+1, · · · , an+1)

+(−1)n+1φ(a1, · · · , an)an+1

For n = 0,

∂ : X → L(M,X) ∂x(a) = ax− xa

Since ∂ ◦ ∂ = 0,

Im(∂ : Ln−1 → Ln) ⊂ ker(∂ : Ln → Ln+1)

Hn(M,X) = ker∂/Im∂ is a vector space.



For n = 1, ker∂ =

{φ : M → X : a1φ(a2)− φ(a1a2)+ φ(a1)a2 = 0}
= the space of derivations from M to X

∂ : X → L(M,X) ∂x(a) = ax− xa

Im∂ = the space of inner derivations

Thus H1(M,X) measures how close

derivations are to inner derivations.

An associative algebra B is an extension of

associative algebra A if there is a

homomorphism σ of B onto A. The extension

splits if B = ker σ ⊕A∗ where A∗ is an algebra

isomorphic to A, and is singular if

(ker σ)2 = 0.

PROPOSITION

There is a one to one correspondence

between isomorphism classes of singular

extensions of A and H2(A,A)



LIE ALGEBRAS

JACOBSON

LIE ALGEBRAS 1962

If L is a Lie algebra, then an L-module is a

vector space M and a mapping of M × L into

M , (m,x) 7→ mx, satisfying

(m1 +m2)x = m1x+m2x

α(mx) = (αm)x = m(αx)

m[x1, x2] = (mx1)x2 − (mx2)x1.

Let L be a Lie algebra, M an L-module. If

i ≥ 1, an i-dimensional M-cochain for L is a

skew symmetric i-linear mapping f of

L× L× · · · × L into M . Skew symmetric

means that if two arguments in f(x1, · · · , xi)
are interchanged, the value of f changes sign.

A 0-dimensional cochain is a constant

function from L to M .



The coboundary operator δ (for i ≥ 1) is:

δ(f)(x1, · · · , xi+1)

=
∑i+1
q=1(−1)i+1f(x1, · · · , x̂q, · · · , xi+1)xq

+
i+1∑

q<r=1

(−1)r+qf(x1, · · · , x̂q, · · · , x̂r, · · · , xi+1, [xq, xr]).

and for i = 0, δ(f)(x) = ux (module action),

if f is the constant u ∈M .

One verifies that δ2 = 0 giving rise to

cohomology groups

Hi(L,M) = Zi(L,M)/Bi(L,M)

If i = 0 we take Bi = 0 and H0(L,M) =

Z0(L,M) = {u ∈M : ux = 0, ∀x ∈ L}.



THEOREM (WHITEHEAD’S LEMMAS)

If L is a finite dimensional semisimple Lie

algebra over a field of characteristic 0, then

H1(L,M) = H2(L,M) = 0

for every finite dimensional module M of L.

THEOREM (WHITEHEAD)

If L is a finite dimensional semisimple Lie

algebra over a field of characteristic 0, then

Hi(L,M) = 0 (∀i ≥ 0)

for every finite dimensional irreducible module

M of L such that ML 6= 0.



JORDAN ALGEBRAS

GERSTENHABER

PROCEEDING OF THE NATIONAL

ACADEMY OF SCIENCES 1964

GLASSMAN/JACOBSON

JOURNAL OF ALGEBRA 1970

Let A be an algebra defined by a set of

identities and let M be an A-module. A

singular extension of length 2 is, by definition,

a null extension of A by M . So we need to

know what a null extension is.

It is simply a short exact sequence

0 →M
α→ E

β→ A→ 0

where, provisionally, M is an algebra (rather

than an A-module) with M2 = 0.



If n > 2, a singular extension of length n is an

exact sequence of bimodules

0 →M →Mn−1 → · · · →M2 → E → A→ 0

Morphisms, equivalences, addition, and scalar

multiplication of equivalence classes of

singular extensions can be defined.

Then for n ≥ 2, Hn(A,M) := equivalence

classes of singular extensions of length n

These definitions are equivalent to the

classical ones in the associative and Lie cases.



IV. COHOMOLOGY OF BANACH

ALGEBRAS

Let M be a Banach algebra and X a Banach

M-module.

For n ≥ 1, let

Ln(M,X) = all continuous n-linear maps

(L0(M,X) = X)

Coboundary operator

∂ : Ln → Ln+1 (for n ≥ 1)

∂φ(a1, · · · , an+1) = a1φ(a2, · · · , an+1)

+
∑

(−1)jφ(a1, · · · , aj−1, ajaj+1, · · · , an+1)

+(−1)n+1φ(a1, · · · , an)an+1

For n = 0,

∂ : X → L(M,X) ∂x(a) = ax− xa

so

Im∂ = the space of inner derivations



Since ∂ ◦ ∂ = 0,

Im(∂ : Ln−1 → Ln) ⊂ ker(∂ : Ln → Ln+1)

Hn(M,X) = ker∂/Im∂ is a vector space.

For n = 1, ker∂ =

{φ : M → X : a1φ(a2)− φ(a1a2)+ φ(a1)a2 = 0}
= the space of continuous derivations from

M to X

Thus,

H1(M,X) =
derivations from M to X

inner derivations from M to X

measures how close continuous derivations

are to inner derivations.

(What do H2(M,X), H3(M,X),. . . measure?)



Sneak Peak at Banach algebra

cohomology

• H1(C(Ω), E) = H2(C(Ω), E) = 0

(Kamowitz 1962 A PIONEER!)

(Question: H3(C(Ω), E) =?)

• H1(A,B(H)) = 0?? (A ⊂ B(H))

“The major open question in the theory of

derivations on C*-algebras”

• A derivation from A into B(H) is inner if

and only if it is completely bounded.

(Christensen 1982)

• Barry Johnson, “Cohomology of Banach

algebras”, Memoirs of the American Math-

ematical Society 1972



Barry Johnson (1942–2002)



1,2 and 3 DIMENSIONAL COHOMOLOGY

FOR BANACH JORDAN ALGEBRAS;

PERTURBATION THEORY

Dosi-RMJM 2009 pp516-520

DEFINITION:

A BANACH ALGEBRA IS STABLE IF ANY

TWO SUFFICIENTLY CLOSE BANACH

ALGEBRA MULTIPLICATIONS ARE

TOPOLOGICALLY ALGEBRAICALLY

ISOMORPHIC



MORE PRECISELY

If m is a Banach algebra multiplication on A,

then ‖m(x, y)‖ ≤ ‖m‖‖x‖‖y‖.

THEOREM

If H2(A,A) = H3(A,A) = 0, then there exists

ε > 0 such that if ‖m1 −m2‖ < ε then (A,m1)

and (A,m2) are topologically algebraically

isomorphic.

• Johnson, Proc. Lon. Math. Soc. 1977

• Raeburn and Taylor, Jour. Funct. Anal.

1977





The origin of perturbation theory is

deformation theory.

Let ckij be the structure constants of a finite

dimensional Lie algebra L.

Let ckij(ε) → ckij

Stability means (L, ckij(ε)) is isomorphic to

(L,ckij) if ε is sufficiently small.

THEOREM

(Gerstenhaber, Ann. of Math. 1964)

Finite dimensional semisimple Lie algebras are

stable.



ANAR DOSI (ALSO USES DOSIEV)

(Middle East Technical University, TURKEY)

THEOREM

IF L IS A BANACH LIE ALGEBRA AND

H2(L,L) = H3(L,L) = 0, THEN L IS A

STABLE BANACH LIE ALGEBRA

THEOREM

SIMILAR FOR BANACH JORDAN

ALGEBRAS (WITH APPROPRIATE

DEFINITIONS OF LOW DIMENSIONAL

COHOMOLOGY GROUPS)



Survey of operator algebra cohomology

1971-2009

Ringrose, presidential address

Bull. LMS 1996

Sinclair and Smith: Survey

Contemporary Mathematics 2004



Hochschild cohomology involves an

associative algebra A and A-bimodules X and

gives rise to

• n-cochains Ln(A,X),

• coboundary operators ∆n,

• n-coboundaries Bn,

• n-cocycles Zn and

• cohomology groups Hn(A,X).

If A is a Banach algebra and X is a Banach

A-bimodule (=Banach space with module

actions jointly continuous) we have the

continuous versions of the above concepts

Lnc , B
n
c , Znc , Hn

c (A,X).

Warning: Bnc is not always closed, so Hn
c is

still only a vector space.



Let A be a C*-algebra of operators acting on

a Hilbert space H and let X be a dual normal

A-module (X is a dual space and the module

actions are separately ultra

weakly-weak*-continuous). We now have

• normal n-cochains Lnw(A,X)= bounded and sep-

arately weakly continuous n-cochains

• coboundary operators ∆n,

• normal n-coboundaries Bnw,

• normal n-cocycles Znw and

• normal cohomology groups Hn
w(A,X).



For a C*-algebra acting on a Hilbert space we

thus have three possible cohomology theories:

• the purely algebraic Hochschild theory Hn

• the bounded theory Hn
c

• the normal theory Hn
w

THEOREM 1C (1971)

Hn
w(A,X) ∼ Hn

w(R,X)

(R =ultraweak closure of A)

THEOREM 2C (1972)

Hn
w(A,X) ∼ Hc

w(A,X)

By Theorems 1C and 2C, due to

Johnson-Kadison-Ringrose, all four

cohomology groups

Hn
w(A,X) , Hn

w(R,X) , Hn
c (R,X) , Hn

w(R,X)

are isomorphic.



THEOREM 3C (1971)

(Johnson-Kadison-Ringrose)

Hn
c (R,X) = 0 ∀n ≥ 1

(R =hyperfinite von Neumann algebra)

THEOREM 4C (1978)

(Connes)

If R is a von Neumann algebra with a

separable predual, and H1
c (R,X) = 0 for

every dual normal R-bimodule X, then

R is hyperfinite.



At this point, there were two outstanding

problems of special interest;

Problem A

Hn
c (R,R) = 0 ∀n ≥ 1?

for every von Neumann algebra R

Problem B

Hn
c (R,B(H)) = 0 ∀n ≥ 1?

for every von Neumann algebra R acting on a

Hilbert space H

(Problem C will come later)

ENTER COMPLETE BOUNDEDNESS



FAST FORWARD ONE DECADE

“The main obstacle to advance was a paucity

of information about the general bounded

linear (or multilinear) mapping between

operator algebras. The major breakthrough,

leading to most of the recent advances, came

through the development of a rather detailed

theory of completely bounded mappings.”

(Ringrose)

Let A be a C*-algebra and let S be a von

Neumann algebra, both acting on the same

Hilbert space H with A ⊂ S. We can view S

as a dual normal A-module with A acting on S

by left and right multiplication. We now have

• completely bounded n-cochains Lncb(A,S)

• coboundary operators ∆n,

• completely bounded n-coboundaries Bncb,

• completely bounded n-cocycles Znbc
• completely bounded cohomology groups Hn

cb(A,S).



Let A be a C*-algebra and let S be a von

Neumann algebra, both acting on the same

Hilbert space H with A ⊂ S. We can view S

as a dual normal A-module with A acting on S

by left and right multiplication. We now have

• completely bounded n-cochains Lncb(A,S)

• coboundary operators ∆n,

• completely bounded n-coboundaries Bncb,

• completely bounded n-cocycles Znbc
• completely bounded cohomology groups Hn

cb(A,S).

For a C*-algebra A and a von Neumann

algebra S with A ⊂ S ⊂ B(H) we thus have

two new cohomology theories:

• the completely bounded theory Hn
cb

• the completely bounded normal theory Hn
cbw



By straightforward analogues of Theorems 1C

and 2C, all four cohomology groups

Hn
cb(A,S) , Hn

cbw(A,S) , Hn
cb(R,S) , Hn

cbw(R,S)

are isomorphic, where R is the ultraweak

closure of A.

THEOREM 5C (1987)

(Christensen-Effros-Sinclair)

Hn
cb(R,B(H)) = 0 ∀n ≥ 1

(R =any von Neumann algebra acting on H)

THEOREM 6C (1987)†

(Christensen-Sinclair)

Hn
cb(R,R) = 0 ∀n ≥ 1

(R =any von Neumann algebra)

†unpublished as of 2004



“Cohomology and complete boundedness

have enjoyed a symbiotic relationship where

advances in one have triggered progress in

the other” (Sinclair-Smith)

Theorems 7C and 8C are due to

Christensen-Effros-Sinclair.

THEOREM 7C (1987)

Hn
c (R,R) = 0 ∀n ≥ 1

(R = von Neumann algebra of type I, II∞,

III, or of type II1 and stable under tensoring

with the hyperfinite factor)

THEOREM 8C (1987)

Hn
c (R,B(H)) = 0 ∀n ≥ 1

(R = von Neumann algebra of type I, II∞,

III, or of type II1 and stable under tensoring

with the hyperfinite factor, acting on a

Hilbert space H)



THEOREM 9C (1998)

(Sinclair-Smith based on earlier work of

Christensen,Pop,Sinclair,Smith)

Hn
c (R,R) = 0 ∀n ≥ 1

(R = von Neumann algebra of type II1 with a

Cartan subalgebra and a separable‡ predual)

THEOREM 10C (2003)

(Christensen-Pop-Sinclair-Smith n ≥ 3)

Hn
c (R,R) = Hn

c (R,B(H)) = 0 ∀n ≥ 1

(R = von Neumann algebra factor of type II1
with property Γ, acting on a Hilbert space H)

(n = 1:Kadison-Sakai ’66 and Christensen ’86

n = 2: Christensen-Sinclair ’87, ’01)

‡The separability assumption was removed in 2009—
Jan Cameron



We can now add a third problem (C) to our

previous two (A,B)

Problem A

Hn
c (R,R) = 0 ∀n ≥ 1?

for every von Neumann algebra R

Problem B

Hn
c (R,B(H)) = 0 ∀n ≥ 1?

for every von Neumann algebra R acting on a

Hilbert space H

Problem C

Hn
c (R,R)) = 0 ∀n ≥ 2?

(R is a von Neumann algebra of type II1)

A candidate is the factor arising from the free

group on 2 generators.



V—DERIVATIONS ON FINITE

DIMENSIONAL TRIPLE SYSTEMS

DEFINITION 5

A DERIVATION ON Mm,n(C) WITH
RESPECT TO

TRIPLE MATRIX MULTIPLICATION

IS A LINEAR MAPPING δ WHICH
SATISFIES THE (TRIPLE) PRODUCT

RULE

δ(AB∗C) =
δ(A)B∗C +Aδ(B)∗C +AB∗δ(C)

PROPOSITION 5

FOR TWO MATRICES
A ∈Mm(C), B ∈Mn(C), WITH

A∗ = −A,B∗ = −B,

DEFINE δA,B(X) =

AX +XB

THEN δA,B IS A DERIVATION WITH
RESPECT TO TRIPLE MATRIX

MULTIPLICATION



THEOREM 5

EVERY DERIVATION ON Mm,n(C) WITH

RESPECT TO TRIPLE MATRIX

MULTIPLICATION IS A SUM OF

DERIVATIONS OF THE FORM δA,B.

REMARK

THESE RESULTS HOLD TRUE AND ARE

OF INTEREST FOR THE CASE m = n.



TRIPLE BRACKET MULTIPLICATION

LET’S GO BACK FOR A MOMENT TO

SQUARE MATRICES AND THE BRACKET

MULTIPLICATION.

MOTIVATED BY THE LAST REMARK,

WE DEFINE THE TRIPLE BRACKET

MULTIPLICATION TO BE [[X,Y ], Z]

DEFINITION 6

A DERIVATION ON Mn(C) WITH

RESPECT TO

TRIPLE BRACKET MULTIPLICATION

IS A LINEAR MAPPING δ WHICH

SATISFIES THE TRIPLE PRODUCT RULE

δ([[A,B], C]) =

[[δ(A), B], C] + [[A, δ(B)], C] + [[A,B], δ(C)]



PROPOSITION 6

FIX TWO MATRICES A,B IN Mn(C) AND

DEFINE δA,B(X) = [[A,B], X]

THEN δA,B IS A DERIVATION WITH

RESPECT TO TRIPLE BRACKET

MULTIPLICATION.

THEOREM 6

EVERY DERIVATION OF Mn(C)§ WITH

RESPECT TO TRIPLE BRACKET

MULTIPLICATION IS A SUM OF

DERIVATIONS OF THE FORM δA,B.

§not a semisimple Lie triple system, as in Theorem 3



TRIPLE CIRCLE MULTIPLICATION

LET’S RETURN TO RECTANGULAR

MATRICES AND FORM THE TRIPLE

CIRCLE MULTIPLICATION

(AB∗C + CB∗A)/2

For sanity’s sake, let us write this as

{A,B,C} = (AB∗C + CB∗A)/2

DEFINITION 7

A DERIVATION ON Mm,n(C) WITH

RESPECT TO

TRIPLE CIRCLE MULTIPLICATION

IS A LINEAR MAPPING δ WHICH

SATISFIES THE TRIPLE PRODUCT RULE

δ({A,B,C})=
{δ(A), B, C}+ {A, δ(B), C}+ {B,A, δ(C)}



PROPOSITION 7

FIX TWO MATRICES A,B IN Mm,n(C) AND

DEFINE

δA,B(X) = {A,B,X} − {A,B,X}

THEN δA,B IS A DERIVATION WITH

RESPECT TO TRIPLE CIRCLE

MULTIPLICATION.

THEOREM 7

EVERY DERIVATION OF Mm,n(C) WITH

RESPECT TO TRIPLE CIRCLE

MULTIPLICATION IS A SUM OF

DERIVATIONS OF THE FORM δA,B.



Table 3¶

Mm,n(C) (SS TRIPLE SYSTEMS)

triple triple triple
matrix bracket circle
ab∗c [[a, b], c] ab∗c+ cb∗a

Th. 5 Th.6 Th.7
δa,b(x) δa,b(x) δa,b(x)

= = =
ab∗x abx ab∗x

+xb∗a +xba +xb∗a
−ba∗x −bax −ba∗x
−xa∗b −xab −xa∗b
(sums) (sums) (sums)

(m = n)

¶Note: for triple matrix and triple circle multiplication,

(ab∗ − ba∗)∗ = −(ab∗ − ba∗)

and

(b∗a− a∗b)∗ = −(b∗a− a∗b)



Table 1

Mn(C) (SS ALGEBRAS)

matrix bracket circle
ab = a× b [a, b] = ab− ba a ◦ b = ab+ ba

Th. 2 Th.3 Th.4
δa(x) δa(x) δa(x)
= = =

ax− xa ax− xa ax− xa

Table 3

Mm,n(C) (SS TRIPLE SYSTEMS)

triple triple triple
matrix bracket circle
ab∗c [[a, b], c] ab∗c+ cb∗a

Th. 5 Th.6 Th.7
δa,b(x) δa,b(x) δa,b(x)

= = =
ab∗x abx ab∗x

+xb∗a +xba +xb∗a
−ba∗x −bax −ba∗x
−xa∗b −xab −xa∗b
(sums) (sums) (sums)

(m = n)



AXIOMATIC APPROACH FOR TRIPLE

SYSTEMS

AN TRIPLE SYSTEM IS DEFINED TO BE

A SET (ACTUALLY A VECTOR SPACE)

WITH ONE BINARY OPERATION,

CALLED ADDITION AND ONE TERNARY

OPERATION CALLED

TRIPLE MULTIPLICATION



ADDITION IS DENOTED BY

a+ b

AND IS REQUIRED TO BE

COMMUTATIVE AND ASSOCIATIVE

a+ b = b+ a, (a+ b) + c = a+ (b+ c)

TRIPLE MULTIPLICATION IS DENOTED

abc

AND IS REQUIRED TO BE LINEAR IN

EACH VARIABLE

(a+ b)cd = acd+ bcd

a(b+ c)d = abd+ acd

ab(c+ d) = abc+ abd



IMPORTANT BUT SIMPLE EXAMPLES

OF TRIPLE SYSTEMS CAN BE FORMED

FROM ANY ALGEBRA

IF ab DENOTES THE ALGEBRA

PRODUCT, JUST DEFINE A TRIPLE

MULTIPLICATION TO BE (ab)c

LET’S SEE HOW THIS WORKS IN THE

ALGEBRAS WE INTRODUCED IN

SECTION I

C; fgh = (fg)h, OR fgh = (fg)h

(Mn(C),×); abc = abc OR abc = ab∗c

(Mn(C), [, ]); abc = [[a, b], c]

(Mn(C), ◦); abc = (a ◦ b) ◦ c



A TRIPLE SYSTEM IS SAID TO BE

ASSOCIATIVE (RESP. COMMUTATIVE) IF

THE MULTIPLICATION IS ASSOCIATIVE

(RESP. COMMUTATIVE)

(RECALL THAT ADDITION IS ALWAYS

COMMUTATIVE AND ASSOCIATIVE)

IN THE TRIPLE CONTEXT THIS MEANS

THE FOLLOWING

ASSOCIATIVE

ab(cde) = (abc)de = a(bcd)e

OR ab(cde) = (abc)de = a(dcb)e

COMMUTATIVE: abc = cba



AXIOMATIC APPROACH FOR TRIPLE

SYSTEMS

THE AXIOM WHICH CHARACTERIZES

TRIPLE MATRIX MULTIPLICATION IS

(abc)de = ab(cde) = a(dcb)e

THESE ARE CALLED

ASSOCIATIVE TRIPLE SYSTEMS

or

HESTENES ALGEBRAS



Magnus Hestenes (1906–1991)

Magnus Rudolph Hestenes was an American

mathematician. Together with Cornelius

Lanczos and Eduard Stiefel, he invented the

conjugate gradient method.



THE AXIOMS WHICH CHARACTERIZE

TRIPLE BRACKET MULTIPLICATION ARE

aab = 0

abc+ bca+ cab = 0

de(abc) = (dea)bc+ a(deb)c+ ab(dec)

THESE ARE CALLED

LIE TRIPLE SYSTEMS

(NATHAN JACOBSON, MAX KOECHER)



Max Koecher (1924–1990)

Max Koecher was a German mathematician.
His main research area was the theory of
Jordan algebras, where he introduced the

KantorKoecherTits construction.

Nathan Jacobson (1910–1999)



THE AXIOMS WHICH CHARACTERIZE

TRIPLE CIRCLE MULTIPLICATION ARE

abc = cba

de(abc) = (dea)bc− a(edb)c+ ab(dec)

THESE ARE CALLED

JORDAN TRIPLE SYSTEMS

Kurt Meyberg

Ottmar Loos + Erhard Neher



Table 4

TRIPLE SYSTEMS

associative triple systems

(abc)de = ab(cde) = a(dcb)e

Lie triple systems

aab = 0

abc+ bca+ cab = 0

de(abc) = (dea)bc+ a(deb)c+ ab(dec)

Jordan triple systems

abc = cba

de(abc) = (dea)bc− a(edb)c+ ab(dec)



VI—DERIVATIONS ON BANACH

TRIPLES

(iii) JC*-TRIPLE

derivation:

D{a, b, c} = {Da.b, c}+ {a,Db, c}+ {a, b,Dc}
{x, y, z} = (xy∗z + zy∗x)/2

inner derivation:
∑
i[L(xi, ai)− L(ai, xi)]

(xi ∈M,ai ∈ A)

b 7→
∑
i[{xi, ai, b} − {ai, xi, b}]

• AUTOMATIC CONTINUITY RESULTS

BARTON-FRIEDMAN 1990

(NEW) PERALTA-RUSSO 2010 (module)

• INNER DERIVATION RESULTS

HO-MARTINEZ-PERALTA-RUSSO 2002

MEYBERG 1972

KÜHN-ROSENDAHL 1978 (module)

(NEW) HO-PERALTA-RUSSO 2011

(module, weak amenability)



KUDOS TO:

Lawrence A. Harris (PhD 1969)

1974 (infinite dimensional holomorphy)

1981 (spectral and ideal theory)



AUTOMATIC CONTINUITY RESULTS

THEOREM (1990 Barton-Friedman)

EVERY DERIVATION OF A JB*-TRIPLE IS

CONTINUOUS

THEOREM (2010 Peralta-Russo)

NECESSARY AND SUFFICIENT

CONDITIONS UNDER WHICH A

DERIVATION OF A JB*-TRIPLE INTO A

JORDAN TRIPLE MODULE IS

CONTINUOUS

(JB∗-triple and Jordan triple module are

defined below)



Tom Barton (b. 1955)

Tom Barton is Senior Director for

Architecture, Integration and CISO at the

University of Chicago. He had similar

assignments at the University of Memphis,

where he was a member of the mathematics

faculty before turning to administration.



Yaakov Friedman (b. 1948)

Yaakov Friedman is director of research at

Jerusalem College of Technology.



Antonio Peralta (b. 1974)

Bernard Russo (b. 1939)

GO LAKERS!



PREVIOUS INNER DERIVATION

RESULTS

THEOREM (1972 Meyberg)

EVERY DERIVATION OF A FINITE

DIMENSIONAL SEMISIMPLE JORDAN

TRIPLE SYSTEM IS INNER

(Lie algebras, Lie triple systems)

THEOREM (1978 Kühn-Rosendahl)

EVERY DERIVATION OF A FINITE

DIMENSIONAL SEMISIMPLE JORDAN

TRIPLE SYSTEM INTO A JORDAN

TRIPLE MODULE IS INNER

(Lie algebras)



THEOREM 2002

(Ho-Martinez-Peralta-Russo)

CARTAN FACTORS OF TYPE In,n,

II (even or ∞), and III HAVE THE INNER

DERIVATION PROPERTY

THEOREM 2002

(Ho-Martinez-Peralta-Russo)

INFINITE DIMENSIONAL CARTAN

FACTORS OF TYPE Im,n,m 6= n, and IV

DO NOT HAVE THE INNER DERIVATION

PROPERTY.



HO-PERALTA-RUSSO WORK ON

TERNARY WEAK AMENABILITY FOR

C*-ALGEBRAS AND JB*-TRIPLES

1. COMMUTATIVE C*-ALGEBRAS ARE

TERNARY WEAKLY AMENABLE (TWA)

2. COMMUTATIVE JB*-TRIPLES ARE

APPROXIMATELY WEAKLY AMENABLE

3. B(H),K(H) ARE TWA IF AND ONLY IF

FINITE DIMENSIONAL

4. CARTAN FACTORS OF TYPE Im,n OF

FINITE RANK WITH m 6= n, AND OF

TYPE IV ARE TWA IF AND ONLY IF

FINITE DIMENSIONAL



SAMPLE LEMMA

The C∗-algebra A = K(H) of all compact

operators on an infinite dimensional

Hilbert space H is not Jordan weakly

amenable.

We shall identify A∗ with the trace-class

operators on H.

Supposing that A were Jordan weakly

amenable, let ψ ∈ A∗ be arbitrary. Then Dψ
(= adψ) is an associative derivation and

hence a Jordan derivation, so by assumption

would be an inner Jordan derivation. Thus

there would exist ϕj ∈ A∗ and bj ∈ A such that

Dψ(x) =
n∑

j=1

[ϕj ◦ (bj ◦ x)− bj ◦ (ϕj ◦ x)]

for all x ∈ A.

For x, y ∈ A, a direct calculation yields

ψ(xy − yx) = −
1

4

 n∑
j=1

bjϕj − ϕjbj

 (xy − yx).



It is known (Pearcy-Topping 1971) that every

compact operator on a separable (which we

may assume WLOG) infinite dimensional

Hilbert space is a finite sum of commutators

of compact operators.

By the just quoted theorem of Pearcy and

Topping, every element of K(H) can be

written as a finite sum of commutators

[x, y] = xy − yx of elements x, y in K(H).

Thus, it follows that the trace-class operator

ψ = −
1

4

 n∑
j=1

bjϕj − ϕjbj


is a finite sum of commutators of compact

and trace-class operators, and hence has

trace zero. This is a contradiction, since ψ

was arbitrary.



PROPOSITION
The JB∗-triple A = Mn(C) is ternary

weakly amenable.

By a Proposition which is a step in the proof
that commutative C*-algebras are ternary

weakly amenable,

Dt(A,A∗) = Inn∗b(A,A
∗) ◦ ∗+ Innt(A,A∗),

so it suffices to prove that

Inn∗b(A,A
∗) ◦ ∗ ⊂ Innt(A,A∗).

As in the proof of the Lemma, if
D ∈ Inn∗b(A,A

∗) so that Dx = ψx− xψ for
some ψ ∈ A∗, then

ψ = [ϕ1, b1]− [ϕ2, b2] +
Tr (ψ)

n
I,

where b1, b2 are self adjoint elements of A and
ϕ1 and ϕ2 are self adjoint elements of A∗.

It is easy to see that, for each x ∈ A, we have
D(x∗) =

{ϕ1,2b1, x} − {2b1, ϕ1, x}
−{ϕ2,2b2, x}+ {2b2, ϕ2, x},

so that
D ◦ ∗ ∈ Innt(A,A∗).



VII—COHOMOLOGY OF FINITE

DIMENSIONAL TRIPLE SYSTEMS

1. Cohomology of Lie triple systems and lie alge-

bras with involution, B. Harris, TAMS 1961

2. Cohomology of associative triple systems, Re-

nate Carlsson, PAMS 1976

3. On the representation theory of Lie triple sys-

tems, T.L.Hodge and B.J. Parshall, Trans. A.M.S.

2002

WEDDERBURN DECOMPOSITION

4. Der Wedderburnsche Hauptsatz für alternative

Tripelsysteme und Paare, Renate Carlsson, Math.

Ann 1977

5. Wedderburnzerlegung für Jordan-Paare, Oda

Kühn und Adelheid Rosendahl, Manus. Math

1978



1

Cohomology of Lie triple systems and lie

algebras with involution

B. Harris, TAMS 1961

MATHEMATICAL REVIEWS

A Lie triple system T is a subspace of a Lie

algebra L closed under the ternary operation

[xyz] = [x, [y, z]] or, equivalently, it is the

subspace of L consisting of those elements x

such that σ(x) = −x, where σ is an involution

of L.

A T -module M is a vector space such that

the vector-space direct sum T ⊕M is itself a

Lie triple system in such a way that

1. T is a subsystem

2. [xyz] ∈M if any of x, y, z is in M

3. [xyz] = 0 if two of x, y, z are in M .



A universal Lie algebra Lu(T ) and an

Lu(T )-module Ms can be constructed in such

a way that both are operated on by an

involution σ and so that T and M consist of

those elements of Lu(T ) and Ms which are

mapped into their negatives by σ.

Now suppose L is a Lie algebra with

involution σ and N is an L-σ module. Then σ

operates on Hn(L,N) so that

Hn(L,N) = Hn
+(L,N)⊕Hn

−(L,N)

with both summands invariant under σ.

The cohomology of the Lie triple system is

defined by Hn(T,M) = Hn
+(Lu(T ),Ms).



The author investigates these groups for

n = 0,1,2.

• H0(T,M) = 0 for all T and M

• H1(T,M) = derivations of T into M modulo

inner derivations

• H2(T,M) = factor sets of T into M modulo

trivial factor sets.

Turning to the case of finite-dimensional

simple T and ground field of characteristic 0,

one has the Whitehead lemmas

H1(T,M) = 0 = H2(T,M)

Weyl’s theorem: Every finite-dimensional

module is semi-simple.

The paper ends by showing that if in

addition, the ground field Φ is algebraically

closed, then H3(T,Φ) is 0 or not 0, according

as Lu(T ) is simple or not.



2

On the representation theory of Lie triple

systems,

Hodge, Terrell L., Parshall, Brian,

Trans. Amer. Math. Soc. 354 (2002),

no. 11, 4359–4391

The authors of the paper under review study

representations of Lie triple systems, both

ordinary and restricted.

The theory is based on the connection

between Lie algebras and Lie triple systems.

In addition, the authors begin the study of

the cohomology theory for Lie triple systems

and their restricted versions.

They also sketch some future applications

and developments of the theory.

Reviewed by Plamen Koshlukov



3

Cohomology of associative triple systems,

Renate Carlsson, PAMS 1976

MATHEMATICAL REVIEWS

A cohomology for associative triple systems is

defined, with the main purpose to get quickly

the cohomological triviality of

finite-dimensional separable objects over fields

of characteristic 6= 2, i.e., in particular the

Whitehead lemmas and the Wedderburn

principal theorem.

This is achieved by embedding an associative

triple system A in an associative algebra U(A)

and associating with every trimodule M for A

a bimodule Mu for U(A) such that the

cohomology groups Hn(A,M) are subgroups

of the classical cohomology groups

Hn(U(A),Mu).



Since U(A) is chosen sufficiently close to A,

in order to inherit separability, the

cohomological triviality of separable A is an

immediate consequence of the associative

algebra theory.

The paper does not deal with functorialities,

not even with the existence of a long exact

cohomology sequence.



VIII—COHOMOLOGY OF BANACH

TRIPLE SYSTEMS

(PROSPECTUS)

• Lie derivations into a module; automatic con-

tinuity and weak amenability

(Harris,Miers,Mathieu,Villena)

• Cohomology of commutative JB*-triples

(Kamowitz,Carlsson)

• Cohomology of TROs (Zalar,Carlsson)

• Wedderburn decompositions for JB*-triples (Kühn-

Rosendahl)

• Low dimensional cohomology for JBW*-triples

and algebras-perturbation

(Dosi,McCrimmon)

• Structure group of JB*-triple (McCrimmon—

derivations)

• Alternative Banach triples (Carlsson,Braun)

• Completely bounded triple cohomology (Tim-

oney et.al.,Christensen et.al)

• Local derivations on JB*algebras and triples

(Kadison,Johnson,Ajupov,. . . )

• Chu’s work on Koecher-Kantor-Tits construc-

tion


