DERIVATIONS

An introduction to non associative algebra (or, Playing havoc with the product rule)

Series 2—Part 6

Universal enveloping associative triple systems
Colloquium
Fullerton College

Bernard Russo
University of California, Irvine

October 18, 2016

History of these lectures

"Slides" for all series 1 and series 2 talks available at http://www.math.uci.edu/INSERT a "~" HERE brusso/undergraduate.html

Series 1

- PART I FEBRUARY 8, 2011 ALGEBRAS; DERIVATIONS
- PART II JULY 21, 2011 TRIPLE SYSTEMS; DERIVATIONS
- PART III FEBRUARY 28, 2012 MODULES; DERIVATIONS
- PART IV JULY 26, 2012 COHOMOLOGY (ASSOCIATIVE ALGEBRAS)
- PART V OCTOBER 25, 2012 THE SECOND COHOMOLOGY GROUP
- PART VI MARCH 7, 2013 COHOMOLOGY (LIE ALGEBRAS)
- PART VII JULY 25, 2013 COHOMOLOGY (JORDAN ALGEBRAS)
- PART VIII SEPTEMBER 17, 2013 VANISHING THEOREMS IN DIMENSIONS 1 AND 2 (ASSOCIATIVE ALGEBRAS)
- PART IX FEBRUARY 18, 2014 VANISHING THEOREMS IN DIMENSIONS 1 AND 2 (JORDAN ALGEBRAS)

Series 2

- PART I JULY 24, 2014 THE REMARKABLE CONNECTION BETWEEN JORDAN ALGEBRAS AND LIE ALGEBRAS (Two theorems relating different types of derivations)
- PART II NOVEMBER 18, 2014 THE REMARKABLE CONNECTION BETWEEN JORDAN ALGEBRAS AND LIE ALGEBRAS
(Two theorems embedding triple systems in Lie algebras)
- (digression) FEBRUARY 24, 2015 GENETIC ALGEBRAS
- PART III JULY 15, 2015 LOCAL DERIVATIONS
- (Fall 2015 missed due to the flu)
- PART IV FEBRUARY 23, 2016 2-LOCAL DERIVATIONS
- PART V JUNE 28, 2016 LINKING ALGEBRA OF A TRIPLE SYSTEM
- PART VI (today) OCTOBER 18, 2016

UNIVERSAL ENVELOPING ASSOCIATIVE TRIPLE SYSTEMS

Outline of today's talk

Series 2—Part 6

- Part 1: Square and Rectangular Matrices
- Part 2: Algebras and Triple Systems
- Part 3: Examples of Embeddings (Relations between different structures)
- Part 4: Universal Enveloping Associative Triple Systems

(Part 1 starts here) RECTANGULAR MATRICES

$$
\begin{aligned}
& M_{p, q}=\text { all } p \text { by } q \text { real matrices } \\
& \mathbf{a}=\left[a_{i j}\right]_{p \times q}=\left[\begin{array}{llll}
a_{11} & a_{12} & \cdots & a_{1 q} \\
a_{21} & a_{22} & \cdots & a_{2 q} \\
\cdots & \cdots & \cdots & \\
a_{p 1} & a_{p 2} & \cdots & a_{p q}
\end{array}\right] \quad\left(a_{i j} \in \mathbb{R}\right)
\end{aligned}
$$

Matrix Multiplication $M_{p, q} \times M_{q, r} \subset M_{p, r}$

$$
\mathbf{a b}=\left[a_{i j}\right]_{\rho \times q}\left[b_{k l}\right]_{q \times r}=\left[c_{i j}\right]_{\rho \times r} \text { where } c_{i j}=\sum_{k=1}^{q} a_{i k} b_{k j}
$$

Example

$$
\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22} \\
a_{31} & a_{32}
\end{array}\right]\left[\begin{array}{l}
b_{11} \\
b_{21}
\end{array}\right]=\left[a_{i j}\right]_{3 \times 2}\left[b_{i j}\right]_{2 \times 1}=\left[\begin{array}{l}
a_{11} b_{11}+a_{12} b_{21} \\
a_{21} b_{11}+a_{22} b_{21} \\
a_{31} b_{11}+a_{32} b_{21}
\end{array}\right]=\left[\begin{array}{l}
c_{11} \\
c_{21} \\
c_{31}
\end{array}\right]=\left[c_{i j}\right]_{3 \times 1}
$$

SQUARE MATRICES

$$
\begin{gathered}
M_{p}=M_{p, p}=\text { all } p \text { by } p \text { real matrices } \\
\mathbf{a}=\left[a_{i j}\right]_{p \times p}=\left[\begin{array}{llll}
a_{11} & a_{12} & \cdots & a_{1 p} \\
a_{21} & a_{22} & \cdots & a_{2 p} \\
\cdots & \cdots & \cdots & \\
a_{p 1} & a_{p 2} & \cdots & a_{p p}
\end{array}\right] \quad\left(a_{i j} \in \mathbb{R}\right)
\end{gathered}
$$

Matrix Multiplication $M_{p} \times M_{p} \subset M_{p}$

$$
\mathbf{a b}=\left[a_{i j}\right]_{p \times p}\left[b_{k l}\right]_{p \times p}=\left[c_{i j}\right]_{p \times p} \text { where } c_{i j}=\sum_{k=1}^{p} a_{i k} b_{k j}
$$

Examples $p=1,2$

- $M_{1}=\left\{\left[a_{11}\right]: a_{11} \in \mathbb{R}\right\} \quad$ (Behaves exactly as \mathbb{R})
$\bullet\left[\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right]\left[\begin{array}{ll}b_{11} & b_{12} \\ b_{21} & b_{22}\end{array}\right]=\left[a_{i j}\right]_{2 \times 2}\left[b_{i j}\right]_{2 \times 2}=\left[\begin{array}{ll}a_{11} b_{11}+a_{11} b_{12} & a_{21} b_{11}+a_{22} b_{21} \\ a_{21} b_{11}+a_{22} b_{21} & a_{21} b_{12}+a_{22} b_{22}\end{array}\right]$

Important special cases

$$
\begin{aligned}
& M_{p, q} \text { is a linear space } \\
& {\left[a_{i j}\right]+\left[b_{i j}\right]=\left[a_{i j}+b_{i j}\right], c\left[a_{i j}\right]=\left[c a_{i j}\right]}
\end{aligned}
$$

$M_{1, p}=\mathbb{R}^{p}$ (row vectors)
$M_{p, 1}=\mathbb{R}^{p}$ (column vectors)
M_{p} is an algebra
(matrix addition and matrix multiplication)
$\left[a_{i j}\right]+\left[b_{i j}\right]=\left[a_{i j}+b_{i j}\right], c\left[a_{i j}\right]=\left[c a_{i j}\right],\left[a_{i j}\right] \times\left[b_{i j}\right]=\left[\sum_{k=1}^{n} a_{i k} b_{k j}\right]$
$M_{p, q}$ is a triple system
(matrix addition and triple matrix multiplication)
What is triple matrix multiplication? You need the transpose.

Transpose (to the rescue)

If $\mathbf{a}=\left[a_{i j}\right] \in M_{p, q}$ then $\mathbf{a}^{t}=\left[a_{i j}^{t}\right] \in M_{q, p}$ where $a_{i j}^{t}=a_{j i}$

$$
\mathbf{a}=\left[a_{i j}\right]_{p \times q}=\left[\begin{array}{llll}
a_{11} & a_{12} & \cdots & a_{1 q} \\
a_{21} & a_{22} & \cdots & a_{2 q} \\
\cdots & \cdots & \cdots & \\
a_{p 1} & a_{p 2} & \cdots & a_{p q}
\end{array}\right]
$$

$$
\mathbf{a}^{t}=\left[a_{i j}^{t}\right]_{q \times p}=\left[\begin{array}{llll}
a_{11}^{t} & a_{12}^{t} & \cdots & a_{1 p}^{t} \\
a_{21}^{t} & a_{22}^{t} & \cdots & a_{2 p}^{t} \\
\cdots & \cdots & \cdots & \\
a_{q 1}^{t} & a_{q 2}^{t} & \cdots & a_{q p}^{t}
\end{array}\right]=\left[\begin{array}{llll}
a_{11} & a_{21} & \cdots & a_{p 1} \\
a_{12} & a_{22} & \cdots & a_{p 2} \\
\cdots & \cdots & \cdots & \\
a_{1 q} & a_{2 q} & \cdots & a_{p q}
\end{array}\right]
$$

$$
(a b)^{t}=b^{t} a^{t}
$$

Proof: If $\mathbf{a}=\left[a_{i j}\right], \mathbf{b}=\left[b_{i j}\right]$ and $\mathbf{c}=\mathbf{a b}=\left[c_{i j}\right]$, so $c_{i j}=\sum_{k=1}^{q} a_{i k} b_{k j}$,

$$
\begin{gathered}
\mathbf{b}^{t} \mathbf{a}^{t}=\left[b_{i j}^{t}\right]\left[a_{i j}^{t}\right]=\left[\sum_{k=1}^{q} b_{i k}^{t} a_{k j}^{t}\right] \quad \text { and } \\
(\mathbf{a b})^{t}=\left[c_{i j}^{t}\right]=\left[\sum_{k=1}^{q} a_{j k} b_{k i}\right]=\left[\sum_{k=1}^{q} a_{k j}^{t} b_{i k}^{t}\right] \quad \text { Q.E.D. }
\end{gathered}
$$

Three (binary) multiplications on Matrices

Matrix Multiplication

$\left(M_{p},+, a b\right)$ is an associative algebra,$a b=$ matrix multiplication

Bracket Multiplication

$\left(M_{p},+,[a, b]\right)$ is a Lie algebra $\quad, \quad[a, b]=a b-b a$

Circle Multiplication

$\left(M_{p},+, a \circ b\right)$ is a Jordan algebra , $a \circ b=(a b+b a) / 2$

Three triple multiplications on Matrices

Triple Matrix Multiplication $a b^{t} c, \quad a, b, c \in M_{p, q}(\mathbb{C})$ Denote $a b^{t} c$ by $\langle a b c\rangle$. Then $\left(M_{p, q},+,\langle a b c\rangle\right)$ is an associative triple system

Triple Bracket Multiplication

$[[a, b], c], \quad a, b, c \in M_{p}(\mathbb{C}) \quad$ Denote $[[a, b], c]$ by $[a b c]$. Then
($M_{p},+,[a b c]$) is a Lie triple system

Triple Circle Multiplication

$\left(a b^{t} c+c b^{t} a\right) / 2, \quad a, b, c \in M_{p, q}(\mathbb{C}) \quad$ Denote $\left(a b^{t} c+c b^{t} a\right) / 2$ by $\{a b c\}$. Then $\left(M_{p},+,\{a b c\}\right)$ is a Jordan triple system
(Part 2 starts here) Review of Algebras—Axiomatic approach

AN ALGEBRA IS DEFINED TO BE A SET (ACTUALLY A VECTOR SPACE OVER A FIELD) WITH TWO BINARY OPERATIONS, CALLED ADDITION AND MULTIPLICATION-we are downplaying multiplication by scalars (=numbers=field elements)

ADDITION IS DENOTED BY $a+b$ AND IS REQUIRED TO BE COMMUTATIVE $a+b=b+a$ AND ASSOCIATIVE $\quad(a+b)+c=a+(b+c)$

MULTIPLICATION IS DENOTED BY ab AND IS REQUIRED TO BE DISTRIBUTIVE WITH RESPECT TO ADDITION
$(a+b) c=a c+b c, \quad a(b+c)=a b+a c$

AN ALGEBRA IS SAID TO BE ASSOCIATIVE (RESP. COMMUTATIVE) IF THE MULTIPLICATION IS ASSOCIATIVE (RESP. COMMUTATIVE) (RECALL THAT ADDITION IS ALWAYS COMMUTATIVE AND ASSOCIATIVE)

Table 1 (FASHIONABLE) ALGEBRAS

commutative algebras $a b=b a$
(Real numbers, Complex numbers, Continuous functions)

* associative algebras $a(b c)=(a b) c \quad$ *
* (Matrix multiplication) *

Lie algebras $\quad a^{2}=0,(a b) c+(b c) a+(c a) b=0$
(Bracket multiplication on associative algebras: $[x, y]=x y-y x$)
Jordan algebras $a b=b a, a\left(a^{2} b\right)=a^{2}(a b)$
(Circle multiplication on associative algebras: $x \circ y=(x y+y x) / 2)$

AXIOMATIC APPROACH FOR TRIPLE SYSTEMS

AN TRIPLE SYSTEM IS DEFINED TO BE A SET (ACTUALLY A VECTOR SPACE) WITH ONE BINARY OPERATION, CALLED ADDITION AND ONE TERNARY OPERATION CALLED TRIPLE MULTIPLICATION ADDITION IS DENOTED BY
$a+b$
AND IS REQUIRED TO BE COMMUTATIVE AND ASSOCIATIVE
$a+b=b+a, \quad(a+b)+c=a+(b+c)$
TRIPLE MULTIPLICATION IS DENOTED
〈abc〉
AND IS REQUIRED TO BE LINEAR IN EACH VARIABLE

$$
\begin{aligned}
& \langle(a+b) c d\rangle=\langle a c d\rangle+\langle b c d\rangle \\
& \langle a(b+c) d\rangle=\langle a b d\rangle+\langle a c d\rangle \\
& \langle a b(c+d)\rangle=\langle a b c\rangle+\langle a b d\rangle
\end{aligned}
$$

THE AXIOM WHICH CHARACTERIZES TRIPLE MATRIX MULTIPLICATION

$$
\langle\langle a b c\rangle d e\rangle=\langle a b\langle c d e\rangle\rangle=\langle a\langle d c b\rangle e\rangle
$$

Why not $\langle a\langle b c d\rangle e\rangle$?

THESE ARE CALLED ASSOCIATIVE TRIPLE SYSTEMS (MAGNUS HESTENES, OTTMAR LOOS)

Example: Triple matrix multiplication $a b c:=a b^{t} c$ satisfies

$$
\left(a b^{t} c\right) d^{t} e=a b^{t}\left(c d^{t} e\right)=a\left(d c^{t} b\right)^{t} e
$$

which is just $a b^{t} c d^{t} e$

$$
\begin{gathered}
a a b=0 \\
a b c+b c a+c a b=0 \\
\operatorname{de}(a b c)=(\text { dea }) b c+a(\text { deb }) c+a b(\text { dec })
\end{gathered}
$$

THESE ARE CALLED LIE TRIPLE SYSTEMS
(NATHAN JACOBSON, MAX KOECHER)
Example: Triple bracket multiplication $a b c:=[[a, b], c]$ satisfies

$$
\begin{gathered}
{[[a, a], b]=0} \\
{[[a, b], c]+[[b, c], a]+[[c, a], b]=0} \\
{[[d, e],[[a, b], c]]=[[[[d, e], a], b], c]+[[a,[[d, e], b]], c]+[[a, b],[[d, e], c]]}
\end{gathered}
$$

THE AXIOMS WHICH CHARACTERIZE TRIPLE CIRCLE MULTIPLICATION

 ARE$$
\begin{gathered}
a b c=c b a \\
d e(a b c)=(d e a) b c-a(e d b) c+a b(d e c)
\end{gathered}
$$

THESE ARE CALLED JORDAN TRIPLE SYSTEMS

Example: Triple circle multiplication $a b c:=\{a b c\}:\left(a b T c+c b^{t} a\right) / 2$ satisfies

$$
\begin{gathered}
\{a b c\}=\{c b a\} \\
\{d e\{a b c\}\}=\{\{d e a\} b c\}-\{a\{e d b\} c\}+\{a b\{d e c\}\}
\end{gathered}
$$

SUMMARY

Table 1 (FASHIONABLE) ALGEBRAS

commutative algebras $a b=b a$ associative algebras $a(b c)=(a b) c$
Lie algebras $a^{2}=0,(a b) c+(b c) a+(c a) b=0$
Jordan algebras $a b=b a, a\left(a^{2} b\right)=a^{2}(a b)$

Table 2 TRIPLE SYSTEMS

associative triple systems
$(a b c) d e=a b(c d e)=a(d c b) e$
Lie triple systems
$a a b=0$
$a b c+b c a+c a b=0$
$d e(a b c)=($ dea $) b c+a(d e b) c+a b(d e c)$
Jordan triple systems
$a b c=c b a$
$d e(a b c)=(d e a) b c-a(e d b) c+a b(d e c)$
(What is a commutative triple system?)

(Part 3 starts here)

Recall that any associative algebra A with product $a b$ can be made into a Lie algebra, denoted by A^{-}, by defining $[a, b]=a b-b a$ and into a Jordan algebra, denoted by A^{+}, by defining $a \circ b=(a b+b a) / 2$

Ado's Theorem 1947

Every finite dimensional Lie algebra over an algebraically closed field is isomorphic to a subalgebra of A^{-}for some associative algebra A

Exceptional Jordan algebras

There exist finite dimensional Jordan algebras which cannot be isomorphic to a subalgebra of A^{+}for any associative algebra A

Theorem

Every finite dimensional Lie triple system F is isomorphic to a Lie subtriple system of a Lie algebra.

Proof:

Let (Inder F) be the set of all sums of mappings on F of the form $L(a, b) x=[[a, b], x]$, where a, b are fixed elements of F. Let \mathcal{L} be the Lie algebra (Inder F) $\oplus F$ with product

$$
\left[\left(H_{1}, x_{1}\right),\left(H_{2}, x_{2}\right)\right]=\left(\left[H_{1}, H_{2}\right]+L\left(x_{1}, x_{2}\right), H_{1} x_{2}-H_{2} x_{1}\right) .
$$

Exercise

\mathcal{L} is a Lie algebra.

Exercise

Let $\alpha: F \rightarrow \mathcal{L}$ be defined by $\alpha(x)=(0, x)$. Then α is a Lie triple isomorphism of F onto a Lie triple subsystem of the Lie algebra \mathcal{L}, that is, α is linear and $\alpha([[a, b], c])=[[\alpha(a), \alpha(b)], \alpha(c)]$.

The TKK construction (Tits-Kantor-Koecher)

Let V be a Jordan triple and let $\mathcal{L}(V)$ be its TKK Lie algebra. $\mathcal{L}(V)=V \oplus V_{0} \oplus V$ and the Lie product is given by

$$
[(x, h, y),(u, k, v)]=\left(h u-k x,[h, k]+x \square v-u \square y, k^{\natural} y-h^{\natural} v\right) .
$$

Here, $a \square b$ is the left multiplication operator $x \mapsto\{a b x\}$ (also called the box operator), $V_{0}=\operatorname{span}\{V \square V\}$ is a Lie subalgebra of $\mathcal{L}(V)$ and for $h=\sum_{i} a_{i} \square b_{i} \in V_{0}$, the map $h^{\natural}: V \rightarrow V$ is defined by

$$
h^{\natural}=\sum_{i} b_{i} \square a_{i}
$$

Exercise

$\mathfrak{L}(V)$ is a Lie algebra

Example

Let $V=M_{2}$ be the 2 by 2 matrix algebra. Then $\mathcal{L}(V)$ is isomorphic to the Lie algebra of all 4 by 4 matrices of trace zero.

Application

Every derivation of a finite dimensional semisimple Jordan triple system is inner.

Application of the earlier theorem

Every derivation of a finite dimensional semisimple Lie triple system is inner.

Linking algebra of an associative triple system

Let X denote $M_{p, q}$ and let x, y, z, \ldots denote elements of X. We define

$$
X X^{t}=\left\{x_{1} y_{1}^{t}+x_{2} y_{2}^{t}+\cdots+x_{n} y_{n}^{t}: x_{i}, y_{i} \in X, n=1,2 \ldots\right\}
$$

and

$$
X^{t} X=\left\{x_{1}^{t} y_{1}+x_{2}^{t} y_{2}+\cdots+x_{n}^{t} y_{n}: x_{i}, y_{i} \in X, n=1,2 \ldots\right\}
$$

$$
X X^{t}=M_{p, q} M_{q, p} \text { is a subalgebra of } M_{p}
$$

and

$$
X^{t} X=M_{q, p} M_{p, q} \text { is a subalgebra of } M_{q}
$$

$$
\begin{gathered}
\text { Let } A=\left[\begin{array}{cc}
X X^{t} & X \\
X^{t} & X^{t} X
\end{array}\right] \quad\left(\text { Note: } A \subset\left[\begin{array}{cc}
M_{p} & M_{p, q} \\
M_{q, p} & M_{q}
\end{array}\right] \subset M_{p+q}\right) \\
=\left\{\left[\begin{array}{cc}
\sum_{i=1}^{n} x_{i} x_{i}^{t} & x \\
y^{t} & \sum_{j=1}^{m} z_{j}^{t} w_{j}
\end{array}\right]: x, y, x_{i}, y_{i}, z_{j}, w_{j} \in X, n=1,2, \ldots, m=1,2, \ldots\right\}
\end{gathered}
$$

Exercise

A is an algebra: $a=\left(\begin{array}{cc}\alpha & x \\ y^{t} & \beta\end{array}\right), b=\left(\begin{array}{cc}\alpha_{1} & x_{1} \\ y_{1}^{t} & \beta_{1}\end{array}\right), a b=\left(\begin{array}{cc}\alpha \alpha_{1}+x y_{1}^{t} & \alpha x_{1}+x \beta_{1} \\ y^{t} \alpha_{1}+\beta y_{1}^{t} & y^{t} x_{1}+\beta \beta_{1}\end{array}\right)$

Exercise

$X=M_{1,2}, X^{t}=M_{2,1}, X X^{t}=\mathbb{R}, X^{t} X=M_{2}$

Example

If $X=M_{1,2}$,

$$
A=\left(\begin{array}{cc}
M_{1} & M_{1,2} \\
M_{2,1} & M_{2}
\end{array}\right)=M_{3}
$$

Application

Let $X=M_{p, q}$ and let $D: X \rightarrow X$ be a triple matrix derivation of X. If $A=\left(\begin{array}{cc}X X^{t} & X \\ X^{t} & X^{X} X\end{array}\right) \subset\left(\begin{array}{cc}M_{p} & M_{p, q} \\ M_{q, p} & M_{q}\end{array}\right) \subset M_{p+q}$, then A is an algebra and the map $\delta: A \rightarrow A$ given, for $x, y, x_{i}, y_{i}, z_{j}, w_{j} \in X$, by

$$
\left[\begin{array}{cc}
\sum_{i} x_{i} y_{i}^{t} & x \\
y^{t} & \sum_{j}^{z_{j}^{t} w_{j}}
\end{array}\right] \mapsto\left[\begin{array}{cc}
\sum_{i}\left(x_{i}\left(D y_{i j}\right)^{t}+\left(D x_{i}\right) y_{i}^{t}\right) & D x \\
(D y)^{t} & \sum_{j}\left(z_{j}^{t}\left(D w_{j}\right)+\left(D z_{j}\right)^{t} w_{j}\right)
\end{array}\right]
$$

is well defined and a derivation of A, which extends D (when X is embedded in A via $\varphi(x)=\left(\begin{array}{lll}0 & x \\ 0 & 0\end{array}\right)$. If $a=\left(\begin{array}{cc}\alpha & x \\ y^{t} & \beta\end{array}\right) \in A$ then $\delta\left(a^{t}\right)=\delta(a)^{t}$ where $a^{t}=\left(\begin{array}{cc}\alpha^{t} & y \\ x^{t} & \beta^{t}\end{array}\right)$.

- δ is well-defined: $\left.\sum_{i} x_{i} y_{i}^{t}=0 \Rightarrow \sum_{i}\left(D x_{i}\right) y_{i}^{t}+x_{i}\left(D y_{i}\right)^{t}\right)=0$
- δ is linear: $\delta(a+b)=\delta(a)+\delta(b) ; \delta(c a)=c \delta(a)$
- $\delta\left(a^{t}\right)=\delta(a)^{t}$
- $\delta(a b)=a \delta(b)+\delta(a) b$
- $\delta\left(\begin{array}{ll}0 & x \\ 0 & 0\end{array}\right)=\left(\begin{array}{cc}0 & D_{x} \\ 0 & 0\end{array}\right)$
- $\varphi\left(x y^{t} z\right)=\varphi(x) \varphi(y)^{t} \varphi(z)$

(Part 4 starts here)

Theorem (Bunce-Feely-Timoney,Bohle-Werner 2012

Let Z be a Jordan triple system. Then there exists an associative triple system $V=T^{*}(Z)$ and a triple homomorphism $\rho_{Z}: Z \rightarrow V(V$ is considered as a Jordan triple system under the triple product $\left.\{a b c\}=\left(a b^{*} c+c b^{*} a\right) / 2\right)$ such that if T is any associative triple system (also considered as a Jordan triple system under the triple product $\left.\{a b c\}=\left(a b^{*} c+c b^{*} a\right) / 2\right)$ and $\alpha: Z \rightarrow T$ is a triple homomorphism, then there is an associative triple system isomorphism $\tilde{\alpha}: V \rightarrow T$ such that $\tilde{\alpha} \circ \rho_{Z}=\alpha$.
And, V is the smallest associative triple system containing $\rho_{Z}(Z)$.

$\tilde{\alpha}$ is unique

V is unique (up to associative triple isomorphism)
universal enveloping associatue triple system (of ZI

$\varphi:=\widetilde{\psi}_{1} \circ \widetilde{\psi}_{2}: V_{1} \rightarrow V_{1}$ is an assoc. triple syptem honiomorphesm
claim φ is the rentity on V_{1}
so V_{1} is ssomorphe to V_{2} as associatue trople syptems

Examples: Cartan Factors

$$
Z=M_{n, m}(\mathbb{C}), m, n \geq 2 \quad, \quad T^{*}(Z)=M_{n, m}(\mathbb{C}) \oplus M_{m, n}(\mathbb{C})
$$

$Z=M_{n, 1}(\mathbb{C})$ or $M_{1, n}(\mathbb{C}) \quad, \quad T^{*}(Z)=\oplus_{k=1}^{n} M_{p_{k}, q_{k}}(\mathbb{C}), p_{k}=\binom{n}{k}, q_{k}=\binom{n}{k-1}$
$Z=A_{n} \subset M_{n}(\mathbb{C}), x^{t}=-x \quad, \quad T^{*}(Z)=M_{n}(\mathbb{C})$
$Z=S_{n} \subset M_{n}(\mathbb{C}), x^{t}=x \quad, \quad T^{*}(Z)=M_{n}(\mathbb{C})$
$Z=$ spin factor, dimension $2 n \quad, \quad T^{*}(Z)=M_{2^{n-1}}(\mathbb{C}) \oplus M_{2^{n-1}}(\mathbb{C})$
$Z=$ spin factor, dimension $2 n+1, \quad T^{*}(Z)=M_{2^{n}}(\mathbb{C})$
spin system: $S=\left\{I, s_{1}, \ldots, s_{n}\right\} \subset M_{m}(\mathbb{C}), n \geq 2, s_{i}^{*}=s_{i}, s_{i} s_{j}+s_{j} s_{i}=2 \delta_{i j}$ spin factor $Z \subset M_{m}(\mathbb{C})$ is the linear span of S

Applications

1. K-theory of finite dimensional Jordan triple systems

- Bohle, Dennis; Werner, Wend-The universal enveloping ternary ring of operators of a JB*-triple system. Proc. Edinb. Math. Soc. (2) 57 (2014), no. 2, 347-366.

There is something called "K-theory" for associative algebras that can be used to classify certain classes of operator algebras (C*-algebras).

Using the linking algebra of an associative triple system, one can obtain a K-theory for associative triple systems.

Using the universal enveloping associative triple system of a Jordan triple system, one can obtain a K-theory for Jordan triple systems, and hence a classification of a certain class of Jordan triple systems.
2. Structure of infinite dimensional associative triple systems

- Russo, Bernard-Universal enveloping TROs and Structure of W*-TROs, (preprint 2016)

