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History of these lectures

”Slides” for all series 1 and series 2 talks available at
http://www.math.uci.edu/INSERT a “∼” HERE brusso/undergraduate.html

Series 1
• PART I FEBRUARY 8, 2011 ALGEBRAS; DERIVATIONS

• PART II JULY 21, 2011 TRIPLE SYSTEMS; DERIVATIONS

• PART III FEBRUARY 28, 2012 MODULES; DERIVATIONS

• PART IV JULY 26, 2012 COHOMOLOGY (ASSOCIATIVE ALGEBRAS)

• PART V OCTOBER 25, 2012 THE SECOND COHOMOLOGY GROUP

• PART VI MARCH 7, 2013 COHOMOLOGY (LIE ALGEBRAS)

• PART VII JULY 25, 2013 COHOMOLOGY (JORDAN ALGEBRAS)

• PART VIII SEPTEMBER 17, 2013 VANISHING THEOREMS IN
DIMENSIONS 1 AND 2 (ASSOCIATIVE ALGEBRAS)

• PART IX FEBRUARY 18, 2014 VANISHING THEOREMS IN
DIMENSIONS 1 AND 2 (JORDAN ALGEBRAS)
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Series 2
• PART I JULY 24, 2014 THE REMARKABLE CONNECTION
BETWEEN JORDAN ALGEBRAS AND LIE ALGEBRAS
(Two theorems relating different types of derivations)

• PART II NOVEMBER 18, 2014 THE REMARKABLE CONNECTION
BETWEEN JORDAN ALGEBRAS AND LIE ALGEBRAS
(Two theorems embedding triple systems in Lie algebras)

• (digression) FEBRUARY 24, 2015 GENETIC ALGEBRAS

• PART III JULY 15, 2015 LOCAL DERIVATIONS

• (Fall 2015 missed due to the flu)

• PART IV FEBRUARY 23, 2016 2-LOCAL DERIVATIONS

• PART V JUNE 28, 2016 LINKING ALGEBRA OF A TRIPLE SYSTEM

• PART VI (today) OCTOBER 18, 2016

UNIVERSAL ENVELOPING ASSOCIATIVE TRIPLE SYSTEMS
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Outline of today’s talk
Series 2—Part 6

• Part 1: Square and Rectangular Matrices

• Part 2: Algebras and Triple Systems

• Part 3: Examples of Embeddings (Relations between different structures)

• Part 4: Universal Enveloping Associative Triple Systems
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(Part 1 starts here) RECTANGULAR MATRICES

Mp,q = all p by q real matrices

a = [aij ]p×q =


a11 a12 · · · a1q
a21 a22 · · · a2q
· · · · · · · · ·
ap1 ap2 · · · apq

 (aij ∈ R)

Matrix Multiplication Mp,q ×Mq,r ⊂ Mp,r

ab = [aij ]p×q[bkl ]q×r = [cij ]p×r where cij =

q∑
k=1

aikbkj

Example

a11 a12
a21 a22
a31 a32

[b11
b21

]
= [aij ]3×2[bij ]2×1 =

a11b11 + a12b21
a21b11 + a22b21
a31b11 + a32b21

 =

c11c21
c31

 = [cij ]3×1
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SQUARE MATRICES

Mp = Mp,p = all p by p real matrices

a = [aij ]p×p =


a11 a12 · · · a1p
a21 a22 · · · a2p
· · · · · · · · ·
ap1 ap2 · · · app

 (aij ∈ R)

Matrix Multiplication Mp ×Mp ⊂ Mp

ab = [aij ]p×p[bkl ]p×p = [cij ]p×p where cij =

p∑
k=1

aikbkj

Examples p = 1, 2

• M1 = {[a11] : a11 ∈ R} (Behaves exactly as R)

•
[
a11 a12
a21 a22

] [
b11 b12
b21 b22

]
= [aij ]2×2[bij ]2×2 =

[
a11b11 + a11b12 a21b11 + a22b21
a21b11 + a22b21 a21b12 + a22b22

]
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Important special cases

Mp,q is a linear space

[aij ] + [bij ] = [aij + bij ], c[aij ] = [caij ]

M1,p = Rp (row vectors)

Mp,1 = Rp (column vectors)

Mp is an algebra
(matrix addition and matrix multiplication)

[aij ] + [bij ] = [aij + bij ], c[aij ] = [caij ], [aij ]× [bij ] = [
∑n

k=1 aikbkj ]

Mp,q is a triple system
(matrix addition and triple matrix multiplication)

What is triple matrix multiplication? You need the transpose.
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Transpose (to the rescue)
If a = [aij ] ∈ Mp,q then at = [atij ] ∈ Mq,p where atij = aji

a = [aij ]p×q =


a11 a12 · · · a1q
a21 a22 · · · a2q
· · · · · · · · ·
ap1 ap2 · · · apq



at = [atij ]q×p =


at11 at12 · · · at1p
at21 at22 · · · at2p
· · · · · · · · ·
atq1 atq2 · · · atqp

 =


a11 a21 · · · ap1
a12 a22 · · · ap2
· · · · · · · · ·
a1q a2q · · · apq


(ab)t = btat

Proof: If a = [aij ], b = [bij ] and c = ab = [cij ], so cij =
∑q

k=1 aikbkj ,

btat = [btij ][a
t
ij ] = [

∑q
k=1 b

t
ika

t
kj ] and

(ab)t = [c tij ] = [
∑q

k=1 ajkbki ] = [
∑q

k=1 a
t
kjb

t
ik ] Q.E .D.
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Three (binary) multiplications on Matrices

Matrix Multiplication

(Mp,+, ab) is an associative algebra , ab = matrix multiplication

Bracket Multiplication

(Mp,+, [a, b]) is a Lie algebra , [a, b] = ab − ba

Circle Multiplication

(Mp,+, a ◦ b) is a Jordan algebra , a ◦ b = (ab + ba)/2
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Three triple multiplications on Matrices

Triple Matrix Multiplication

abtc , a, b, c ∈ Mp,q(C) Denote abtc by 〈abc〉. Then

(Mp,q,+, 〈abc〉) is an associative triple system

Triple Bracket Multiplication

[[a, b], c], a, b, c ∈ Mp(C) Denote [[a, b], c] by [abc]. Then

(Mp,+, [abc]) is a Lie triple system

Triple Circle Multiplication

(abtc + cbta)/2, a, b, c ∈ Mp,q(C) Denote (abtc + cbta)/2 by {abc}. Then

(Mp,+, {abc}) is a Jordan triple system
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(Part 2 starts here) Review of Algebras—Axiomatic
approach

AN ALGEBRA IS DEFINED TO BE A SET (ACTUALLY A VECTOR SPACE
OVER A FIELD) WITH TWO BINARY OPERATIONS, CALLED ADDITION
AND MULTIPLICATION—we are downplaying multiplication by scalars
(=numbers=field elements)

ADDITION IS DENOTED BY a + b AND IS REQUIRED TO BE
COMMUTATIVE a + b = b + a
AND ASSOCIATIVE (a + b) + c = a + (b + c)

MULTIPLICATION IS DENOTED BY ab AND IS REQUIRED TO BE
DISTRIBUTIVE WITH RESPECT TO ADDITION
(a + b)c = ac + bc, a(b + c) = ab + ac

AN ALGEBRA IS SAID TO BE ASSOCIATIVE (RESP. COMMUTATIVE) IF THE
MULTIPLICATION IS ASSOCIATIVE (RESP. COMMUTATIVE)
(RECALL THAT ADDITION IS ALWAYS COMMUTATIVE AND ASSOCIATIVE)
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Table 1 (FASHIONABLE) ALGEBRAS

commutative algebras ab = ba
(Real numbers, Complex numbers, Continuous functions)

*****************************************
* associative algebras a(bc) = (ab)c *
* (Matrix multiplication) *
*****************************************

Lie algebras a2 = 0 , (ab)c + (bc)a + (ca)b = 0
(Bracket multiplication on associative algebras: [x , y ] = xy − yx)

Jordan algebras ab = ba, a(a2b) = a2(ab)
(Circle multiplication on associative algebras: x ◦ y = (xy + yx)/2)
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AXIOMATIC APPROACH FOR TRIPLE SYSTEMS

AN TRIPLE SYSTEM IS DEFINED TO BE A SET (ACTUALLY A VECTOR
SPACE) WITH ONE BINARY OPERATION, CALLED ADDITION AND ONE
TERNARY OPERATION CALLED TRIPLE MULTIPLICATION
ADDITION IS DENOTED BY
a + b
AND IS REQUIRED TO BE COMMUTATIVE AND ASSOCIATIVE
a + b = b + a, (a + b) + c = a + (b + c)
TRIPLE MULTIPLICATION IS DENOTED
〈abc〉
AND IS REQUIRED TO BE LINEAR IN EACH VARIABLE

〈(a + b)cd〉 = 〈acd〉+ 〈bcd〉
〈a(b + c)d〉 = 〈abd〉+ 〈acd〉
〈ab(c + d)〉 = 〈abc〉+ 〈abd〉
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THE AXIOM WHICH CHARACTERIZES TRIPLE MATRIX MULTIPLICATION

〈〈abc〉de〉 = 〈ab〈cde〉〉 = 〈a〈dcb〉e〉

Why not 〈a〈bcd〉e〉?

THESE ARE CALLED ASSOCIATIVE TRIPLE SYSTEMS
(MAGNUS HESTENES, OTTMAR LOOS)

Example: Triple matrix multiplication abc := abtc satisfies

(abtc)d te = abt(cd te) = a(dc tb)te

which is just abtcd te
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THE AXIOMS WHICH CHARACTERIZE TRIPLE BRACKET MULTIPLICATION

aab = 0

abc + bca + cab = 0

de(abc) = (dea)bc + a(deb)c + ab(dec)

THESE ARE CALLED LIE TRIPLE SYSTEMS

(NATHAN JACOBSON, MAX KOECHER)
Example: Triple bracket multiplication abc := [[a, b], c] satisfies

[[a, a], b] = 0

[[a, b], c] + [[b, c], a] + [[c , a], b] = 0

[[d , e], [[a, b], c]] = [[[[d , e], a], b], c] + [[a, [[d , e], b]], c] + [[a, b], [[d , e], c]]
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THE AXIOMS WHICH CHARACTERIZE TRIPLE CIRCLE MULTIPLICATION
ARE

abc = cba

de(abc) = (dea)bc − a(edb)c + ab(dec)

THESE ARE CALLED JORDAN TRIPLE SYSTEMS
Example: Triple circle multiplication abc := {abc} : (abTc + cbta)/2 satisfies

{abc} = {cba}

{de{abc}} = {{dea}bc} − {a{edb}c}+ {ab{dec}}
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SUMMARY

Table 1 (FASHIONABLE) ALGEBRAS

commutative algebras ab = ba
associative algebras a(bc) = (ab)c
Lie algebras a2 = 0 , (ab)c + (bc)a + (ca)b = 0
Jordan algebras ab = ba, a(a2b) = a2(ab)

Table 2 TRIPLE SYSTEMS
associative triple systems
(abc)de = ab(cde) = a(dcb)e
Lie triple systems
aab = 0
abc + bca + cab = 0
de(abc) = (dea)bc + a(deb)c + ab(dec)
Jordan triple systems
abc = cba
de(abc) = (dea)bc − a(edb)c + ab(dec)

(What is a commutative triple system?)
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(Part 3 starts here)

Recall that any associative algebra A with product ab can be made into a Lie
algebra, denoted by A−, by defining [a, b] = ab − ba and into a Jordan algebra,
denoted by A+, by defining a ◦ b = (ab + ba)/2

Ado’s Theorem 1947
Every finite dimensional Lie algebra over an algebraically closed field is isomorphic
to a subalgebra of A− for some associative algebra A

Exceptional Jordan algebras

There exist finite dimensional Jordan algebras which cannot be isomorphic to a
subalgebra of A+ for any associative algebra A
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Theorem
Every finite dimensional Lie triple system F is isomorphic to a Lie subtriple system
of a Lie algebra.

Proof:

Let (InderF ) be the set of all sums of mappings on F of the form
L(a, b)x = [[a, b], x ], where a, b are fixed elements of F . Let L be the Lie algebra
(InderF )⊕ F with product

[(H1, x1), (H2, x2)] = ([H1,H2] + L(x1, x2),H1x2 − H2x1).

Exercise
L is a Lie algebra.

Exercise

Let α : F → L be defined by α(x) = (0, x). Then α is a Lie triple isomorphism of
F onto a Lie triple subsystem of the Lie algebra L, that is, α is linear and
α([[a, b], c]) = [[α(a), α(b)], α(c)].
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The TKK construction (Tits-Kantor-Koecher)

Let V be a Jordan triple and let L(V ) be its TKK Lie algebra .
L(V ) = V ⊕ V0 ⊕ V and the Lie product is given by

[(x , h, y), (u, k , v)] = (hu − kx , [h, k] + x v − u y , k\y − h\v).

Here, a b is the left multiplication operator x 7→ {abx} (also called the box
operator), V0 = span{V V } is a Lie subalgebra of L(V ) and for
h =

∑
i ai bi ∈ V0, the map h\ : V → V is defined by

h\ =
∑
i

bi ai .

Exercise

L(V ) is a Lie algebra
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Example

Let V = M2 be the 2 by 2 matrix algebra. Then L(V ) is isomorphic to the Lie
algebra of all 4 by 4 matrices of trace zero.

Application

Every derivation of a finite dimensional semisimple Jordan triple system is inner.

Application of the earlier theorem

Every derivation of a finite dimensional semisimple Lie triple system is inner.
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Linking algebra of an associative triple system

Let X denote Mp,q and let x , y , z , . . . denote elements of X . We define

XX t = {x1y t
1 + x2y

t
2 + · · ·+ xny

t
n : xi , yi ∈ X , n = 1, 2 . . .}

and
X tX = {x t1y1 + x t2y2 + · · ·+ x tnyn : xi , yi ∈ X , n = 1, 2 . . .}

XX t = Mp,qMq,p is a subalgebra of Mp

and
X tX = Mq,pMp,q is a subalgebra of Mq

Let A =

[
XX t X
X t X tX

] (
Note: A ⊂

[
Mp Mp,q

Mq,p Mq

]
⊂ Mp+q

)
=
{[∑n

i=1 xiy
t
i x

y t ∑m
j=1 z

t
j wj

]
: x , y , xi , yi , zj ,wj ∈ X , n = 1, 2, . . . ,m = 1, 2, . . .

}
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Exercise

A is an algebra: a =
( α x
y t β

)
, b =

(
α1 x1
y t
1 β1

)
, ab =

(
αα1+xy t

1 αx1+xβ1

y tα1+βy
t
1 y tx1+ββ1

)
Exercise

X = M1,2,X
t = M2,1,XX

t = R,X tX = M2

Example

If X = M1,2,

A =

(
M1 M1,2

M2,1 M2

)
= M3
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Application

Let X = Mp,q and let D : X → X be a triple matrix derivation of X . If

A =
(
XX t X
X t X tX

)
⊂
(

Mp Mp,q

Mq,p Mq

)
⊂ Mp+q, then A is an algebra and the map

δ : A→ A given, for x , y , xi , yi , zj ,wj ∈ X , by[∑
i xiy

t
i x

y t ∑
j z

t
j wj

]
7→
[∑

i (xi (Dyi )
t+(Dxi )y

t
i ) Dx

(Dy)t
∑

j (z
t
j (Dwj )+(Dzj )

twj )

]
is well defined and a derivation of A, which extends D (when X is embedded in A

via ϕ(x) = ( 0 x
0 0 )). If a =

( α x
y t β

)
∈ A then δ(at) = δ(a)t where at =

(
αt y
x t βt

)
.

I δ is well-defined:
∑

i xiy
t
i = 0⇒

∑
i (Dxi )y

t
i + xi (Dyi )

t) = 0

I δ is linear: δ(a + b) = δ(a) + δ(b); δ(ca) = cδ(a)

I δ(at) = δ(a)t

I δ(ab) = aδ(b) + δ(a)b

I δ ( 0 x
0 0 ) = ( 0 Dx

0 0 )

I ϕ(xy tz) = ϕ(x)ϕ(y)tϕ(z)

Bernard Russo (UCI) DERIVATIONS An introduction to non associative algebra (or, Playing havoc with the product rule)24 / 29



(Part 4 starts here)

Theorem (Bunce-Feely-Timoney,Bohle-Werner 2012

Let Z be a Jordan triple system. Then there exists an associative triple system
V = T ∗(Z ) and a triple homomorphism ρZ : Z → V (V is considered as a Jordan
triple system under the triple product {abc} = (ab∗c + cb∗a)/2) such that if T is
any associative triple system (also considered as a Jordan triple system under the
triple product {abc} = (ab∗c + cb∗a)/2) and α : Z → T is a triple
homomorphism, then there is an associative triple system isomorphism α̃ : V → T
such that α̃ ◦ ρZ = α.

And, V is the smallest associative triple system containing ρZ (Z ).

α̃ is unique

V is unique (up to associative triple isomorphism)
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Examples: Cartan Factors

Z = Mn,m(C), m, n ≥ 2 , T ∗(Z ) = Mn,m(C)⊕Mm,n(C)

Z = Mn,1(C) or M1,n(C) , T ∗(Z ) = ⊕n
k=1Mpk ,qk (C), pk =

(
n
k

)
, qk =

(
n

k−1

)
Z = An ⊂ Mn(C), x t = −x , T ∗(Z ) = Mn(C)

Z = Sn ⊂ Mn(C), x t = x , T ∗(Z ) = Mn(C)

Z=spin factor, dimension 2n , T ∗(Z ) = M2n−1(C)⊕M2n−1(C)
Z=spin factor, dimension 2n + 1 , T ∗(Z ) = M2n(C)

spin system: S = {I , s1, . . . , sn} ⊂ Mm(C), n ≥ 2, s∗i = si , si sj + sjsi = 2δij
spin factor Z ⊂ Mm(C) is the linear span of S
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Applications

1. K-theory of finite dimensional Jordan triple systems
• Bohle, Dennis; Werner, Wend—The universal enveloping ternary ring of
operators of a JB*-triple system. Proc. Edinb. Math. Soc. (2) 57 (2014), no. 2,
347–366.

There is something called “K -theory” for associative algebras that can be used to
classify certain classes of operator algebras (C*-algebras).

Using the linking algebra of an associative triple system, one can obtain a
K -theory for associative triple systems.

Using the universal enveloping associative triple system of a Jordan triple system,
one can obtain a K -theory for Jordan triple systems, and hence a classification of
a certain class of Jordan triple systems.

2. Structure of infinite dimensional associative triple systems
• Russo, Bernard—Universal enveloping TROs and Structure of W*-TROs,
(preprint 2016)
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