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PREAMBLE

Much of the algebra taught in the

undergraduate curriculum, such as linear

algebra (vector spaces, matrices), modern

algebra (groups, rings, fields), number

theory (primes, congruences) is concerned

with systems with one or more associative

binary products.

For example, addition and multiplication of

matrices is associative:

A+(B+C)=(A+B)+C

and

A(BC)=(AB)C.



In the early 20th century, physicists started

using the product A.B for matrices, defined

by

A.B = AB +BA,

and called the Jordan product (after the

physicist Pascual Jordan 1902-1980), to

model the observables in quantum mechanics.

Also in the early 20th century both

mathematicians and physicists used the

product [A,B], defined by

[A,B] = AB −BA

and called the Lie product (after the

mathematician Sophus Lie 1842-1899), to

study differential equations.



Neither one of these products is associative,

so they each give rise to what is called a

nonassociative algebra, in these cases, called

Jordan algebras and Lie algebras

respectively.

Abstract theories of these algebras and other

nonassociative algebras were subsequently

developed and have many other applications,

for example to cryptography and genetics,

to name just two.

Lie algebras are especially important in

particle physics.



Using only the product rule for differentiation,

which every calculus student knows, part I

introduced the subject of nonassociative

algebras as the natural context for

derivations.

Part II introduced derivations on other

algebraic systems which have a ternary

rather than a binary product, with special

emphasis on Jordan and Lie structures.

Part III introduced the notion of module and

was concerned with derivations from an

algebra, not into itself, but into a module

over the algebra. This is the appropriate

setting for the study of cohomology and

homological algebra



Part IV introduced the cohomology groups of

an algebra and rephrased the theory of

derivations on an algebra into a statement on

the first cohomology group.

In this talk, we shall give the background on

equivalence relations and quotient groups

of abelian groups in order to define rigorously

the cohomology groups of an associative

algebra.

Then we shall give an interpretation∗ of the

statement that the second cohomology group

vanishes

∗This will be deferred to the next talk in the series, Part
VI on March 7, 2013



PART 1 OF TODAY’S TALK

A partition of a set X is a disjoint class {Xi}
of non-empty subsets of X whose union is X

• {1,2,3,4,5} = {1,3,5} ∪ {2,4}
• {1,2,3,4,5} = {1} ∪ {2} ∪ {3,5} ∪ {4}
• R = Q ∪ (R−Q)

• R = · · · ∪ [−2,−1) ∪ [−1,0) ∪ [0,1) ∪ · · ·

A binary relation on the set X is a subset R

of X ×X. For each ordered pair

(x, y) ∈ X ×X,

x is said to be related to y if (x, y) ∈ R.

• R = {(x, y) ∈ R×R : x < y}
• R = {(x, y) ∈ R×R : y = sinx}
• For a partition X = ∪iXi of a set X, let

R = {(x, y) ∈ X ×X : x, y ∈ Xi for some i}



An equivalence relation on a set X is a

relation R ⊂ X ×X satisfying

reflexive (x, x) ∈ R
symmetric (x, y) ∈ R⇒ (y, x) ∈ R
transitive (x, y), (y, z) ∈ R⇒ (x, z) ∈ R

There is a one to one correspondence

between equivalence relations on a set X and

partitions of that set.

NOTATION

• If R is an equivalence relation we denote

(x, y) ∈ R by x ∼ y.

• The equivalence class containing x is de-

noted by [x]. Thus

[x] = {y ∈ X : x ∼ y}.



EXAMPLES

• equality: R = {(x, x) : x ∈ X}
• equivalence class of fractions

= rational number:

R = {(
a

b
,
c

d
) : a, b, c, d ∈ Z, b 6= 0, d 6= 0, ad = bc}

• equipotent sets: X and Y are equivalent if

there exists a function f : X → Y which is

one to one and onto.

• half open interval of length one:

R = {(x, y) ∈ R×R : x− y is an integer}
• integers modulo n:

R = {(x, y) ∈ N×N : x− y is divisible by n}



PART 2 OF TODAY’S TALK

A group is a set G together with an operation

(called multiplication) which associates with

each ordered pair x, y of elements of G a third

element in G (called their product and written

xy) in such a manner that

• multiplication is associative: (xy)z = x(yz)

• there exists an element e in G, called the

identity element with the property that

xe = ex = x for all x

• to each element x, there corresponds an-

other element in G, called the inverse of x

and written x−1, with the property that

xx−1 = x−1x = e

TYPES OF GROUPS

• commutative groups: xy = yx

• finite groups {g1, g2, · · · , gn}
• infinite groups {g1, g2, · · · , gn, · · ·}
• cyclic groups {e, a, a2, a3, . . .}



EXAMPLES

1. R,+,0, x−1 = −x

2. positive real numbers, ×,1, x−1 = 1/x

3. Rn,vector addition,(0, · · · ,0),

(x1, · · · , xn)−1 = (−x1, · · · ,−xn)

4. C,+,0, f−1 = −f

5. {0,1,2, · · · ,m − 1}, addition modulo m, 0,

k−1 = m− k

6. permutations (=one to one onto functions),

composition, identity permutation, inverse

permutation

7. Mn(R),+,0,A−1 = [−aij]

8. non-singular matrices, matrix multiplication,

identity matrix, matrix inverse

Which of these are commutative, finite,

infinite?



We shall consider only commutative groups

and we shall denote the multiplication by +,

the identity by 0, and inverse by -.

No confusion should result.

ALERT

Counterintuitively, a very important

(commutative) group is a group with one

element



Let H be a subgroup of a commutative group

G. That is, H is a subset of G and is a group

under the same +,0,- as G.

Define an equivalence relations on G as

follows: x ∼ y if x− y ∈ H.

The set of equivalence classes is a group

under the definition of addition given by

[x] + [y] = [x+ y].

This group is denoted by G/H and is called

the quotient group of G by H.

Special cases:

H = {e}; G/H = G (isomorphic)

H = G; G/H = {e} (isomorphic)



EXAMPLES

1. G = R,+,0, x−1 = −x;

H = Z or H = Q

2. Rn,vector addition,(0, · · · ,0),

(x1, · · · , xn)−1 = (−x1, · · · ,−xn);

H = Zn or H = Qn

3. C,+,0, f−1 = −f ;

H = D or H = polynomials

4. Mn(R),+,0,A−1 = [−aij];

H =symmetric matrices, or

H =anti-symmetric matrices



PART 3 OF TODAY’S TALK

DERIVATIONS ON ALGEBRAS

(Review of Part I: FEBRUARY 8, 2011)

AXIOMATIC APPROACH

AN ALGEBRA IS DEFINED TO BE A SET

(ACTUALLY A VECTOR SPACE) WITH

TWO BINARY OPERATIONS, CALLED

ADDITION AND MULTIPLICATION

ACTUALLY, IF YOU FORGET ABOUT

THE VECTOR SPACE, THIS DEFINES A

RING



ADDITION IS DENOTED BY

a+ b

AND IS REQUIRED TO BE

COMMUTATIVE AND ASSOCIATIVE

a+ b = b+ a, (a+ b) + c = a+ (b+ c)

THERE IS ALSO AN ELEMENT 0 WITH

THE PROPERTY THAT FOR EACH a,

a+ 0 = a

AND THERE IS AN ELEMENT CALLED −a
SUCH THAT

a+ (−a) = 0

SO FAR, WE HAVE A COMMUTATIVE

GROUP



MULTIPLICATION IS DENOTED BY

ab

AND IS REQUIRED TO BE DISTRIBUTIVE

WITH RESPECT TO ADDITION

(a+ b)c = ac+ bc, a(b+ c) = ab+ ac

IMPORTANT: A RING MAY OR MAY

NOT HAVE AN IDENTITY ELEMENT

(FOR MULTIPLICATION)

1x = x1 = x

AN ALGEBRA (or RING) IS SAID TO BE

ASSOCIATIVE (RESP. COMMUTATIVE) IF

THE MULTIPLICATION IS ASSOCIATIVE

(RESP. COMMUTATIVE)

(RECALL THAT ADDITION IS ALWAYS

COMMUTATIVE AND ASSOCIATIVE)



Table 2

ALGEBRAS (OR RINGS)

commutative algebras

ab = ba

associative algebras

a(bc) = (ab)c

Lie algebras

a2 = 0

(ab)c+ (bc)a+ (ca)b = 0

Jordan algebras

ab = ba

a(a2b) = a2(ab)



Sophus Lie (1842–1899)

Marius Sophus Lie was a Norwegian

mathematician. He largely created the theory

of continuous symmetry, and applied it to the

study of geometry and differential equations.



Pascual Jordan (1902–1980)

Pascual Jordan was a German theoretical and

mathematical physicist who made significant

contributions to quantum mechanics and

quantum field theory.



THE DERIVATIVE

f ′(x) = lim
h→0

f(x+ h)− f(x)

h

DIFFERENTIATION IS A LINEAR

PROCESS

(f + g)′ = f ′+ g′

(cf)′ = cf ′

THE SET OF DIFFERENTIABLE

FUNCTIONS FORMS AN ALGEBRA D

(fg)′ = fg′+ f ′g

(product rule)



CONTINUITY

xn → x⇒ f(xn)→ f(x)

THE SET OF CONTINUOUS FUNCTIONS

FORMS AN ALGEBRA C

(sums, constant multiples and products of

continuous functions are continuous)

D and C ARE EXAMPLES OF ALGEBRAS

WHICH ARE BOTH ASSOCIATIVE AND

COMMUTATIVE



PROPOSITION 1

EVERY DIFFERENTIABLE FUNCTION IS

CONTINUOUS

D is a subalgebra of C; D ⊂ C

D 6= C

(f(x) = |x|)



DIFFERENTIATION IS A LINEAR

PROCESS

LET US DENOTE IT BY D AND WRITE

Df for f ′

D(f + g) = Df +Dg

D(cf) = cDf

D(fg) = (Df)g + f(Dg)

D(f/g) =
g(Df)− f(Dg)

g2



DEFINITION 1

A DERIVATION ON C IS A LINEAR

PROCESS SATISFYING THE LEIBNIZ

RULE:

δ(f + g) = δ(f) + δ(g)

δ(cf) = cδ(f)

δ(fg) = δ(f)g + fδ(g)

DEFINITION 2

A DERIVATION ON AN ALGEBRA A IS A

LINEAR PROCESS δ SATISFYING THE

LEIBNIZ RULE:

δ(ab) = δ(a)b+ aδ(b)



THEOREM 1

(1955 Singer-Wermer, 1960 Sakai)

There are no (non-zero) derivations on C.

In other words,

Every derivation of C is identically zero

Just to be clear,

The linear transformation which sends

every function to the zero function, is the

only derivation on C.



DERIVATIONS ON THE SET OF

MATRICES

THE SET Mn(R) of n by n MATRICES IS

AN ALGEBRA UNDER

MATRIX ADDITION

A+B

AND

MATRIX MULTIPLICATION

A×B

WHICH IS ASSOCIATIVE BUT NOT

COMMUTATIVE.

(PREVIOUSLY WE DEFINED TWO MORE

MULTIPLICATIONS)



DEFINITION 3

A DERIVATION ON Mn(R) WITH

RESPECT TO MATRIX MULTIPLICATION

IS A LINEAR PROCESS δ WHICH

SATISFIES THE PRODUCT RULE

δ(A×B) = δ(A)×B +A× δ(B)

.

PROPOSITION 2

FIX A MATRIX A in Mn(R) AND DEFINE

δA(X) = A×X −X ×A.

THEN δA IS A DERIVATION WITH

RESPECT TO MATRIX MULTIPLICATION

(WHICH CAN BE NON-ZERO)



THEOREM 2
(1942 Hochschild)

EVERY DERIVATION ON Mn(R) WITH
RESPECT TO MATRIX MULTIPLICATION

IS OF THE FORM δA FOR SOME A IN
Mn(R).

Gerhard Hochschild (1915–2010)

(Photo 1968)
Gerhard Paul Hochschild was an American
mathematician who worked on Lie groups,
algebraic groups, homological algebra and

algebraic number theory.



Joseph Henry Maclagan Wedderburn

(1882–1948)

Scottish mathematician, who taught at

Princeton University for most of his career. A

significant algebraist, he proved that a finite

division algebra is a field, and part of the

Artin–Wedderburn theorem on simple

algebras. He also worked on group theory and

matrix algebra.



Amalie Emmy Noether (1882–1935)

Amalie Emmy Noether was an influential

German mathematician known for her

groundbreaking contributions to abstract

algebra and theoretical physics. Described as

the most important woman in the history of

mathematics, she revolutionized the theories

of rings, fields, and algebras. In physics,

Noether’s theorem explains the fundamental

connection between symmetry and

conservation laws.



PROOF OF THEOREM 2

(Jacobson 1937)

If δ is a derivation, consider the two

representations of Mn(C)

z 7→
[
z 0
0 z

]
and z 7→

[
z 0

δ(z) z

]
The first is a direct sum of two copies of the

identity representation; but so is the second,

since[
0 0

δ(z) z

]
is equivalent to

[
0 0
0 z

]

so

[
z 0

δ(z) 0

] [
a b
c d

]
=

[
a b
c d

] [
z 0
0 z

]

Thus az = za, bz = zb

δ(z)a = cz − zc and δ(z)b = dz − zd.

a and b are multiples of I and can’t both be

zero. QED



Part 4 of today’s talk

COHOMOLOGY OF ASSOCIATIVE

ALGEBRAS

(FIRST COHOMOLOGY GROUP)

(Review of Part IV: JULY 26, 2012)

Now that we know what a quotient group is,

we can better understand this material from

July 26, 2012



The basic formula of homological algebra

F (x1, . . . , xn, xn+1) =

x1f(x2, . . . , xn+1)

−f(x1x2, x3, . . . , xn+1)

+f(x1, x2x3, x4, . . . , xn+1)

− · · ·
±f(x1, x2, . . . , xnxn+1)

∓f(x1, . . . , xn)xn+1

OBSERVATIONS

• n is a positive integer, n = 1,2, · · ·
• f is a function of n variables

• F is a function of n+ 1 variables

• x1, x2, · · · , xn+1 belong an algebra A

• f(y1, . . . , yn) and F (y1, · · · , yn+1) also be-

long to A



HIERARCHY

• x1, x2, . . . , xn are points (or vectors)

• f and F are functions—they take points to

points

• T , defined by T (f) = F is a transformation—

takes functions to functions

• points x1, . . . , xn+1 and f(y1, . . . , yn) will be-

long to an algebra A

• functions f will be either constant, linear

or multilinear (hence so will F )

• transformation T is linear



SHORT FORM OF THE FORMULA

(Tf)(x1, . . . , xn, xn+1)

= x1f(x2, . . . , xn+1)

+
n∑

j=1

(−1)jf(x1, . . . , xjxj+1, . . . , xn+1)

+(−1)n+1f(x1, . . . , xn)xn+1

FIRST CASES

n = 0

If f is any constant function from A to A,

say, f(x) = b for all x in A, where b is a fixed

element of A, we have, consistent with the

basic formula,

T0(f)(x1) = x1b− bx1



n = 1

If f is a linear map from A to A, then

T1(f)(x1, x2) = x1f(x2)− f(x1x2) + f(x1)x2

n = 2

If f is a bilinear map from A×A to A, then

T2(f)(x1, x2, x3) =

x1f(x2, x3)− f(x1x2, x3)

+f(x1, x2x3)− f(x1, x2)x3



Kernel and Image of a linear transformation

• G : X → Y

Since X and Y are vector spaces, they are

in particular, commutative groups.

• Kernel of G is

kerG = {x ∈ X : G(x) = 0}

This is a subgroup of X

• Image of G is

imG = {G(x) : x ∈ X}

This is a subgroup of Y

What is the kernel of D on D?

What is the image of D on D?

(Hint: Second Fundamental theorem of

calculus)

We now let G = T0, T1, T2



G = T0

X = A (the algebra)

Y = L(A) (all linear transformations on A)

T0(f)(x1) = x1b− bx1

ker T0 = {b ∈ A : xb− bx = 0 for all x ∈ A}
(center of A)

imT0 = the set of all linear maps of A of the

form x 7→ xb− bx,

in other words, the set of all inner derivations

of A

ker T0 is a subgroup of A

imT0 is a subgroup of L(A)



G = T1

X = L(A) (linear transformations on A)

Y = L2(A) (bilinear transformations on A×A)

T1(f)(x1, x2) = x1f(x2)− f(x1x2) + f(x1)x2

ker T1 = {f ∈ L(A) : T1f(x1, x2) =

0 for all x1, x2 ∈ A} = the set of all

derivations of A

imT1 = the set of all bilinear maps of A×A
of the form

(x1, x2) 7→ x1f(x2)− f(x1x2) + f(x1)x2,

for some linear function f ∈ L(A).

ker T1 is a subgroup of L(A)

imT1 is a subgroup of L2(A)



L0(A)
T0−→ L(A)

T1−→ L2(A)
T2−→ L3(A) · · ·

FACTS:

• T1 ◦ T0 = 0

• T2 ◦ T1 = 0

• · · ·
• Tn+1 ◦ Tn = 0

• · · ·

Therefore

imTn ⊂ ker Tn+1 ⊂ Ln(A)

and

imTn is a subgroup of ker Tn+1



The cohomology groups of A are defined as

the quotient groups

Hn(A) =
ker Tn

imTn−1

(n = 1,2, . . .)

Thus

H1(A) =
ker T1

imT0
=

derivations

inner derivations

H2(A) =
ker T2

imT1
=

?

?

The theorem that every derivation of Mn(R)

is inner (that is, of the form δa for some

a ∈Mn(R)) can now be restated as:

”the cohomology group H1(Mn(R)) is the

trivial one element group”



• imT0 ⊂ ker T1

says

Every inner derivation is a derivation

• imT1 ⊂ ker T2

says

for every linear map f , the bilinear map F

defined by

F (x1, x2) = x1f(x2)− f(x1x2) + f(x1)x2

satisfies the equation

x1F (x2, x3)− F (x1x2, x3)+

F (x1, x2x3)− F (x1, x2)x3 = 0

for every x1, x2, x3 ∈ A.



Some facts which may be discussed later on

(M is a module)

• H1(C) = 0, H2(C) = 0

• H1(C,M) = 0, H2(C,M) = 0

• Hn(Mk(R),M) = 0 ∀n ≥ 1, k ≥ 2

• Hn(A) = H1(A,L(A)) for n ≥ 2



Cohomology groups were defined in various

contexts as follows

• associative algebras (1945)

• Lie algebras (1952)

• Lie triple systems (1961,2002)

• Jordan algebras (1971)

• associative triple systems (1976)

• Jordan triple systems (1982)



Part 5 of today’s talk

THIS IS POSTPONED TO THE NEXT

TALK IN THE SERIES

(MARCH 7, 2013)


