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I—ALGEBRAS
Sophus Lie (1842—-1899)

Marius Sophus Lie was a Norwegian mathe-
matician. He largely created the theory of con-
tinuous symmetry, and applied it to the study
of geometry and differential equations.



Pascual Jordan (1902—-1980)

Pascual Jordan was a German theoretical and
mathematical physicist who made significant
contributions to quantum mechanics and quan-
tum field theory.



LET C DENOTE THE ALGEBRA OF
CONTINUOUS FUNCTIONS ON A
LOCALLY COMPACT HAUSDORFF

SPACE.

DEFINITION 1
A DERIVATION ON C IS A LINEAR
MAPPING ¢ : C — C SATISFYING THE
"“PRODUCT"” RULE:

5(f+g) =46(f)+d(9)
§(cf) = co(f)
6(fg) =4(f)g+ fo(g)

THEOREM 1
There are no (non-zero) derivations on C.

In other words,
Every derivation of C is identically zero



THEOREM 1A
(1955-Singer and Wermer)
Every continuous derivation on C is zero.

Theorem 1B
(1960-Sakai)
Every derivation on C is continuous.

John Wermer Soichiro Sakai
(b. 1925) (b. 1926)



Isadore Singer (b. 1924)

Isadore Manuel Singer is an Institute
Professor in the Department of Mathematics
at the Massachusetts Institute of Technology.
He is noted for his work with Michael Atiyah

in 1962, which paved the way for new
interactions between pure mathematics and

theoretical physics.



LET M,(C) DENOTE THE ALGEBRA OF
ALL n by n COMPLEX MATRICES, OR
MORE GENERALLY, ANY FINITE
DIMENSIONAL SEMISIMPLE
ASSOCIATIVE ALGEBRA. .

DEFINITION 2
A DERIVATION ON My,(C) WITH
RESPECT TO MATRIX MULTIPLICATION

IS A LINEAR MAPPING ¢ WHICH
SATISFIES THE PRODUCT RULE

5(AB) = 6(A)B + A8(B)

PROPOSITION 2
FIX A MATRIX A in M,(C) AND DEFINE

S4(X) = AX — XA,

THEN 04 IS A DERIVATION WITH
RESPECT TO MATRIX MULTIPLICATION



THEOREM 2
(1942 Hochschild)

EVERY DERIVATION ON M,(C) WITH
RESPECT TO MATRIX MULTIPLICATION
IS OF THE FORM §4 FOR SOME A IN
Mn(C).

Gerhard Hochschild (1915—2010)

(Photo 1968)
Gerhard Paul Hochschild was an American
mathematician who worked on Lie groups,
algebraic groups, homological algebra and
algebraic number theory.



Joseph Henry Maclagan Wedderburn
(1882—1948)

Scottish mathematician, who taught at
Princeton University for most of his career. A
significant algebraist, he proved that a finite

division algebra is a field, and part of the

Artin—Wedderburn theorem on simple
algebras. He also worked on group theory and
matrix algebra.



Amalie Emmy Noether (1882—-1935)

'r'+.

Amalie Emmy Noether was an influential
German mathematician known for her
groundbreaking contributions to abstract
algebra and theoretical physics. Described as
the most important woman in the history of
mathematics, she revolutionized the theories
of rings, fields, and algebras. In physics,
Noether's theorem explains the fundamental
connection between symmetry and
conservation laws.



RECOMMENDED READING

Gerhard Hochschild
A mathematician of the XXth Century

Walter Ferrer Santos

arXiv:1104.0335v1 [math.HO] 2 Apr 2011

(Photo 1976)



Gerhard Hochschild (1915—2010)
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DEFINITION 3
A DERIVATION ON M,(C) WITH
RESPECT TO BRACKET MULTIPLICATION

[X,Y]=XY -YX

IS A LINEAR MAPPING ¢ WHICH
SATISFIES THE PRODUCT RULE

6([A, B]) = [6(A), B] 4 [A,6(B)]

PROPOSITION 3
FIX A MATRIX A in M,(C) AND DEFINE

S4(X)=[A, X] = AX — X A.

THEN 64 IS A DERIVATION WITH
RESPECT TO BRACKET
MULTIPLICATION



THEOREM 3
(1942 Hochschild, Zassenhaus)
EVERY DERIVATION ON M,(C)* WITH
RESPECT TO BRACKET
MULTIPLICATION IS OF THE FORM 64
FOR SOME A IN M,(C).

Hans Zassenhaus (1912—-1991)

Hans Julius Zassenhaus was a German
mathematician, known for work in many parts
of abstract algebra, and as a pioneer of
computer algebra.

*not a semisimple Lie algebra: trace(X) I is a derivation
which is not inner



DEFINITION 4
A DERIVATION ON M,(C) WITH
RESPECT TO CIRCLE MULTIPLICATION

XoY =(XY+YX)/2

IS A LINEAR MAPPING ¢ WHICH
SATISFIES THE PRODUCT RULE

0(AoB) =6(A)oB+ Aod(B)

PROPOSITION 4
FIX A MATRIX A in M,(C) AND DEFINE

S4(X)=AX — XA.

THEN 04 IS A DERIVATION WITH
RESPECT TO CIRCLE MULTIPLICATION



THEOREM 4
(1972-Sinclair)

EVERY DERIVATION ON M,(C) WITH
RESPECT TO CIRCLE MULTIPLICATION
IS OF THE FORM 64, FOR SOME A IN
M, (C).

REMARK
(1937-Jacobson)

THE ABOVE PROPOSITION AND
THEOREM NEED TO BE MODIFIED FOR
THE SUBALGEBRA (WITH RESPECT TO

CIRCLE MULTIPLICATION) OF
HERMITIAN MATRICES.



Alan M. Sinclair (retired)

Nathan Jacobson was an American
mathematician who was recognized as one of
the leading algebraists of his generation, and
he was also famous for writing more than a

dozen standard monographs.



Table 1
My (C) (SEMISIMPLE ALGEBRAS)

matrix bracket circle
ab=axb|[a,b] =ab—ba | aob = ab+ ba
Th. 2 Th.3 Th.4
da () da () da ()
ar — Ta ar — Ta ar — Ta




Table 2
ALGEBRAS

commutative algebras
ab = ba

associative algebras
a(bc) = (ab)c

Lie algebras
a’ =

(ab)c 4+ (bc)a + (ca)b =0

Jordan algebras
ab = ba

a(a?b) = a?(ab)



DERIVATIONS ON C*-ALGEBRAS

THE ALGEBRA M,(C), WITH MATRIX
MULTIPLICATION, AS WELL AS THE
ALGEBRA C, WITH ORDINARY
MULTIPLICATION, ARE EXAMPLES OF
C*-ALGEBRAS (FINITE DIMENSIONAL;
resp. COMMUTATIVE).

THE FOLLOWING THEOREM THUS
EXPLAINS THEOREMS 1 AND 2.

THEOREM (1966-Sakai, Kadison)
EVERY DERIVATION OF A C*-ALGEBRA
IS OF THE FORM z +— ar — xra FOR SOME

a IN THE WEAK CLOSURE OF THE

C*-ALGEBRA



Irving Kaplansky (1917—2006)

Kaplansky made major contributions to group
theory, ring theory, the theory of operator
algebras and field theory.



Richard Kadison (b. 1925)

Richard V. Kadison is an American
mathematician known for his contributions to
the study of operator algebras.



GRADUS AD PARNASSUM
FOR SECTION I—ALGEBRAS

1. Prove Proposition 2: FIX A MATRIX A in
My, (C) AND DEFINE

S4(X) = AX — XA.

THEN 64 IS A DERIVATION WITH RE-
SPECT TO MATRIX MULTIPLICATION

2. Prove Proposition 3: FIX A MATRIX A in
My, (C) AND DEFINE

54(X) =[A,X] = AX — X A.

THEN 64 IS A DERIVATION WITH RE-
SPECT TO BRACKET MULTIPLICATION

3. Prove Proposition 4: FIX A MATRIX A in
My, (C) AND DEFINE

S4(X) =AX — XA.

THEN 04 IS A DERIVATION WITH RE-
SPECT TO CIRCLE MULTIPLICATION



. Let A, B are two fixed matrices in M, (C).
Show that the linear mapping

64B(X)=Ao(BoX)—-Bo(AoX)

is a derivation of M,(C) with respect to
circle multiplication.

(cf. Remark following Theorem 4)

. Show that M, (C) is a Lie algebra with re-
spect to bracket multiplication.

. Show that M, (C) is a Jordan algebra with
respect to circle multiplication.

. Let us write ¢, for the linear mapping
a,p(z) = a(bx) — b(az) in a Jordan algebra.
Show that ¢, is a derivation of the Jordan
algebra by following the outline below. (cf.
problem 4 above.)

(a) In the Jordan algebra axiom
w(u?v) = u?(ww),

replace v by v+ w to obtain the equation

2u((uw)v) + ww?v) = 2(uw) (uwv) 4+ u?(wv)
(1)



(b) In (1), interchange v and w and sub-
tract the resulting equation from (1) to ob-
tain the equation

2u(8y.w (1)) = 8y w(u?). (2)
(c) In (2), replace u by x 4+ y to obtain the

equation

5v,w(a;y) = y5v,w(513) + $5v,w(y)a

which is the desired result.

END OF SECTION I



I—AUTOMATIC CONTINUITY

The automatic continuity of various algebraic

mappings plays important roles in the general

theory of Banach algebras and in particular in
operator algebra theory

H. G. Dales, Banach algebras and au-
tomatic continuity. London Mathemat-
ical Society Monographs. New Series,
24. Oxford Science Publications. The

Clarendon Press, Oxford University Press,
New York, 2000.



Digression #1—SURVEY OF

UNIQUENESS OF NORM;
AUTOMATIC CONTINUITY OF
HOMOMORPHISMS

A Banach algebra (A, || -||]) has a unique norm
if each norm with respect to which A is a
normed algebra is equivalent to the given

norm.

In this case, the topological and algebraic
structures of A are intimately linked.



PROPOSTION A commutative semisimple
Banach algebra has a unique norm.

Follows from

THEOREM (Silov 1947) Any
homomorphism of a Banach algebra A to a
commutative semisimple Banach algebra is

continuous.



TWO MILESTONE RESULTS

Johnson 1967 Each semisimple Banach
algebra has a unique norm.

Eidelheit 1940 B(FE) has a unique norm for
any Banach space

(This last result was proved before Banach
algebras were invented!)

AN OBSERVATION

PROPOSITION If (A4, ] -]|) is a Banach
algebra with the property that for any algebra
norm || - ||1 there is a constant C such that
|la]| < Cllall1, then A has a unique norm if and
only if every homomorphism from A to any
Banach algebra is continuous.



MORE EXAMPLES

Jewell and Sinclair 1976
LY(RT,w) has a unique norm

All finite dimensional Banach algebras have a
unigue norm

Let A be any linear space with two
inequivalent norms, and make it an algebra
via ab =0

Let A be a commutative Banach algebra, E a
Banach A-module. Then A® E is a
commutative algebra via
(a,2)(b,y) = (abya-y+b-z). If D: A— FE is a
derivation, define two norms
|(a,z)[|1 = [la]| + ||| and
|(a,x)|l2 = ||a|| + ||[Da — z||. These norms are
equivalent if and only if D is continuous.



SOME BASIC UNSOLVED PROBLEMS

Johnson’s 1967 milestone is a consequence of
the following theorem, which is called “the
seed from which automatic continuity theory
has grown”

THEOREM (Johnson 1967) A
homomorphism of a Banach algebra A
ONTO a semisimple Banach algebra B is
continuous.

QUESTION
In Johnson's theorem, can you replace onto
by dense range.

SUB-QUESTION
What if A is a C*-algebra?

SUB-SUB-QUESTION
What if A and B are both C*-algebras?



Barry Johnson (1942—-2002)
.-I:'- JI-.:-;-H“'-':-:la:l"...lll"!h!l { _.. T




SOME MISCELLANEOUS
INTERESTING RESULTS

RODRIGUEZ-PALACIOS 1985
Uniqueness of norm for semisimple
nonassociative Banach algebras (Jordan
algebras)

ESTERLE 1980 Any homomorphism from
C(2) onto a Banach algebra is continuous.
(Obvious question: replace C(£2) by any
C*-algebra)

SINCLAIR 1974 If a homomorphism from a
C*-algebra to a Banach algebra is continuous
when restricted to all singly generated (by
self-adjoint elements) subalgebras, then it is
continuous.



It follows from elementary spectral theory
that *~-homomorphisms of C*-algebras are
continuous.

Proof:
If & : A — B satisfies ®(a*) = P(a)*,
d(ab) = ©(a)P(b), and (1) =1, then
o(P(a)) C o(a) and

[®(a)[|2 = || (a) P (a)]| = [[®(a"a)|
2
= |[®(a*a)lisp < lla*allsp = [la*al| = la]
END OF SURVEY

BACK TO DERIVATIONS!



AUTOMATIC CONTINUITY OF
DERIVATIONS FROM BANACH
ALGEBRAS INTO BANACH MODULES

THE AUTOMATIC CONTINUITY
PROBLEM FOR DERIVATIONS
Under what conditions on a Banach algebra A
are all derivations from A into some or all
Banach A-modules automatically continuous?

OBSERVATION
If all homomorphisms from a Banach algebra
A into any Banach algebra are continuous,
then all derivations from A into any Banach
A-module E are continuous.
(The converse is false: C(€2), CH, Ringrose)

WHY IS THIS IMPORTANT?



COHOMOLOGY OF BANACH
ALGEBRAS
Let M be a Banach algebra and X a Banach
M-module.
For n > 1, let
L™"(M,X) = all continuous n-linear maps
(L°(M, X) = X)

Coboundary operator
o: L™ — L™l (for n > 1)

Op(ay,- -+, ant1) = arplag, -, any1)
+>(=1)¢(a1, +,aj-1,aa41, "+, ap41)
+(—=1)"T1¢(a1, -, an)an+1
For n = O,

0:X — L(M,X) Jx(a) = ax — xa
SO
Imo = the space of inner derivations



Since 0o 0 =0,
Im(o: L" 1 — L") C ker(d: L™ — L"T1)

H™(M, X) = kerd/Imo is a vector space.

For n =1, kerg =
{¢p: M — X :a1¢(az) — ¢(araz) + ¢(a1)ar = 0}

— the space of continuous derivations from
M to X

T hus,

derivations from M to X
inner derivations from M to X

HY (M, X) =

measures how close continuous derivations
are to inner derivations.

(What do H2(M, X), H3(M, X),...measure?)



Sneak Preview of section VI

HY(C(Q),E) = H*(C(Q),E) =0
(Kamovvitz 1962 A PIONEER!)

(Question: H3(C(R),E) =7?)

H1(A,B(H)) =077 (AC B(H))
“T’he major open question in the theory of
derivations on C*-algebras”

A derivation from A into B(H) is inner if
and only if it is completely bounded.
(Christensen 1982)

Barry Johnson, “Cohomology of Banach
algebras’ , Memoirs of the American Math-
ematical Society 1972






Digression #2—LIE DERIVATIONS

Miers, C. Robert
Lie derivations of von Neumann algebras.
DukeMath. J. 40 (1973), 403—4009.

If M is a von Neumann algebra, [M, M] the
Lie algebra linearly generated by
{[X,)Y]=XY-YX: :X,Y €M} and
L:[M,M]— M a Lie derivation, i.e., L is
linear and L[X,Y] =[LX,Y]+ [X,LY], then
the author shows that L has an extension
D : M — M that is a derivation of the
associative algebra.

The proof involves matrix-like computations.



A theorem of S. Sakai [Ann. of Math. (2) 83
(1966), 273—279] now states that
DX = [A, X] with A € M fixed.

Using this the author finally shows that if
L : M — M is a Lie derivation, then
L =D+ X\, where D is an associative
derivation and X\ is a linear map into the
center of M vanishing on [M, M].

For primitive rings with nontrivial idempotent
and characteristic = 2 a slightly weaker result
is due to W. S. Martindale, III [Michigan
Math. J. 11 (1964), 183187].

Reviewed by Gerhard Janssen



Miers, C. Robert
Lie triple derivations of von Neumann
algebras.
Proc. Amer. Math. Soc. 71 (1978), no. 1,
57—61.

Authors summary: A Lie triple derivation of
an associative algebra M is a linear map
L: M — M such that

L{[X,Y], Z] = [[L(X),Y], Z]+

[[X, L(Y)], 2] + [[X, Y], L(Z)]
for all X,Y,Z € M.

We show that if M is a von Neumann algebra
with no central Abelian summands then there
exists an operator A € M such that
L(X)=[AX]+XNX) where A\: M — Z); is a
linear map which annihilates brackets of
operators in M.

Reviewed by Jozsef Szucs



THEOREM
(JOHNSON 1996)

EVERY CONTINUOUS LIE DERIVATION
OF A SYMMERTICALLY AMENABLE
BANACH ALGEBRA AINTO A BANACH
BIMODULE X IS THE SUM OF AN
ASSOCIATIVE DERIVATION AND A
“TRIVIAL" DERIVATION

(TRIVIAL=ANY LINEAR MAP WHICH

VANISHES ON COMMUTATORS AND

MAPS INTO THE “CENTER” OF THE
MODULE).



The continuity assumption can be dropped if
X = A and A is a C*-algebra or a semisimple
symmetrically amenable Banach algebra

Mathieu, Martin; Villena, Armando R.
The structure of Lie derivations on
C*-algebras.

J. Funct. Anal. 202 (2003), no. 2, 504-525.

Alaminos, J.; Mathieu, M.; Villena, A. R.

Symmetric amenability and Lie derivations.

Math. Proc. Cambridge Philos. Soc. 137
(2004), no. 2, 433—4309.



“It remains an open question whether an
analogous result for Lie derivations from A
into a Banach A-bimodule holds when A is an
arbitrary C*-algebra and when A is an
arbitrary symmetrically amenable Banach
algebra.”

“It is also an interesting open question
whether or not every Lie derivation on a
semisimple Banach algebra to itself has this
form.”

(H.G. Dales)
END OF DIGRESSION
END OF SECTION II



III—TRIPLE SYSTEMS

DEFINITION 5

A DERIVATION ON M, »,(C) WITH
RESPECT TO

TRIPLE MATRIX MULTIPLICATION

IS A LINEAR MAPPING ¢ WHICH
SATISFIES THE (TRIPLE) PRODUCT
RULE

S(AB*C) =
5(A)B*C 4+ AS(B)*C + AB*§(C)

PROPOSITION 5
FOR TWO MATRICES
A e Mpu(C),B eM,(C), WITH
A* = —A, B* = —B,

DEFINE 64 p(X) =

AX + XB

THEN 64 p IS A DERIVATION WITH
RESPECT TO TRIPLE MATRIX
MULTIPLICATION



THEOREM 5
EVERY DERIVATION ON My, (C) WITH
RESPECT TO TRIPLE MATRIX
MULTIPLICATION IS A SUM OF
DERIVATIONS OF THE FORM 64 g.

REMARK
THESE RESULTS HOLD TRUE AND ARE
OF INTEREST FOR THE CASE m = n.



TRIPLE BRACKET MULTIPLICATION

LET'S GO BACK FOR A MOMENT TO
SQUARE MATRICES AND THE BRACKET
MULTIPLICATION.

MOTIVATED BY THE LAST REMARK,
WE DEFINE THE TRIPLE BRACKET
MULTIPLICATION TO BE [[X, Y], Z]

DEFINITION 6
A DERIVATION ON M,(C) WITH
RESPECT TO
TRIPLE BRACKET MULTIPLICATION

IS A LINEAR MAPPING 6 WHICH
SATISFIES THE TRIPLE PRODUCT RULE

6([[A, B, C]) =
[[6CA), B], C] + [[A,6(B)], C] + [[A, B], 6(C)]



PROPOSITION 6
FIX TWO MATRICES A, B IN M,(C) AND
DEFINE 64 p(X) = [[A, B], X]
THEN 64 5 IS A DERIVATION WITH
RESPECT TO TRIPLE BRACKET
MULTIPLICATION.

THEOREM 6
EVERY DERIVATION OF M,(C)T WITH
RESPECT TO TRIPLE BRACKET
MULTIPLICATION IS A SUM OF
DERIVATIONS OF THE FORM 64 p.

fnot a semisimple Lie triple system, as in Theorem 3



TRIPLE CIRCLE MULTIPLICATION

LET'S RETURN TO RECTANGULAR
MATRICES AND FORM THE TRIPLE
CIRCLE MULTIPLICATION

(AB*C + CB*A)/2

For sanity’'s sake, let us write this as

{A,B,C} = (AB*C + CB*A) /2

DEFINITION 7

A DERIVATION ON My, »(C) WITH
RESPECT TO

TRIPLE CIRCLE MULTIPLICATION

IS A LINEAR MAPPING 6 WHICH
SATISFIES THE TRIPLE PRODUCT RULE

S({A,B,CH)=
10(A), B,C} +{A,6(B),C} +{B, A,6(C)}



PROPOSITION 7
FIX TWO MATRICES A, B IN My n(C) AND
DEFINE

54.5(X) = {A, B, X} — {A, B, X}

THEN 64 p IS A DERIVATION WITH
RESPECT TO TRIPLE CIRCLE
MULTIPLICATION.

THEOREM 7
EVERY DERIVATION OF My, (C) WITH
RESPECT TO TRIPLE CIRCLE
MULTIPLICATION IS A SUM OF
DERIVATIONS OF THE FORM 64 p.



Table 3%
Mpmn(C) (SS TRIPLE SYSTEMS)

triple triple triple

matrix | bracket circle
ab*c [[a,b],c] | ab*c + cb*a

Th. 5 Th.6 Th.7

5a,b($) 5a,b($) 5a,b($)

ab®x abx ab®x
+xb*a ~+xba ~+xb*a
—ba*x —bax —ba*x
—xa™b —xab —xa™b
(sums) | (sums) (sums)
(m =n)

INote: for triple matrix and triple circle multiplication,
(ab* — ba™)* = —(ab® — ba™)
and
(b*a — a™b)* = —(b*a — a™b)



Table 1

Mn(C) (SS ALGEBRAS)

matrix bracket circle
ab=axb|[a,b] =ab—ba | aob = ab+ ba
Th. 2 Th.3 Th.4
da () da () da ()
axr — xa ax — xra ax — xa
Table 3

Mmn(C) (SS TRIPLE SYSTEMS)

triple triple triple
matrix | bracket circle
ab*c [[a,b],c] | ab*c + cb*a
Th. 5 Th.6 Th.7
5a,b(x) 5a,b(x) 5a,b($)
ab®x abx ab®x
~+xb*a ~+xba ~+xb*a
—ba*x —bazx —ba*x
—xa™b —xab —xa*b
(sums) | (sums) (sums)
(m =n)




AXIOMATIC APPROACH FOR TRIPLE
SYSTEMS

AN TRIPLE SYSTEM IS DEFINED TO BE
A SET (ACTUALLY A VECTOR SPACE)
WITH ONE BINARY OPERATION,
CALLED ADDITION AND ONE TERNARY
OPERATION CALLED
TRIPLE MULTIPLICATION




ADDITION IS DENOTED BY
a-+ b
AND IS REQUIRED TO BE
COMMUTATIVE AND ASSOCIATIVE

at+b=b+a, (a+b)+c=a+ (b+c)

TRIPLE MULTIPLICATION IS DENOTED
abc
AND IS REQUIRED TO BE LINEAR IN
EACH VARIABLE

(a + b)ed = acd + bed
a(b—+ c)d = abd + acd
ab(c + d) = abc + abd



IMPORTANT BUT SIMPLE EXAMPLES
OF TRIPLE SYSTEMS CAN BE FORMED
FROM ANY ALGEBRA

IF ab DENOTES THE ALGEBRA
PRODUCT, JUST DEFINE A TRIPLE
MULTIPLICATION TO BE (ab)c

LET'S SEE HOW THIS WORKS IN THE
ALGEBRAS WE INTRODUCED IN
SECTION I

C; fgh = (fg)h, OR fgh = (fg)h
(Mn(C), x): abe = abc OR abc = ab*c
(Mn(C),[,]); abe = [[a, ], c]
(Mn(C),0): abe = (aob)oc



A TRIPLE SYSTEM IS SAID TO BE
ASSOCIATIVE (RESP. COMMUTATIVE) IF
THE MULTIPLICATION IS ASSOCIATIVE

(RESP. COMMUTATIVE)

(RECALL THAT ADDITION IS ALWAYS
COMMUTATIVE AND ASSOCIATIVE)

IN THE TRIPLE CONTEXT THIS MEANS
THE FOLLOWING

ASSOCIATIVE
ab(cde) = (abc)de = a(bed)e

OR ab(cde) = (abc)de = a(dcb)e

COMMUTATIVE: abc = cba



AXIOMATIC APPROACH FOR TRIPLE
SYSTEMS

THE AXIOM WHICH CHARACTERIZES
TRIPLE MATRIX MULTIPLICATION IS

(abc)de = ab(cde) = a(dcb)e

THESE ARE CALLED
ASSOCIATIVE TRIPLE SYSTEMS
or
HESTENES ALGEBRAS



Magnus Hestenes (1906—1991)

Magnus Rudolph Hestenes was an American
mathematician. Together with Cornelius
Lanczos and Eduard Stiefel, he invented the
conjugate gradient method.

| oo AN



THE AXIOMS WHICH CHARACTERIZE
TRIPLE BRACKET MULTIPLICATION ARE

aab =0
abc + bca + cab = 0
de(abc) = (dea)bec + a(deb)c + ab(dec)
THESE ARE CALLED
LIE TRIPLE SYSTEMS
(NATHAN JACOBSON, MAX KOECHER)



Max Koecher (1924—1990)

Max Koecher was a German mathematician.
His main research area was the theory of
Jordan algebras, where he introduced the

KantorKoecherTits construction.

Nathan Jacobson (1910—-1999)




THE AXIOMS WHICH CHARACTERIZE
TRIPLE CIRCLE MULTIPLICATION ARE

abc = cba

de(abc) = (dea)bc — a(edb)c + ab(dec)

THESE ARE CALLED
JORDAN TRIPLE SYSTEMS

Ottmar Loos + Erhard Neher



Table 4
TRIPLE SYSTEMS

associative triple systems
(abc)de = ab(cde) = a(dcb)e

Lie triple systems
aab =0
abc + bca + cab = 0
de(abc) = (dea)be + a(deb)c + ab(dec)

Jordan triple systems
abc = cba

de(abc) = (dea)bc — a(edb)c + ab(dec)



THE PHYSICAL UNIVERSE SEEMS TO BE
ASSOCIATIVE.

RIGHT?

WRONG!

THEOREM
(1985 FRIEDMAN-RUSSO)

THE RANGE OF A CONTRACTIVE
PROJECTION ON A C*-ALGEBRA
(ASSOCIATIVE) IS A JB*-TRIPLE

(NON-ASSOCIATIVE).



Digression #3—PROJECTIVE
STABILITY

A well-known and useful result in the
structure theory of operator triple systems is
the “contractive projection principle,” that is,

the fact that the range of a contractive
projection on a JB*-triple is linearly isometric
in @ natural way to another JB*-triple (Kaup,
Stacho, Friedman-Russo).

Thus, the category of JB*-triples and
contractions is stable under contractive
projections.



To put this result in proper prospective, let B
be the category of Banach spaces and
contractions.

We say that a sub-category S of B is
projectively stable if it has the property that
whenever A is an object of § and X is the
range of a morphism of § on A which is a
projection, then X is isometric (that is,
isomorphic in §) to an object in S.



Examples of projectively stable categories

e L1, contractions (Grothendieck 1955)

o LP, 1< p< oo, contractions

(Douglas 1965, Ando 1966, Bernau-Lacey
1974, Tzafriri 1969)

e (*-algebras, completely positive unital maps
(Choi-Effros 1977)

o /p, 1 <p < oo, contractions
(Lindenstrauss-T zafriri 1978)

e JC*-algebras, positive unital maps
(Effros-Stormer 1979)

e T'ROs (ternary rings of operators),
complete contractions (YYoungson 1983)

e JB*-triples, contractions

(Kaup, Stacho 1984, Friedman-Russo 1985)
e (P-direct sums of Cp(H), 1 < p < o0, H
Hilbert space, contractions
(Arazy-Friedman, 1978,2000)

e /P-direct sums of LP(Q2,H), 1 <p < oo, H
Hilbert space, contractions

(Raynaud 2004)

e (P-direct sums of Cp(H), 1 <p#2<oo, H
Hilbert space, complete contractions
(LeMerdy-Ricard-Roydor 2009)



It follows immediately that if S is projectively
stable, then so is the category S« of spaces
whose dual spaces belong to S.

It should be noted that TROs, C*-algebras
and JC*-algebras are not stable under
contractive projections and JB*-triples are
not stable under bounded projections.



More about JB*-triples

JB*-triples are generalizations of
JB*-algebras and C*-algebras. The axioms
can be said to come geometry in view of
Kaup’'s Riemann mapping theorem.

Kaup showed in 1983 that JB*-triples are
exactly those Banach spaces whose open unit
ball is a bounded symmetric domain.

Kaup's holomorphic characterization of
JB*-triples directly led to the proof of the
projective stability of JB*-triples mentioned

above.

Many authors have studied the interplay
between JB*-triples and infinite dimensional
holomorphy.



Contractive projections have proved to be a
valuable tool for the study of problems on
JB*-triples (Gelfand-Naimark theorem,
structure of inner ideals, operator space
characterization of TROs, to name a few)

They are justified both as a natural
generalization of operator algebras as well as
because of their connections with complex
geometry.

Preduals of JBW?*-triples have been called
pre-symmetric spaces and have been proposed
as mathematical models of physical systems.

In this model the operations on the physical
system are represented by contractive
projections on the pre-symmetric space.



JB*-triples first arose in Koecher's proof of
the classification of bounded symmetric
domains in C™.

The original proof of this fact, done in the

1930’s by Cartan, used Lie algebras and Lie

groups, techniques which do not extend to
infinite dimensions.

On the other hand, to a large extent, the
Jordan algebra techniques do so extend, as
shown by Kaup and Upmeier.8

5The opposite is true concerning cohomology. Lie al-
gebra cohomology is well developed, Jordan algebra
cohomology is not



APPLICATION

GELFAND NAIMARK THEOREM
(FRIEDMAN-RUSSO 1986)

Every JB*-triple is isometically isomorphic to
a subtriple of a direct sum of Cartan factors.

The theorem was not unexpected. However,
the proof required new techniques because of
the lack of an order structure on a JB*-triple.

Step 1: February 1983 Friedman-Russo
Let P: A— A be a linear projection of norm 1
on a JC*-triple A. Then P(A) is a JB*-triple
under {wyz}P(A) = P({xyz}) for x,y,z € P(A).

Step 2: April 1983 Friedman-Russo
Same hypotheses. Then P is a conditional
expectation in the sense that

P{PaPbPc} = P{Pa,b, Pc}
and

P{PaPbPc} = P{aPbPc}.



Step 3: May 1983 Kaup
Let P: U — U be a linear projection of norm
1 on a JB*-triple U. Then P(U) is a
JB*-triple under {zyz}p) = P({zyz}y) for
x,y,z € P(U).
Also, P{PaPbPc} = P{Pa,b, Pc} for a,b,c € U,
which extends one of the formulas in the
previous step.

Step 4: February 1984 Friedman-Russo
Every JBW?*-triple splits into atomic and
purely non-atomic ideals.

Step 5: August 1984 Dineen
The bidual of a JB*-triple is a JB*-triple.

Step 6: October 1984 Barton-Timoney
The bidual of a JB*-triple is a JBW?*-triple,
that is, the triple product is separately
weak*-continuous.



Step 7: December 1984 Horn
Every JBW?*-triple factor of type I is
isomorphic to a Cartan factor.

More generally, every JBW*-triple of type I is
isomorphic to a direct sum of L°° spaces with
values in a Cartan factor.

Step 8: March 1985 Friedman-Russo
Putting it all together

7:U = U™ = AON = (®aCo)®N = oc(U*™)ON

implies that conm: U — A = &,y IS an
iIsometric isomorphism.



Consequences of the Gelfand-Naimark
theorem

e Every JB*-triple is isomorphic to a sub-
triple of a JB*-algebra.

e In every JB*-triple, [[{zyz}|| < |lz|||lylll=|

e Every JB*-triple contains a unique norm-
closed ideal J such that U/J is isomorphic
to a JC*-triple and J is purely exceptional,
that is, every homomorphism of J into a
C*-algebra is zero.



Digression #4—Structural Projections;
Structure of inner ideals

Edwards,Ruttiman,Hugli



AN OBSERVATION ABOUT PROJECTIVE
STABILITY FOR JBW*-TRIPLES

Preservation of type (Chu-Neal-Russo)
Simultaneously: Bunce-Peralta

Theorem 1:
Let P be a normal contractive projection on a
JBW*-triple Z of type I. Then P(Z) is of
type I.

Theorem 2:
Let P be a normal contractive projection on a
semifinite JBW*-triple Z. Then P(Z) is a
semifinite JW™*-triple.



BEING MATHEMATICIANS, WE
NATURALLY WONDERED ABOUT A
CONVERSE:

THEOREM
(2008 NEAL-RUSSO)

A JB*-SUBTRIPLE OF A C*-ALGEBRA'IS
THE RANGE OF A CONTRACTIVE
PROJECTION ON THE C*-ALGEBRA.



S
Matthew Neal (b. 1972)



Digression #5—PROJECTIVE
RIGIDITY

By considering the converse of projective
stability, one is lead to the following
definition.

A sub-category S of B is projectively rigid if
it has the property that whenever A is an
object of S and X is a subspace of A which is
iIsometric to an object in S, then X is the
range of a morphism of § on A which is a
projection.



Examples of projectively rigid categories,

e /p, 1 <p < oo, contractions
(Pelczynski 1960)

e [P 1< p< oo, contractions
(Douglas 1965, Ando 1966, Bernau-Lacey
1974)

o (), 1 <p< oo, contractions
(Arazy-Friedman 1977)

e Preduals of von Neumann algebras,
contractions (Kirchberg 1993)

e Preduals of TROs, complete contractions
(Ng-Ozawa 2002)

e Preduals of JBW?*-triples, contractions*
(Neal-Russo 2008/2011)

e (P-direct sums of Cp(H), 1 <p#2<o0, H
Hilbert space, complete contractions
(LeMerdy-Ricard-Roydor 2009)

(*with one exception—see the next page)



THEOREM
(Neal-Russo)

The category of preduals of JBW™*-triples
with no summands of the form L1($, H)
where H is a Hilbert space of dimension at
least two, is projectively rigid.

The result of Ng and Ozawa fails in the
category of operator spaces with complete
contractions.



GRADUS AD PARNASSUM
FOR SECTION III—TRIPLE SYSTEMS

1. Prove Proposition 5: FOR TWO MATRI-
CES A € M, (C),B eM,(C), WITH A* =
—A,B* = —B, DEFINE 6§, g(X) = AX +
XB. THEN 4 pIS A DERIVATION WITH
RESPECT TO TRIPLE MATRIX MUL-
TIPLICATION. (Use the notation {(abc) for
ab*c)

2. Prove Proposition 6: FIX TWO MATRI-
CES A, BIN M,(C) AND DEFINE 64 p(X) =
[[A, B], X]. THEN 64 5 IS A DERIVATION
WITH RESPECT TO TRIPLE BRACKET
MULTIPLICATION. (Use the notation [abc]
for [[a,b], c])

3. Prove Proposition 7. FIX TWO MATRI-
CES A, BIN Mp,»,(C) AND DEFINE 64 g(X) =
{A,B,X} — {A,B,X}. THEN 645 IS A
DERIVATION WITH RESPECT TO TRIPLE
CIRCLE MULTIPLICATION. (Use the no-
tation {abc} for ab*c + cb*a)



4. Show that M,(R) is a Lie triple system
with respect to triple bracket multiplica-
tion. In other words, show that the three
axioms for Lie triple systems in Table 4
are satisfied if abe denotes [[a,b], c] = (ab —
ba)c—c(ab—ba) (a,b and ¢ denote matrices).
(Use the notation [abc] for [[a,b],c])

5. Show that M, »(R) is a Jordan triple sys-
tem with respect to triple circle multipli-
cation. In other words, show that the two
axioms for Jordan triple systems in Table 4
are satisfied if abc denotes ab*c + cb*a (a,b
and ¢ denote matrices). (Use the notation
{abc} for ab*c + cb*a)

6. Let us write o, for the linear process

Oq.b(T) = abx

in a Lie triple system. Show that 4, is a
derivation of the Lie triple system by using
the axioms for Lie triple systems in Table 4.
(Use the notation [abc] for the triple prod-
uct in any Lie triple system, so that, for
example, J§,;(x) is denoted by [abx])



7. Let us write o, for the linear process
6a,p(z) = abx — bax

in a Jordan triple system. Show that 5a,b
IS a derivation of the Jordan triple system
by using the axioms for Jordan triple sys-
tems in Table 4. (Use the notation {abc}
for the triple product in any Jordan triple
system, so that, for example, 5a7b(az) =
{abx} — {bax})

8. On the Jordan algebra M, (R) with the cir-
cle product aob = ab + ba, define a triple
product

{abc} = (aob)oc+ (cob)oa—(aoc)ob.

Show that M, (R) is a Jordan triple system
with this triple product.
Hint: show that {abc} = 2abc 4 2cba



9.

10.

11.

On the vector space M, (R), define a triple
product (abc) = abc (mMatrix multiplication
without the adjoint in the middle). For-
mulate the definition of a derivation of the
resulting triple system, and state and prove
a result corresponding to Proposition 5. Is
this triple system associative?

In an associative algebra, define a triple
product (abc) to be abc. Show that the al-
gebra becomes an associative triple system
with this triple product.

In an associative triple system with triple
product denoted (abc), define a binary prod-
uct ab to be (aub), where u is a fixed el-
ement. Show that the triple system be-
comes an associative algebra with this prod-
uct. Suppose further that (auu) = a for all
a. Show that we get a unital involutive
algebra with involution af = (uau).



12. In a Lie algebra with product denoted by

13.

14.

[a,b], define a triple product [abc] to be
[[a,b],c]. Show that the Lie algebra be-
comes a Lie triple system with this triple
product.

(Meyberg Lectures, chapter 6, example 1,
page 43)

Let A be an algebra (associative, Lie, or
Jordan; it doesn’t matter). Show that the
set D := Der (A) of all derivations of A is a
Lie subalgebra of End (A). That is, D is a
linear subspace of the vector space of linear
transformations on A, and if Dy,D> € D,
then D1D> — D>D1 € D.

Let A be a triple system (associative, Lie,
or Jordan; it doesn’'t matter). Show that
the set D := Der (A) of derivations of A is
a Lie subalgebra of End (A). Thatis, Dis a
linear subspace of the vector space of linear
transformations on A, and if Dy,D> € D,
then D1D> — D>Dq1 € D.



GRADUS AD PARNASSUM
ADDITIONAL PROBLEMS FOR
SECTIONS I AND III

(ALGEBRAS AND TRIPLE SYSTEMS)

1.

2.

In an arbitrary Jordan triple system, with
triple product denoted by {abc}, define a
triple product by

[abc] = {abc} — {bac}.

Show that the Jordan triple system be-
comes a Lie triple system with this new
triple product.

(Meyberg Lectures, chapter 11, Theorem
1, page 108)

In an arbitrary associative triple system,
with triple product denoted by (abc), de-
fine a triple product by

[zyz] = (zyz) — (yxz) — (zzy) + (2yz).

Show that the associative triple system be-
comes a Lie triple system with this new
triple product.



(Meyberg Lectures, chapter 6, example 3,
page 43)

. In an arbitrary Jordan algebra, with prod-
uct denoted by xy, define a triple product
by [zyz] = z(yz) — y(xz). Show that the
Jordan algebra becomes a Lie triple sys-
tem with this new triple product.
(Meyberg Lectures, chapter 6, example 4,
page 43)

. In an arbitrary Jordan triple system, with
triple product denoted by {abc}, fix an ele-
ment y and define a binary product by

ab = {ayb}.

Show that the Jordan triple system be-
comes a Jordan algebra with this (binary)
product.

(Meyberg Lectures, chapter 10, Theorem
1, page 94—using different language; see
also, Harald Upmeier, Symmetric Banach
Manifolds and Jordan C*-algebras, 1985,
Proposition 19.7, page 317))



5. In an arbitrary Jordan algebra with multipli-
cation denoted by ab, define a triple prod-
uct

{abc} = (ab)c + (cb)a — (ac)b.

Show that the Jordan algebra becomes a
Jordan triple system with this triple prod-
uct. (cf. Problem 15)

(Meyberg Lectures, chapter 10, page 93—
using different language; see also, Harald
Upmeier, Symmetric Banach Manifolds and
Jordan C*-algebras, 1985, Corollary 19.10,
page 320)

6. Show that every Lie triple system, with
triple product denoted [abc] is a subspace
of some Lie algebra, with product denoted
[a,b], such that [abc] = [[a, b], c].

(Meyberg Lectures, chapter 6, Theorem 1,
page 45)

7. Find out what a semisimple associative al-
gebra is and prove that every derivation
of a finite dimensional semisimple associa-
tive algebra is inner, that is, of the form
x — ax —xa for some fixed a in the algebra.



(G. Hochschild, Semisimple algebras and
generalized derivations, Amer. J. Math.
64, 1942, 677—694, Theorem 2.2)

. Find out what a semisimple Lie algebra is
and prove that every derivation of a finite
dimensional semisimple Lie algebra is inner,
that is, of the form z — [a, z] for some fixed
a in the algebra.

(Meyberg Lectures, chapter 5, Theorem 2,
page 42; see also G. Hochschild, Semisim-
ple algebras and generalized derivations, Amer.
J. Math. 64, 1942, 677—694, Theorem
2.1)

. Find out what a semisimple Jordan alge-
bra is and prove that every derivation of
a finite dimensional semisimple Jordan al-
gebra is inner, that is, of the form z= —
>or_q(a;(bjx) — bj(a;x)) for some fixed ele-
ments a1,...,an and bq,...,by In the alge-
bra.

(N. Jacobson, Structure of Jordan alge-
bras, 1968, around page 320 and Braun-
Koecher, Jordan Algebren, around page 270)



10. In an associative triple system with triple
product (zyz), show that you get a Jor-
dan triple system with the triple product
{xyz} = (xyz) + (zyx). Then use Theorem
7 to prove Theorem 5.

THEOREM 7
EVERY DERIVATION OF My, (C) WITH
RESPECT TO TRIPLE CIRCLE MULTI-
PLICATION IS A SUM OF DERIVATIONS
OF THE FORM dy p.

THEOREM 5

EVERY DERIVATION ON My, »(C) WITH
RESPECT TO TRIPLE MATRIX MUL-
TIPLICATION IS A SUM OF DERIVA-
TIONS OF THE FORM 44 pg.

11. Find out what a semisimple associative triple
system is and prove that every derivation of
a finite dimensional semisimple associative
triple system is inner (also find out what
inner means in this context).

(R. Carlsson, Cohomology for associative
triple systems, P.A.M.S. 1976, 1-7)



12.

13.

Find out what a semisimple Lie triple sys-
tem is and prove that every derivation of
a finite dimensional semisimple Lie triple
system is inner, that is, of the form z —

> qla;b;z] for some fixed elements aq,...,an
and b1,...,by in the Lie triple system.
(Meyberg Lectures, chapter 6, Theorem
10, page 57)

Find out what a semisimple Jordan triple
system is and prove that every derivation
of a finite dimensional semisimple Jordan
triple system is inner, that is, of the form
x — > ({abjx} — {bja;x}) for some fixed
elements aqy,...,an and bq,...,b, in the Jor-
dan triple system.

(Meyberg Lectures, chapter 11, Theorem
8, page 123 and Corollary 2, page 124)

END OF SECTION III



IV—WEAK AMENABILITY

TWO BASIC QUESTIONS ON
DERIVATIONS OF BANACH ALGEBRAS
AND TRIPLES

A— Aand A— M (MODULE)

e AUTOMATIC CONTINUITY?
e INNER?

CONTEXTS

(i) C*-ALGEBRAS
(associative Banach algebras)

(ii) JC*-ALGEBRAS
(Jordan Banach algebras)

(iii) JC*TRIPLES
(Banach Jordan triples)

Could also consider:
(ii") Banach Lie algebras
(iii")Banach Lie triple systems
(i")Banach associative triple systems




(i) C*-ALGEBRAS
derivation: D(ab) = a- Db+ Da-b

inner derivation: ad x(a) =z-a—a-x (x € M)

e AUTOMATIC CONTINUITY RESULTS

KAPLANSKY 1949: C(X)
SAKAI 1960
RINGROSE 1972: (module)

e INNER DERIVATION RESULTS

SAKAI, KADISON 1966
CONNES 1976 (module)
HAAGERUP 1983 (module)



THEOREM (Sakai 1960)
Every derivation from a C*-algebra into itself
IS continuous.

THEOREM (Ringrose 1972)
Every derivation from a C*-algebra into a
Banach A-bimodule is continuous.

THEOREM (1966-Sakai, Kadison)
EVERY DERIVATION OF A C*-ALGEBRA
IS OF THE FORM z +— axr — xa FOR SOME

a IN THE WEAK CLOSURE OF THE

C*-ALGEBRA



John Ringrose (b. 1932)

John Ringrose is a leading world expert on
non-self-adjoint operators and operator
algebras. He has written a number of
influential texts including Compact
non-self-adjoint operators (1971) and, with R
V Kadison, Fundamentals of the theory of
operator algebras in four volumes published in
1983, 1986, 1991 and 1992.



THEOREM (1976-Connes)
EVERY AMENABLE C*-ALGEBRA IS
NUCLEAR.
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Alain Connes is the leading specialist on
operator algebras.

In his early work on von Neumann algebras in
the 1970s, he succeeded in obtaining the
almost complete classification of injective

factors.

Following this he made contributions in
operator K-theory and index theory, which
culminated in the Baum-Connes conjecture.

He also introduced cyclic cohomology in the
early 1980s as a first step in the study of
noncommutative differential geometry.

Connes has applied his work in areas of
mathematics and theoretical physics,
including number theory, differential geometry
and particle physics.



THEOREM (1983-Haagerup)
EVERY NUCLEAR C*-ALGEBRA IS
AMENABLE.

THEOREM (1983-Haagerup)
EVERY C*-ALGEBRA IS WEAKLY
AMENABLE.

Uffe Haagerup b. 1950

Haagerup’'s research is in operator theory, and
covers many subareas in the subject which
are currently very active - random matrices,
free probability, C*-algebras and applications

to mathematical physics.



DIGRESSION #6
A BRIDGE TO JORDAN ALGEBRAS

A Jordan derivation from a Banach algebra A
into a Banach A-module is a linear map D
satisfying D(a?) = aD(a) + D(a)a, (a € A), or
equivalently,

D(ab+ ba) = aD(b) + D(b)a + D(a)b+ bD(a),
(a,b e A).

Sinclair proved in 1970 that a bounded
Jordan derivation from a semisimple Banach
algebra to itself is a derivation, although this

result fails for derivations of semisimple

Banach algebras into a Banach bi-module.

Nevertheless, a celebrated result of B.E.
Johnson in 1996 states that every bounded
Jordan derivation from a C*-algebra A to a

Banach A-bimodule is an associative
derivation.



In view of the intense interest in automatic
continuity problems in the past half century,
it is therefore somewhat surprising that the
following problem has remained open for
fifteen years.

PROBLEM
Is every Jordan derivation from a C*-algebra
A to a Banach A-bimodule automatically
continuous (and hence a derivation, by
Johnson’s theorem)?

In 2004, J. Alaminos, M. Bresar and A.R.
Villena gave a positive answer to the above
problem for some classes of C*-algebras
including the class of abelian C*-algebras



Combining a theorem of Cuntz from 1976
with the theorem just quoted vields

THEOREM
Every Jordan derivation from a C*-algebra
A to a Banach A-module is continuous.

In the same way, using the solution in 1996
by Hejazian-Niknam in the commutative case
we have

THEOREM
Every Jordan derivation from a
C*-algebra A to a Jordan Banach
A-module is continuous.
(Jordan module will be defined below)

These two results will also be among the

consequences of our results on automatic

continuity of derivations into Jordan triple
modules.

(END OF DIGRESSION)



(i) JC*-ALGEBRA

derivation: D(aob) =ao Db+ Daob
inner derivation: > ;[L(x;)L(a;) — L(a;)L(x;)]

(a:z- e M,a; € A)
b— > ilr;o(a;0b) —a;o(x;00b)]

e AUTOMATIC CONTINUITY RESULTS

UPMEIER 1980
HEJAZIAN-NIKNAM 1996 (module)
ALAMINOS-BRESAR-VILLENA 2004

(module)
e INNER DERIVATION RESULTS

JACOBSON 1951 (module)
UPMEIER 1980



THEOREM (1951-Jacobson)
EVERY DERIVATION OF A FINITE
DIMENSIONAL SEMISIMPLE JORDAN
ALGEBRA INTO A (JORDAN) MODULE
IS INNER
(Lie algebras, Lie triple systems)

THEOREM (1980-Upmeier)
EVERY DERIVATION OF A REVERSIBLE
JC*-ALGEBRA EXTENDS TO A
DERIVATION OF ITS ENVELOPING
C*-ALGEBRA. (IMPLIES SINCLAIR)

THEOREM (1980-Upmeier)
1. Purely exceptional JBW-algebras have the
inner derivation property
2. Reversible JBW-algebras have the inner
derivation property
3. ®L*>(S;,U;) has the inner derivation
property if and only if sup; dim U; < o0,
Uj spin factors.



Nathan Jacobson (1910-1999)




(iii) JC*-TRIPLE
derivation:
D{a,b,c} = {Da.b,c} + {a, Db, c} + {a,b, Dc}
{x,y,z} = (xy*z + zy*™x) /2
inner derivation: > ;[L(x;,a;) — L(a;, ;)]
(x; € M,a; € A)
b— >il{zs, ai, b} — {ay, x;, b}]
e AUTOMATIC CONTINUITY RESULTS
BARTON-FRIEDMAN 1990
(NEW) PERALTA-RUSSO 2010 (module)

e INNER DERIVATION RESULTS

HO-MARTINEZ-PERALTA-RUSSO 2002
MEYBERG 1972
KUHN-ROSENDAHL 1978 (module)

(NEW) HO-PERALTA-RUSSO 2011
(module, weak amenability)



KUDOS TO:
Lawrence A. Harris (PhD 1969)

1974 (infinite dimensional holomorphy)
1981 (spectral and ideal theory)



AUTOMATIC CONTINUITY RESULTS

THEOREM (1990 Barton-Friedman)
EVERY DERIVATION OF A JB*TRIPLE IS
CONTINUOUS

THEOREM (2010 Peralta-Russo)
NECESSARY AND SUFFICIENT
CONDITIONS UNDER WHICH A

DERIVATION OF A JB*-TRIPLE INTO A
JORDAN TRIPLE MODULE IS
CONTINUOUS

(JB*-triple and Jordan triple module are
defined below)



Tom Barton (b. 1955)

Tom Barton is Senior Director for
Architecture, Integration and CISO at the
University of Chicago. He had similar
assignments at the University of Memphis,
where he was a member of the mathematics
faculty before turning to administration.



Yaakov Friedman (b. 1948)

Yaakov Friedman is director of research at
Jerusalem College of Technology.
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Antonio Peralta (b. 1974)
Bernard Russo (b. 1939)

GO LAKERS!



PREVIOUS INNER DERIVATION
RESULTS

THEOREM (1972 Meyberg)
EVERY DERIVATION OF A FINITE
DIMENSIONAL SEMISIMPLE JORDAN
TRIPLE SYSTEM IS INNER
(Lie algebras, Lie triple systems)

THEOREM (1978 Kuhn-Rosendahl)
EVERY DERIVATION OF A FINITE
DIMENSIONAL SEMISIMPLE JORDAN
TRIPLE SYSTEM INTO A JORDAN
TRIPLE MODULE IS INNER
(Lie algebras)



THEOREM 2002
(Ho-Martinez-Peralta-Russo)
CARTAN FACTORS OF TYPE Inn,

II (even or o), and III HAVE THE INNER
DERIVATION PROPERTY

THEOREM 2002
(Ho-Martinez-Peralta-Russo)
INFINITE DIMENSIONAL CARTAN
FACTORS OF TYPE Iyn,m #n, and IV
DO NOT HAVE THE INNER DERIVATION
PROPERTY.









SOME CONSEQUENCES FOR
JB*-TRIPLES OF PERALTA-RUSSO
WORK ON AUTOMATIC CONTINUITY

1. AUTOMATIC CONTINUITY OF
DERIVATION ON JB*-TRIPLE
(BARTON-FRIEDMAN)

2. AUTOMATIC CONTINUITY OF
DERIVATION OF JB*-TRIPLE INTO DUAL
(SUGGESTS WEAK AMENABILITY)

3. AUTOMATIC CONTINUITY OF
DERIVATION OF JB*-ALGEBRA INTO A
JORDAN MODULE
(HEJAZIAN-NIKNAM)



SOME CONSEQUENCES FOR
C*-ALGEBRAS OF PERALTA-RUSSO
WORK ON AUTOMATIC CONTINUITY

1. AUTOMATIC CONTINUITY OF
DERIVATION OF C*-ALGEBRA INTO A
MODULE
(RINGROSE)

2. AUTOMATIC CONTINUITY OF
JORDAN DERIVATION OF C*-ALGEBRA
INTO A MODULE
(JOHNSON)

3. AUTOMATIC CONTINUITY OF
JORDAN DERIVATION OF C*-ALGEBRA
INTO A JORDAN MODULE
(HEJAZIAN-NIKNAM)



HO-PERALTA-RUSSO WORK ON
TERNARY WEAK AMENABILITY FOR
C*-ALGEBRAS AND JB*-TRIPLES

1. COMMUTATIVE C*-ALGEBRAS ARE
TERNARY WEAKLY AMENABLE (TWA)

2. COMMUTATIVE JB*TRIPLES ARE
APPROXIMATELY WEAKLY AMENABLE

3. B(H),K(H) ARE TWA IF AND ONLY IF
FINITE DIMENSIONAL

4. CARTAN FACTORS OF TYPE Imn OF
FINITE RANK WITH m #=n, AND OF
TYPE IV ARE TWA IF AND ONLY IF

FINITE DIMENSIONAL



SAMPLE LEMMA

The C*-algebra A = K(H) of all compact
operators on an infinite dimensional
Hilbert space H is not Jordan weakly

amenable.

We shall identify A* with the trace-class
operators on H.

Supposing that A were Jordan weakly
amenable, let ¢ € A* be arbitrary. Then D,
(= ad) is an associative derivation and
hence a Jordan derivation, so by assumption
would be an inner Jordan derivation. Thus
there would exist ¢; € A* and b; € A such that

Dy(x) = Z [pjo(bjox) —bjo(pjox)]
=1

for all z € A.
For =,y € A, a direct calculation yields

1 n
Yoy —yz) = — (Z bjw; — w%) (zy — yz).
j=1



It is known (Pearcy-Topping 1971) that every
compact operator on a separable (which we
may assume WLOG) infinite dimensional
Hilbert space is a finite sum of commutators
of compact operators.

By the just quoted theorem of Pearcy and
Topping, every element of K(H) can be
written as a finite sum of commutators
[z,y] = zy — yx of elements z,y in K(H).

Thus, it follows that the trace-class operator

1 n
p=—7 (Z bjej — %‘bj)

is a finite sum of commutators of compact
and trace-class operators, and hence has
trace zero. This is a contradiction, since o
was arbitrary.



PROPOSITION
The JB*-triple A = M,(C) is ternary
weakly amenable.

By a Proposition which is a step in the proof
that commutative C*-algebras are ternary
weakly amenable,

Di(A, A*) = Inn, (A, A*) o x + Inny(A, A™),
SO it suffices to prove that
Inny(A, A*) ox C Inni(A, A*).

As in the proof of the Lemma, if
D € Innj (A, A*) so that Dz = ¢z — xv for
some ¥ € A*, then

Tr(¥)

Y = [p1,b1] — [w2, b2] +

where by, b> are self adjoint elements of A and
w1 and o are self adjoint elements of A*.

1,

It is easy to see that, for each x € A, we have
D(x*) =
{w1,2b1,x} — {2b1, 1,7}
—{¥2,2b2,z} + {2b2, p2,x},
so that
Dox e Inni(A, A®).



Digression #7—LOCAL DERIVATIONS
THE QUESTIONS ARE: WHEN ARE THEY
AUTOMATICALLY CONTINUOUS, AND
WHEN ARE THEY GLOBAL
DERIVATIONS. THIS MAKES SENSE IN
ALL CONTEXTS.



APPENDIX
MAIN AUTOMATIC CONTINUITY
RESULT
(Jordan triples, Jordan triple modules,
Quadratic annihilator, Separating spaces)

Jordan triples
A complex (resp., real) Jordan triple is a
complex (resp., real) vector space E equipped
with a non-trivial triple product

EFExExFE—FE

(z,y,2) — {zyz}

which is bilinear and symmetric in the outer
variables and conjugate linear (resp., linear)
in the middle one satisfying the so-called
“Jordan Identity".

L(CL, b)L(fC,y) T L(QZ, y)L(a’7 b) —

L(L(CL, b)%,y) o L(QZ,L(b, Cl,)y),
for all a,b,x,y in E, where L(x,y)z := {xyz}.



A JB*-algebra is a complex Jordan Banach
algebra A equipped with an algebra involution
* satisfying ||{a,a*,a}|| = ||a||3, a € A. (Recall

that {a,a* a} =2(aoa*) oa—a?oa*).

A (complex) JB*-triple is a complex Jordan
Banach triple E satisfying the following
axioms:

(a) For each a in E the map L(a,a) is an
hermitian operator on E with non negative
spectrum.

(b) |{a,a,a}|| = ||la||® for all a in A.
Every C*-algebra (resp., every JB*-algebra) is
a JB*-triple with respect to the product
{abc} = % (ab*c + cb*a) (resp.,

{abc} ;== (aob*)oc+ (cob*)oa— (aoc)obd").



Jordan triple modules

If A is an associative algebra, an A-bimodule
IS a vector space X, equipped with two
bilinear products (a,z) — ax and (a,z) — za
from A x X to X satisfying the following
axioms:

a(bx) = (ab)x, a(xb) = (ax)b, and, (xa)b = z(ab),

for every a,be A and x € X.

If J is a Jordan algebra, a Jordan J-module is

a vector space X, equipped with two bilinear

products (a,z) — aox and (z,a) — x oa from
J x X to X, satisfying:

aox=zx0a, a’o(xoa)=(a’ozx)oa, and,

2((zoa)ob)oa+zo(a?ob) = 2(xoa)o(aob)—+(zob)oa?,

for every a,be J and x € X



If £ is a complex Jordan triple, a Jordan triple
E-module (also called triple E-module) is a
vector space X equipped with three mappings

{, ., H: XXEXFE—-X

{, o0 EXXXFE—X

{, . J3 ' EXEXX —X
satisfying:

. {z,a,b}q is linear in @ and =z and conjugate
linear in b, {abx}3 is linear in b and z and
conjugate linear in a and {a,z,b}> is conju-
gate linear in a,b, x

. {x,b,a}1 ={a,b,x}3, and {a,x,b}p = {b,z,a}>
for every a,b € F and x € X.

. Denoting by {.,.,.} any of the products {.,.,.}1,
{.,.,.}pand {.,.,.}3, the identity {a,b,{c,d,e}} =
{{a,b,c},d, e} —{c,{b,a,d},e}+{c,d,{a,b,e}},
holds whenever one of the elements a, b, c,d, e

is in X and the rest are in E.



It is a little bit laborious to check that the
dual space, E*, of a complex (resp., real)
Jordan Banach triple E is a complex (resp.,
real) triple E-module with respect to the
products:

{a,b,0} () = {p,b,a} (z) = p{ba,z} (3)

and

{a,,b} () := p{a,z,b},Vp € E¥,a,b,x € E.
(4)
For each submodule S of a triple E-module
X, we define its quadratic annihilator,

Anng(S), as the set
{a € FE:Q(a)(S) ={a,S,a} = 0}.



Separating spaces
Separating spaces have been revealed as a
useful tool in results of automatic continuity.

Let 7T': X — Y be a linear mapping between
two normed spaces. The separating space,
o (T), of T in Y is defined as the set of all z
in 'Y for which there exists a sequence
(zn) C X with p, — 0 and T'(xn) — z.

A straightforward application of the closed
graph theorem shows that a linear mapping 1T°
between two Banach spaces X and Y is
continuous if and only if o (T) = {0}



Main Result
THEOREM Let E be a complex JB*-triple,
X a Banach triple E-module, and let
0 : F — X be a triple derivation. Then § is
continuous if and only if Anng(oy(4)) is a
(norm-closed) linear subspace of E and

{AnNNn (o4 (8)),Ann; (0 (3)),0,(6)} = 0.

COROLLARY Let FE be a real or complex
JB*-triple. Then

(a) Every derivation § : E — E is continuous.

(b) Every derivation § : E — E* is continuous.

END OF SECTION 1V



V—COHOMOLOGY OF ALGEBRAS

ASSOCIATIVE ALGEBRAS
HOCHSCHILD
ANNALS OF MATHEMATICS 1945

Let M be an associative algebra and X a
two-sided M-module. For n > 1, let
L™"(M,X) = all n-linear maps
(L°(M, X) = X)

Coboundary operator
o: L™ — L™l (for n > 1)

Op(ay, -+, ant1) = arplaz, -, any1)
+ Z(—l)JQb(CL]_, Q5 —-1,05Q541, " 7, an—l—l)
+(-1)"T1¢(a, -+, an)ant1

For n = 0O,
0:X — L(M,X) Jx(a) = ax — xa

Since 0o 0 =0,
Im(o: L" 1 — L") C ker(d: L™ — L"T1)

H™(M,X) = kerd/ImQ is a vector space.



For n =1, kero =

{¢: M — X :ar1é(a2) — ¢(ara2) + ¢(a1)ap = 0}
— the space of derivations from M to X

0:X — L(M,X) Jx(a) = ax — za
Imo = the space of inner derivations

Thus HY(M, X) measures how close
derivations are to inner derivations.

An associative algebra B is an extension of
associative algebra A if there is a
homomorphism o of B onto A. The extension
splits if B = kero @ A* where A* is an algebra
isomorphic to A, and is singular if
(kero)? = 0.

PROPOSITION
There is a one to one correspondence

between isomorphism classes of singular
extensions of A and H2(A, A)



LIE ALGEBRAS
JACOBSON
LIE ALGEBRAS 1962

If L is a Lie algebra, then an L-module is a
vector space M and a mapping of M x L into
M, (m,z) — max, satisfying

(m1 4+ mo)x = mix + mox

a(mz) = (am)x = m(ax)
m|z1, z2] = (mz1)zo — (Mmz2)2]1.

Let L be a Lie algebra, M an L-module. If
1 > 1, an -dimensional M-cochain for L is a
skew symmetric i-linear mapping f of
LxLx---xL into M. Skew symmetric
means that if two arguments in f(xq, -, x;)
are interchanged, the value of f changes sign.
A O-dimensional cochain is a constant
function from L to M.



The coboundary operator § (for ¢ > 1) is:

5(f)(£131, T 7xi—|—1)
‘11 _ R
:Zzil(_l)z—l_lf(a?la B R 7 PR 7$i—|—1)$q
1+1
+ Z (_1)T+qf(x17 e 7§CI7 e 7£7“7 "y L1, [wébx”'“])'
q<r=1

and for i = 0, §(f)(xz) = ux (module action),
if fis the constant u € M.

One verifies that §2 = 0 giving rise to
cohomology groups

HY(L,M) = Z"(L,M)/B*(L, M)

If i =0 we take B! =0 and HO(L, M) =
ZO(L, M) ={u€ M :ux=0,Yz € L}.



THEOREM (WHITEHEAD’S LEMMAS)
If L is a finite dimensional semisimple Lie
algebra over a field of characteristic O, then

HYL, M) = H%(L,M) =0

for every finite dimensional module M of L.

THEOREM (WHITEHEAD)
If L is a finite dimensional semisimple Lie
algebra over a field of characteristic 0, then

HY'(L,M) =0 (Vi > 0)

for every finite dimensional irreducible module
M of L such that ML # 0.




JORDAN ALGEBRAS

GERSTENHABER
PROCEEDING OF THE NATIONAL
ACADEMY OF SCIENCES 1964

GLASSMAN /JACOBSON
JOURNAL OF ALGEBRA 1970

Let A be an algebra defined by a set of
identities and let M be an A-module. A
singular extension of length 2 is, by definition,
a null extension of A by M. So we need to
know what a null extension is.

It is simply a short exact sequence
0—- MG E ﬂ A—0O

where, provisionally, M is an algebra (rather
than an A-module) with M2 = 0.



If n > 2, a singular extension of length n is an
exact sequence of bimodules

O—-— M —-M,_ {—--—>M,—FE—>A—0

Morphisms, equivalences, addition, and scalar
multiplication of equivalence classes of
singular extensions can be defined.

Then for n > 2, H*(A, M) := equivalence
classes of singular extensions of length n

These definitions are equivalent to the
classical ones in the associative and Lie cases.



Gerstenhaber (using generalized projective
resolutions) showed that if
00— M — M — M" — 0 is an exact sequence
of A-bimodules, then there are natural
homomorphisms " so that the long sequence

0 — Der (A, M") — Der (A, M) — Der (A, M) IR
H?(A, M) — H?(A, M) — H?(A, M") LR
H3(A, M) — H3(A, M) — H3(A,M") —

o= HY(A, MM S B LA M) — -

IS exact. In particular,

H"(A, M) = ker§"/ims"~ 1 (n>2)

What about HO(A, M) and H(A, M) and
Jordan algebras?

For this we turn first to Glassman’s thesis of
1968.



Given an algebra A, consider the functor 7
from the category C of A-bimodules and
A-homomorphisms to the category V of

vector spaces and linear maps:
MeCr—Der(ALM)ey , n—n
where n € Hom 4(M, M>) and
n € Hom(Der (A, Mq),Der (A, M»>)) is given by
n=mnoD.

(A Doy 4 MQ)



An inner derivation functor is a subfunctor J
which respects epimorphisms, that is,

MeC— JA,M)CDer(A, M) eV

and if n € Hom4(Mq, M>) is onto, then so is
J(A,n) =0T (A, M)

Relative to the choice of J one defines
H(A, M) = Der (A, M)/J (A, M)

(The definition of HO(A, M) is more involved)

Glassman then proves that
0— HYA, M) — H(A, M) — HO(A, M) Mt
HYA, M) — HY (A, M) — HY (A, M) IR
H2(A. M') — H2(A, M) — H2(A, M"Y 5
H3(A,M") — H3(A, M) — H3(A, M") —

s HY(A, M"Y S g A M) — -

IS exact.



We mention just one other result from
Glassman’s paper.

In a Jordan algebra, recall that
{xby} = (xb)y + (by)x — (zy)b.

The b-homotope of J, written J®) is the
Jordan algebra structure on the vector space
J given by the multiplication z -, y = {xby}.

If M is a bimodule for J and b is invertible,
the corresponding bimodule M®) for J®) s
the vector space M with action

a-pm=m-a= {abm}

LEMMA
H™(J, M)~ H*(J®) p(b))



JORDAN ANALOGS OF
WHITEHEAD’S LEMMAS

THEOREM (JACOBSON)
Let J be a finite dimensional semisimple
Jordan algebra over a field of characteristic O
and let M be a J-module. Let f be a linear
mapping of J into M such that

f(ab) = f(a)b+ af(b).
Then there exist v; € M,b; € J such that

fla) = Z((via)b — vi(ab;)).



THEOREM (ALBERT-PENICO-TAFT)
Let J be a finite dimensional semisimple
(separable?) Jordan algebra and let M be a
J-module. Let f be a bilinear mapping of
J x J into M such that

fla,b) = f(b,a)

and
f(a?,ab) + f(a,b)a® + f(a,a)ab
= f(a®b,a) + f(a?,b)a+ (f(a,a)b)a

Then there exist a linear mapping g from J
into M such that

f(a,b) = g(ab) — g(b)a — g(a)b



1 AND 2 DIMENSIONAL COHOMOLOGY
FOR QUADRATIC JORDAN ALGEBRAS
McCrimmon-TAMS 1971 pp.285-289




Seibt, Peter
Cohomology of algebras and triple systems.
Comm. Algebra 3 (1975), no. 12,
1097—-1120.

From the author’s introduction: " The
classical cohomologies of unital associative
algebras and of Lie algebras have both a
double algebraic character:

They are embedded in all of the machinery of
derived functors, and they allow full extension
theoretic interpretations
(Yoneda-interpretation) of the higher
cohomology groups—which seems natural
since the coefficient category for cohomology
is actually definable in terms of singular
extension theory.



If one wants to define a uniform cohomology
theory for (linear) nonassociative algebras and
triple systems which " generalizes” these two
classical cohomologies one may proceed
either via derived functors

[M. Barr and G. S. Rinehart, Trans. Amer.
Math. Soc. 122 (1966), 416—-426; B.
Pareigis, Math. Z. 104 (1968), 281—336]

or via singular extension theory

[M. Gerstenhaber, Proc. Nat. Acad. Sci.
U.S.A. 51 (1964), 626—629; N. D. Glassman,
Pacific J. Math. 33 (1970), 617—634].

The purpose of this paper which adopts the
first point of view is to discuss compatibility
questions with the second one.”



1 AND 2 DIMENSIONAL COHOMOLOGY
FOR JORDAN TRIPLE SYSTEMS

McCrimmon PacJM 1982 pp 92-102




1,2 and 3 DIMENSIONAL COHOMOLOGY
FOR BANACH JORDAN ALGEBRAS;
PERTURBATION THEORY
Dosi-RMJM 2009 pp516-520

DEFINITION:

A BANACH ALGEBRA'IS STABLE IF ANY
TWO SUFFICIENTLY CLOSE BANACH
ALGEBRA MULTIPLICATIONS ARE
TOPOLOGICALLY ALGEBRAICALLY
ISOMORPHIC



MORE PRECISELY

If m is a Banach algebra multiplication on A,
then [[m(z, y)[| < [[m|ll|lzl||y]l-

THEOREM
If H2(A, A) = H3(A, A) = 0, then there exists
e > 0 such that if ||m1 — my]|| < e then (A, mq)
and (A, mo) are topologically algebraically
isomorphic.

e Johnson, Proc. Lon. Math. Soc. 1977
e Raeburn and Taylor, Jour. Funct. Anal.
1977



The origin of perturbation theory is
deformation theory.

Let c,i?j be the structure constants of a finite
dimensional Lie algebra L.

Let cffj(e) — cfj

Stability means (L,cfj(e)) is isomorphic to
(L,cfj) if € is sufficiently small.

THEOREM
(Gerstenhaber, Ann. of Math. 1964)
Finite dimensional semisimple Lie algebras are
stable.



ANAR DOSI (ALSO USES DOSIEV)
(Middle East Technical University, TURKEY))

THEOREM 1
IF L IS A BANACH LIE ALGEBRA AND
H?(L,L) = H3(L,L) =0, THEN L IS A
STABLE BANACH LIE ALGEBRA

THEOREM 2
SIMILAR FOR BANACH JORDAN
ALGEBRAS (WITH APPROPRIATE
DEFINITIONS OF LOW DIMENSIONAL
COHOMOLOGY GROUPS)

END OF SECTION V



VI—COHOMOLOGY OF OPERATOR
ALGEBRAS

e Ringrose, presidential address
Bull. LMS 1996

e Sinclair and Smith: Survey
Contemporary Mathematics 2004



Hochschild cohomology involves an
associative algebra A and A-bimodules X and
gives rise to

n-cochains L"(A, X),
coboundary operators Ap,
n-coboundaries B",
n-cocycles Z™ and
cohomology groups H"(A, X).

If A is a Banach algebra and X is a Banach
A-bimodule (=Banach space with module
actions jointly continuous) we have the
continuous versions of the above concepts

L™, B%, Z" , H"(A, X).

Warning: B[ is not always closed, so H is
still only a vector space.



Let A be a C*-algebra of operators acting on
a Hilbert space H and let X be a dual normal
A-module (X is a dual space and the module

actions are separately ultra

weakly-weak*-continuous). We now have

normal n-cochains L' (A, X )= bounded and
separately weakly continuous n-cochains
coboundary operators Ap,

normal n-coboundaries B;,

normal n-cocycles Z]} and

normal cohomology groups H'(A, X).



For a C*-algebra acting on a Hilbert space we
thus have three possible cohomology theories:

e the purely algebraic Hochschild theory H™
e the bounded theory H}
e the normal theory H}}

THEOREM 1 (1971)
Hy (A, X) ~ Hij(R, X)
(R =ultraweak closure of A)

THEOREM 2 (1972)
Hyp (A, X) ~ Hy (A, X)

By Theorems 1 and 2, due to
Johnson-Kadison-Ringrose, all four
cohomology groups

are isomorphic.



THEOREM 3 (1971)
(Johnson-Kadison-Ringrose)
HY(R,X)=0Vn>1
(R =hyperfinite von Neumann algebra)

THEOREM 4 (1978)
(Connes)
If R is a von Neumann algebra with a
separable predual, and H1(R, X) = 0 for
every dual normal R-bimodule X, then
R is hyperfinite.



At this point, there were two outstanding
problems of special interest;

Problem A
H*(R,R) =0Vn>17
for every von Neumann algebra R
Problem B
HY(R,B(H)) =0Vn>17
for every von Neumann algebra R acting on a
Hilbert space H

(Problem C will come later)

ENTER COMPLETE BOUNDEDNESS



FAST FORWARD ONE DECADE

“The main obstacle to advance was a paucity
of information about the general bounded
linear (or multilinear) mapping between
operator algebras. The major breakthrough,
leading to most of the recent advances, came
through the development of a rather detailed
theory of completely bounded mappings.”
(Ringrose)

Let A be a C*-algebra and let S be a von
Neumann algebra, both acting on the same
Hilbert space H with A C S. We can view S

as a dual normal A-module with A acting on S
by left and right multiplication. We now have

completely bounded n-cochains L7, (A, S)
coboundary operators Ay,

completely bounded n-coboundaries BZ}b,
completely bounded n-cocycles Z;',
completely bounded cohomology groups H'; (A, S).



Digression #8—COMPLETELY
BOUNDED MAPS

sneak preview of section IX
(QUANTUM FUNCTIONAL ANALYSIS)

(i.) BANACH SPACES
Why normed spaces?

R"™ is a vector space with a norm, SO you can
take derivatives and integrals.
Normed spaces are important because you
can do calculus.

Why completeness?

T hree basic principles of functional analysis

are based in some way on completeness:

e Hahn-Banach (Zorn)
e Open mapping (Baire)
e Uniform boundedness (Baire)



Examples of Interest to Us

C[0, 1], LP, /P, cg

C(€2), LP(2, 1), Co(S2)

B(X,Y), Banach algebras, Operator alge-
bras A C B(X)

C*-algebras: group representations, quan-
tum mechanics, Jordan algebras of self-
adjoint operators

Gelfand duality: Noncommutative topol-
ogy, Noncommutative geometry
Non-self-adjoint operator algebras:. opera-
tor theory, several complex variables
Operator spaces: C*-algebras, Banach spaces



Every Banach space is commutative

By the Hahn-Banach theorem, X C C(X7]), a
linear subspace of a commutative
C*-algebra.

Hence: C(£2) is the mother of all Banach
spaces

Definition: An operator space (or
noncommutative Banach space, or quantized
Banach space) is a linear subspace of a
C*-algebra (or B(H)).

Hence: B(H) is the mother of all operator
spaces



Injective Banach spaces

The Hahn-Banach theorem states that every

bounded linear functional on a subspace of a

Banach space has a bounded extension to the
larger space with the same norm.

Definition: A Banach space is injective if
every bounded linear operator from a
subspace of a Banach space into it has a
bounded extension to the larger space with
the same norm.

Theorem: A Banach space is injective if and
only if it is isometric to C(2), where Q is
extremely disconnected.

Remark: A Banach space is injective if and
only if there is an injective Banach space
containing it and a contractive projection of
that space onto it.



(i.) OPERATOR SPACES

An operator space may be viewed as a
C*-algebra for which the multiplication and
involution have been ignored.

You must replace these by some other
structure.

What should this structure be and what can
you do with it?

The answer lies in the morphisms.

In the category of Banach spaces, the
morphisms are the bounded linear maps.

In the category of operator spaces, the
morphisms are the completely bounded
maps.



Operator spaces are intermediate between
Banach spaces and C*-algebras

The advantage of operator spaces over

C*-algebras is that they allow the use of

finite dimensional tools and isomorphic
invariants (“local theory").

C*-algebras are too rigid: morphisms are
contractive, norms are unique.

Operator space theory opens the door to a
massive transfer of technology coming from
Banach space theory.

This quantization process has benefitted
operator algebra theory mainly (as opposed
to Banach space theory).



The Arveson-Wittstock-Paulsen
Hahn-Banach theorem

Theorem: B(H) is injective in the category of
operator spaces and completely contractive
maps.

Exercise: X C B(H) is injective if and only if
there is a completely contractive projection
P:B(H)— B(H) with P(B(H)) = X.



Injective operator spaces

Theorem: An operator space is injective if
and only if it is completely isometric to a
corner of a C*-algebra.

In particular, it is completely isometric to a
ternary ring of operators (TRO).

Theorem: Every operator space has an
injective envelope.

(ternary envelope, shilov boundary)



Mixed injective operator spaces

Defintion: An operator space is a mixed
Injective if every completely contractive
linear operator from a subspace of an
operator space into it has a bounded
contractive extension to the larger space.

Exercise: X C B(H) is a mixed injective if
and only if there is a contractive projection
P:B(H) — B(H) with P(B(H)) = X.



(iii.) APPLICATIONS OF OPERATOR
SPACE THEORY

1. Similarity problems (Pisier)

The Halmos problem:

Theorem: There exists a polynomially
bounded operator which is not similar to a
contraction.

T he Kadison problem
Pisier, Lecture Notes in Math 1618.



2. B(H) is not a nuclear pair (Junge-Pisier)

Theorem: B(H) ® B(H) does not have a
unique C*-norm.

Good case study: The proof is based on the
solution to a problem which would be studied
for its own sake:

whether the set of finite dimensional operator
spaces is separable (it is not).



3.0Operator amenable groups (Ruan)

Theorem: A group is amenable if and only if
its group algebra is an amenable Banach
algebra under convolution.

This is false for the Fourier algebra.

Theorem: A group is amenable if and only if
its Fourier algebra is amenable in the
operator space formulation.

(SEE EFFROS-RUAN BOOK).



4. Operator local reflexivity
(Effros-Junge-Ruan)

Theorem: Every Banach space is locally
reflexive (Finite dimensional subspaces of the
second dual can be approximated by finite
dimensional subspaces of the space itself).

Application: The second dual of a JB*-triple
is a JB*-triple.

Consequence: Structure theory of JB*-triples.

Not all operator spaces are locally reflexive
(in the appropriate operator space sense)

Theorem: The dual of a C*-algebra is a
locally reflexive operator space.

END OF DIGRESSION



Let A be a C*-algebra and let S be a von
Neumann algebra, both acting on the same
Hilbert space H with A C S. We can view S

as a dual normal A-module with A acting on S
by left and right multiplication. We now have

e completely bounded n-cochains L7, (A, S)

e coboundary operators Ap,

e completely bounded n-coboundaries ng,

e completely bounded n-cocycles Zj

e completely bounded cohomology groups H'; (A, S).

For a C*-algebra A and a von Neumann
algebra S with A C S C B(H) we thus have
two new cohomology theories:

e the completely bounded theory H?b

e the completely bounded normal theory H]}



By straightforward analogues of Theorems 1
and 2, all four cohomology groups

Hi (A, S) (A,S), HG(R,S) , (R,S)

cbw cbw

are isomorphic, where R is the ultraweak
closure of A.

THEOREM 5 (1987)
(Christensen-Effros-Sinclair)
H%(R,B(H)) =0Vn>1
(R =any von Neumann algebra acting on H)

THEOREM 6 (1987)1
(Christensen-Sinclair)
H%(R,R)=0VYn>1

(R =any von Neumann algebra)

Yunpublished as of 2004



“Cohomology and complete boundedness
have enjoyed a symbiotic relationship wher
advances in one have triggered progress in

the other” (Sinclair-Smith)

Theorems 7 and 8 are due to
Christensen-Effros-Sinclair.

THEOREM 7 (1987)
HY(R,R) =0 Vn>1

(R = von Neumann algebra of type I, I,
111, or of type I17 and stable under tensoring
with the hyperfinite factor)

THEOREM 8 (1987)
H"(R,B(H)) =0 v¥n > 1

(R = von Neumann algebra of type I, I,
111, or of type I17 and stable under tensoring
with the hyperfinite factor, acting on a
Hilbert space H)



THEOREM 9 (1998)
(Sinclair-Smith based on earlier work of
Christensen,Pop,Sinclair,Smith)
HY(R,R)=0Vn>1
(R = von Neumann algebra of type II; with a
Cartan subalgebra and a separablell predual)

THEOREM 10 (2003)
(Christensen-Pop-Sinclair-Smith n > 3)
H"(R,R) = H»(R,B(H)) =0 ¥Yn > 1
(R = von Neumann algebra factor of type I1;
with property I, acting on a Hilbert space H)

(n = 1:Kadison-Sakai '66 and Christensen '86
n = 2: Christensen-Sinclair '87, '01)

IThe separability assumption was removed in 2009—
Jan Cameron



We can now add a third problem (C) to our
previous two (A,B)

Problem A
HY(R,R) =0 Vn > 17
for every von Neumann algebra R
Problem B
H*(R,B(H)) =0Vn>17
for every von Neumann algebra R acting on a
Hilbert space H

Problem C
H*(R,R)) =0 V¥Yn > 27
(R is a von Neumann algebra of type I17)

A candidate is the factor arising from the free
group on 2 generators.



Paulsen, Vern I.
Relative Yoneda cohomology for operator
spaces.
J. Funct. Anal. 157 (1998), no. 2, 358—393.

Let A be a subalgebra in the algebra B(H) of
bounded operators in a Hilbert space H, and
X be a linear subspace in B(H) such that
AXACX.

Then X can be considered as an A-bimodule,
and the Hochschild cohomology groups for
the pair (A,X) can be constructed in the
usual way, but with the cocycles being
n-linear maps from A to X satisfying certain
extra "complete boundedness’ conditions.



Continuing the study of A. Ya.
Khelemskii[The homology of Banach and
topological algebras, Kluwer Acad. Publ.,
Dordrecht, 1989], himself and others, the

author presents two new alternative
presentations of these completely bounded
Hochschild cohomologies, one of them as a
relative Yoneda cohomology, i.e. as
equivalence classes of relatively split
resolutions, and the second as a derived
functor, making it similar to EXT.



These presentations make clear the
importance of the notions of relative
injectivity, projectivity and amenability, which
are introduced and studied.

Using the relative injectivity of von Neumann
algebras, the author proves the triviality of
completely bounded Hochschild cohomologies
for all von Neumann algebras.

The Yoneda representation makes the proofs
of a number of classical results more
transparent.

Reviewed by G. V. Rozenblyum



Digression #9—PERTURBATION OF
BANACH ALGEBRAS

Raeburn and Taylor 1977
Johnson 1977
Helemskii book 1986
Dosi 2009
Kadison and Kastler

END OF SECTION VI



VII—COHOMOLOGY OF TRIPLE
SYSTEMS

. Cohomology of Lie triple systems and lie
algebras with involution, B. Harris, TAMS
1961

. Cohomology of associative triple systems,
Renate Carlsson, PAMS 1976

. On the representation theory of Lie triple
systems, T.L.Hodge and B.J. Parshall, Trans.
A.M.S. 2002

WEDDERBURN DECOMPOSITION

. Der Wedderburnsche Hauptsatz fur alter-
native Tripelsysteme und Paare, Renate Carls-
son, Math. Ann 1977

. Wedderburnzerlegung fur Jordan-Paare, Oda
Kuhn und Adelheid Rosendahl, Manus. Math
1978



1
Cohomology of Lie triple systems and lie
algebras with involution
B. Harris, TAMS 1961

MATHEMATICAL REVIEWS

A Lie triple system T is a subspace of a Lie
algebra L closed under the ternary operation
[xyz] = [z, [y, z]] or, equivalently, it is the
subspace of L consisting of those elements «x
such that o(x) = —z, where o is an involution
of L.

A T-module M is a vector space such that
the vector-space direct sum T°@® M is itself a
Lie triple system in such a way that

1. 7' is a subsystem
2. [zyz] € M if any of z,y,z isin M
3. [xyz] = O if two of z,y,z are in M.



A universal Lie algebra L. (T) and an
Ly (T)-module Mg can be constructed in such
a way that both are operated on by an
involution o and so that T' and M consist of
those elements of L, (T) and Ms which are
mapped into their negatives by o.

Now suppose L is a Lie algebra with
involution ¢ and N is an L-oc module. Then o
operates on H™ (L, N) so that

H"(L,N) = H%.(L,N) ® H"(L, N)

with both summands invariant under o.

The cohomology of the Lie triple system is



The author investigates these groups for
n=20,1,2.

e HO(T,M) =0 for all T and M

e HI(T, M) = derivations of T into M mod-
ulo inner derivations

e H2(T, M) = factor sets of T into M modulo
trivial factor sets.

Turning to the case of finite-dimensional
simple T and ground field of characteristic O,
one has the Whitehead lemmas

HY(T,M)=0= HT,M)

Weyl's theorem: Every finite-dimensional
module is semi-simple.

The paper ends by showing that if in
addition, the ground field & is algebraically
closed, then H3(T,®) is 0 or not 0, according
as Ly (T) is simple or not.



2
On the representation theory of Lie triple
systems,
Hodge, Terrell L., Parshall, Brian,
Trans. Amer. Math. Soc. 354 (2002),
no. 11, 4359-4391

The authors of the paper under review study
representations of Lie triple systems, both
ordinary and restricted.

The theory is based on the connection
between Lie algebras and Lie triple systems.

In addition, the authors begin the study of
the cohomology theory for Lie triple systems
and their restricted versions.

They also sketch some future applications
and developments of the theory.

Reviewed by Plamen Koshlukov



3
Cohomology of associative triple systems,
Renate Carlsson, PAMS 1976

MATHEMATICAL REVIEWS

A cohomology for associative triple systems is
defined, with the main purpose to get quickly
the cohomological triviality of
finite-dimensional separable objects over fields
of characteristic # 2, i.e., in particular the
Whitehead lemmas and the Wedderburn
principal theorem.

This is achieved by embedding an associative
triple system A in an associative algebra U(A)
and associating with every trimodule M for A
a bimodule M, for U(A) such that the
cohomology groups H™(A, M) are subgroups
of the classical cohomology groups
H™(U(A), My).



Since U(A) is chosen sufficiently close to A,
in order to inherit separability, the
cohomological triviality of separable A is an
immediate consequence of the associative
algebra theory.

The paper does not deal with functorialities,
not even with the existence of a long exact
cohomology sequence.



4
Der Wedderburnsche Hauptsatz fur
alternative Tripelsysteme und Paare,
Renate Carlsson, Math. Ann 1977

MATHEMATICAL REVIEWS

The Wedderburn principal theorem, known
for Lie triple systems, is proved for alternative
triple systems and pairs.

If ¢z is an involution of an alternative algebra
B, then (xyz) := (x -i(y)) - z is an alternative
triple (z,y,z € B).

A polarisation of an alternative triple A is a
direct sum of two submodules A! ® A—1 with

(AtA=1AYYy c Al (a7tataly c Al
and
<A1A1A1> — <A_1A_1A_1> — <A1A1A_1> —

<A_1A_1A1> — <A_1A1A1> — <A1A_1A_1> —
{0}.



An alternative pair is an alternative triple with
a polarisation.

THEOREM

If A is a finite-dimensional alternative triple
system (or an alternative pair) over a field
K, R the radical and A/R separable, then

A= B® R, where B is a semisimple subtriple
(subpair) of A with B = A/R.



5
Wedderburnzerlegung fur Jordan-Paare
Oda Kuhn und Adelheid Rosendahl
Manus. Math 1978

AUTHOR’S ABSTRACT

In the first section we summarize some
properties of Jordan pairs. Then we state
some results about some groups defined by
Jordan pairs.

In the next section we construct a Lie algebra
to a Jordan pair. This construction is a
generalization of the wellknown
Koecher-Tits-construction. We calculate the
radical of this Lie algebra in terms of the
given Jordan pair.



In the last section we prove a Wedderburn
decomposition theorem for Jordan pairs (and
triples) in the characteristic zero case.

Some special cases in arbitrary characteristic
have been shown by R. Carlsson.

Also we show that any two such
decompositions are conjugate under a certain
group of automorphism. Analogous theorems

will be shown for Jordan Triples.



MATHEMATICAL REVIEWS

The authors generalize the
" Koecher-Tits-construction” for Jordan
algebra to Jordan pairs (and in a parallel
manner to Jordan triples). The functor
obtained goes from Jordan pairs [or Jordan
triples] to Lie algebras. An observation of
Koecher that the theorem of Levi for Lie
algebras of characteristic 0 implies (via the
functor) the Wedderburn principal theorem
for Jordan algebras is extended to Jordan
pairs (and Jordan triples) V over a field of
characteristic 0. In addition, the authors
show that any two Wedderburn splittings of
V are conjugate under a certain normal
subgroup of the automorphism group of V.

END OF SECTION VII



VIII—COHOMOLOGY OF BANACH
TRIPLE SYSTEMS
(PROSPECTUS)

e Lie derivations into a module; automatic
continuity and weak amenability
(Harris,Miers,Mathieu,Villena)

e Cohomology of commutative JB*-triples
(Kamowitz,Carlsson)

e Cohomology of TROs (Zalar,Carlsson)

e Wedderburn decompositions for JB*-triples
(Kiihn-Rosendahl)

e Low dimensional cohomology for JBW*-
triples and algebras-perturbation
(Dosi,McCrimmon)

e Structure group of JB*-triple (McCrimmon—
derivations)

e Alternative Banach triples (Carlsson,Braun)

e Completely bounded triple cohomology (Ti-
money et.al.,Christensen et.al)

e Local derivations on JB*algebras and triples
(Kadison,Johnson,Ajupov,. . .)

e Chu’'s work on Koecher-Kantor-Tits con-
struction

END OF SECTION VIII



IX—QUANTUM FUNCTIONAL
ANALYSIS

I. CLASSICAL OPERATOR SPACES

Gilles Pisier
Introduction to Operator Space Theory
Cambridge University Press 2003

(“NEOCLASSICAL"” AND “MODERN"
OPERATOR SPACES WILL APPEAR IN
SECTION X)



OPERATOR SPACE THEORY =
NON-COMMUTATIVE BANACH SPACE
THEORY

AN OPERATOR SPACE IS A BANACH
SPACE TOGETHER WITH AN ISOMETRIC
EMBEDDING IN B(H)

OBJECTS = BANACH SPACES;
MORPHISMS = COMPLETELY BOUNDED
MAPS

ORIGINS

e STINESPRING 1955
e ARVESON 1969
e RUAN 1988



EXAMPLES OF CB MAPS

RESTRICTION OF *-HOMOMORPHISMS
MULTIPLICATION OPERATORS

THEOREM: EVERY CB-MAP IS THE PROD-
UCT OF THESE TWO.

COMPLETE CONTRACTION
COMPLETE ISOMETRY,
COMPLETE ISOMORPHISM

complete semi-isometry
(Oikhberg-Rosenthal)



CB(X,Y), |- llcp IS A BANACH SPACE

COMPLETELY BOUNDED
BANACH-MAZUR DISTANCE

dep(E, F) = inf{||lullcp - v ep}-

(u: E — F complete isomorphism )



ROW AND COLUMN HILBERT SPACE

R, C, Rn, Cn

dep(R,C) = oo

d(R,C) = 1

(PROOF FOR dcp,(Rn, Cn) = n)



R, C, Rn, Cy
ARE HOMOGENEOUS OPERATOR
SPACES
(Vu: B — B, ullcp = |lul)

SO ARE
Mmin(E) and max(E)
AND
d(1)

(PROOF FOR )



min(E) IS DEFINED BY
E CC(T) C B(H)
1€Caii) | v, (min(E)) = SUPgeB . 1€ (aii)) I,

max(E) IS DEFINED BY

||(az'j)||Mn(max(E)) — SUD{”(u(aij))HMn(B(Hu)) :
u: FE — B(Hy), [Jul| <1}

THE IDENTITY MAP IS COMPLETELY
CONTRACTIVE:
F - min(E) - E - max(E) — G
(lullep = lull,  Ilollep = llvl)



EXAMPLE
b)) =5sp{V;:i €1}
V; SATISFYING THE CAR

by = D({1,2,...,n}),
b =>d({1,2,...})



PROPOSITION

LET E BE A HILBERTIAN OPERATOR
SPACE. THEN
E IS HOMOGENEOUS
IF AND ONLY IF
|Ullep =1V UNITARY U : E — E

(application of Russo-Dye theorem)



CLASSICAL BANACH SPACES
€p7 €0, LP) C(K)

“SECOND GENERATION"
(neoclassical?)
ORLICZ, SOBOLEV, HARDY, DISC
ALGEBRA, SCHATTEN p-CLASS

CLASSICAL OPERATOR SPACES
R, C, min(¥5), max(¢>), OH, &

FINITE DIMENSIONAL VERSIONS
Ry, Cn, min(€5), max({5), OHy, Py



THE CLASSICAL OPERATOR SPACES
ARE MUTUALLY COMPLETELY
NON-ISOMORPHIC.

IF En, F, ARE n-DIMENSIONAL VERSIONS,
THEN dep(En, Fr) — o0
END OF SECTION IX



X—PROJECTIONS ON OPERATOR
SPACES

1. CLASSIFICATION OF ATOMIC MIXED
INJECTIVE OPERATOR SPACES

Neal-Russo
(Trans. Amer. Math. Soc. 2000/2003)

2. NEOCLASSICAL OPERATOR SPACES
Neal-Russo (Proc. Amer. Math. Soc. 2004)

3. MODERN OPERATOR SPACES
Neal-Ricard-Russo (Jour. Funct. Anal. 2006)

4. OPERATOR SPACE
CHARACTERIZATION OF TROs

Neal-Russo (Pac. J. Math 2003).
5. QUANTUM OPERATOR ALGEBRAS

Blecher,Ruan,Sinclair, etc.



1. CLASSIFICATION OF ATOMIC
MIXED INJECTIVE OPERATOR
SPACES

THEOREM 1
(Neal-Russo)

There is a family of 1-mixed injective
Hilbertian operator spaces H,’;f 1 <k<n, of
finite dimension n, with the following
properties:

(a) HF is a subtriple of the Cartan factor of
type 1 consisting of all (Z) by (n_Z_H) com-
plex matrices.

(b) Let Y be a JW*-triple of rank 1 (neces-
sarily atomic ).

(i) If Y is of finite dimension n then it is
isometrically completely contractive to
some HE.

(ii) If Y is infinite dimensional then it is
isometrically completely contractive to
B(H,C) or B(C,K).

(c) H? (resp. H}) coincides with R, (resp.
Ch).

(d) For 1 < k <n, HE is not completely semi-
isometric to R, or Cy,.



Example 1:
H% is the subtriple of B(C?3) consisting of all
matrices of the form

0 a —b
—a O C
I b —c O

and hence in this case Y is actually
completely semi-isometric to the Cartan
factor A(C3) of 3 by 3 anti-symmetric
complex matrices.



Example 2:

H3 is the subtriple of B(C®, C*) consisting of
all matrices of the form
O O O —d c —b ]
O d —c 0O O a
—d O b O —a O
c —b O a O O

THEOREM 2
(Neal-Russo)
Let X be a 1-mixed injective operator space
which is atomic. Then X is completely
semi-isometric to a direct sum of Cartan
factors of types 1 to 4 and the spaces Hﬁ.



THEOREM 3
(Neal-Russo)

Let Y be an atomic w*-closed JW*-subtriple

of a W*-algebra.

(a) If Y is irreducible and of rank at least 2,
then it is completely isometric to a Cartan
factor of type 1—4 or the space
Diag (B(H,K),B(K,H)).

(b) If Y is of finite dimension n and of rank 1,
then it is completely isometric to
Diag (HF, ..., Hkm), for appropriately cho-
sen bases, and where k1 > ko > --- > k.

(c) Y is completely semi-isometric to a direct
sum of the spaces in (a) and (b). If Y has
no infinite dimensional rank 1 summand,
then it is completely isometric to a direct
sum of the spaces in (a) and (b).



2.
THE HILBERTIAN (NEOCLASSICAL)
OPERATOR SPACES HF

Restatement of Theorem 2

A frequently mentioned result of Friedman
and Russo states that if a subspace X of a
C*-algebra A is the range of a contractive
projection on A, then X is isometric to a
JC*-triple, that is, a norm closed subspace of
B(H, K) stable under the triple product
ab*c + cb*a.

If X is atomic (in particular,
finite-dimensional), then it is isometric to a
direct sum of Cartan factors of types 1 to 4.

T his latter result fails, as it stands, in the
category of operator spaces.



HOWEVER,

There exists a family of n-dimensional
Hilbertian operator spaces Hﬁ, 1 <k <n,
generalizing the row and column Hilbert
spaces R, and (), such that, in the above

result, if X is atomic, the word “isometric”
can be replaced by “completely
semi-isometric,” provided the spaces Hfj are
allowed as summands along with the Cartan
factors.

The space HF is contractively complemented
in some B(K), and for 1 <k < n, is not
completely (semi-)isometric to either of the
Cartan factors B(C,C™) = H} or
B(C™ C) = H!.

These spaces appeared in a slightly different
form and context in a memoir of ARAZY and
FRIEDMAN (1978).



CONSTRUCTION OF Hf
Let I denote a subset of {1,2,...,n} of
cardinality |I| =k — 1. The number of such I
IS q 1= (kﬁl)

Let J denote a subset of {1,2,...,n} of
cardinality |J| =n — k. The number of such J
IS p = (nﬁk>
The space HF is the linear span of matrices
b?k 1 <i<n, given by

b?’k = Z e(1,1, J)GJ,I,
INJ=0,(1uJ)c={i}
where
ey —ejQer = eJel} € Mp,q(C) = B(CY,CP),
and e(I,1,J) is the signature of the
permutation taking (i1,...,%_1,% 51, Jn—k)
to (1,...,n).
Since the b?’k are the image under a triple
isomorphism (actually ternary isomorphism)
of a rectangular grid in a JC*-triple of rank
one, they form an orthonormal basis for HE.



HOMOGENEITY OF HY AND THE
COMPLETELY BOUNDED
BANACH-MAZUR DISTANCE

THEOREM 1

H,"f IS @ homogeneous operator space.

THEOREM 2

|k



CREATION OPERATORS

Let C}TLL’k denote the wedge (or creation)
operator from AK—1C™ to AkC™ given by

CPF(hy A~ Ahj_1) =hAhy A Ahj_1.

Letting C™* denote the space sp{C?Z.’k}, we
have the following.

PROPOSITION
HEF is completely isometric to C™F.



PROOF
T here exist unitaries such that

nrm n,k _ vrnomkrm
Wi Up_b; = Vi Ce " Up_1-

b "
C1 — CP
Ul?—l ! | Ug—k
Ak—1on AN—kQn
Cet | LWy

V?’L
/\kzcn _k, /\n—krcn



o U ((ef) =€, AN+ Nej,_, where I = {ig <
e <dp_1}. U, is similar.

o Vi'(ejy N---Nej ) =ejy A+ ANej ., where
{j1 < --+ < j,_p} is the complement of
fi1 < -~ < ip).

o Wit(ej,A---Nej ) =e€(@, )e(l,i,J)ej AN
e; . forany i and I such that INnJ =0
and (IUJ)¢ = {i} (which is independent of
the choice of i or I).



SOME PROPERTIES OF CREATION
OPERATORS

o CPMCTR(hy A Ahy_q) =
(hlh)hiA---ANhp_1 —(hi|lh)hAho A~ - ANhp_1

+ - £ (hg_1|h) A ANhy{ A+ ANhg_o. (5)

o CFCTM(hy A Ahy) =
z§:1(hj|h)h1/\---/\h;.A---Ahk (W = h).

In particular, CZ’ICZ’l* = h®h, for h € C".

k k —
o tr(CyM Ci™) = (R21)IRI12.

In particular, C}Z’I*C}Z’l = ||h||2.

e The eigenvalues of Y7, C/"*C1"F* are sums

1 1

of k eigenvalues of Y™ , 02710271*.
1 (]



3. MODERN OPERATOR SPACES

e Classify all infinite dimensional rank 1 JC*-
triples up to complete isometry (algebraic)
ANSWER:

m,R m,L m,R m, L
(b7 HOO 9 HOO ) HOO ﬂ HOO

e Give a suitable “classification” of all Hilber-
tian operator spaces which are contractively
complemented in a C*-algebra or normally
contractively complemented in a W*-algebra
(analytic)

ANSWER: ¢, C, R, CnR
Only R and C for completely contractively

complemented Hilbertian operator spaces
(Robertson 1991)



To define the two intersections, we need a
new construction in operator space theory
involving interpolation theory™*.

operator spaces—re-revisited

(the morphisms)

e An operator space is a subspace X of B(H).

e Its operator space structure is given by the
sequence of norms on the set of matrices
My (X) with entries from X, determined by
the identification M,(X) C M,(B(H)) =
B(H®OH®---®H).

e A linear mapping ¢ : X — Y between two
operator spaces is completely bounded if
the induced mappings ¢n : Mp(X) — Mny(Y)
defined by on([z;;]) = [¢(x;;)] satisfy ||¢]|cp =
SUPy, [[¢n]] < oo.

**interpolation theory is also used to define the oper-
ator space structure of the Schatten classes (non-
commutative LP-spaces) mentioned in connection with
projective stability and projective rigidity back in sec-
tion IV



(the history)
Origins in the work of Stinespring in the
1950s, and Arveson in the 1960s.
Many tools were developed in the 1970s
and 1980s by a number of operator alge-
braists
An abstract framework was developed in
1988 in the thesis of Ruan.
References: books by Effros-Raun (2000),
Paulsen (2002), Pisier (2003), Blecher-LeMerdy
(2004)



(column and row revisited)

Two important examples of Hilbertian op-
erator spaces (:= operator spaces isomet-
ric to Hilbert space) are the row and col-
umn spaces R, C, and their finite-dimensional
versions Ry,, Cp

In B(¢5), column Hilbert space C := sp{e;1 :
i > 1} and row Hilbert space R := %{elj ;
j>1}

R and C' are Banach isometric, but not
completely isomorphic (dep(R,C) = o0)
R,, and (), are completely isomorphic, but
not completely isometric

dCb(Rn’ Cn) —Nn



(homogeneity revisited)

R, C, R,, (), are examples of homoge-
neous operator spaces, that is, operator
spaces E for which Vu : E — E, ||lu|lcp =
[Jull

Another important example of an Hilber-
tian homogeneous operator space is $(I)
d(l) = sp{V; : i € I}, where the V; are
bounded operators on a Hilbert space sat-
isfying the canonical anti-commutation re-
lations

In some special cases, the notations &, .=
®({1,2,...,n}), and & = d({1,2,...}) are
used.



(intersection)

o If o C B(Hp) and Eq1 C B(Hq) are opera-
tor spaces whose underlying Banach spaces
form a compatible pair in the sense of in-
terpolation theory, then the Banach space
Eqo N E4q, with the norm

|z|| Egn e, = Mmax |z gy, |z]l £,)

equipped with the operator space structure
given by the embedding Eg N E; 2 = —
(x,x) € Eg® FE1 C B(Hpg® Hq) is called the
intersection of Fg and F4q and is denoted
by Eg N E;

e EXAMPLES
RNC, ® =nPHR", &, =nrHk

e [ he definition of intersection extends eas-
ily to arbitrary families of compatible oper-
ator spaces



Digression #10
RANK ONE JC*-TRIPLES

(JC*-triples revisited)

e A JC*-triple is a norm closed complex lin-
ear subspace of B(H, K) (equivalently, of a
C*-algebra) which is closed under the op-
eration a — aa*a.

e JC*-triples were defined and studied (us-
ing the name J*-algebra) as a generaliza-
tion of C*-algebras by Harris in connection
with function theory on infinite dimensional
bounded symmetric domains.

e By a polarization identity (involving v/—1),
any JC*-triple is closed under the triple
product

(a,b,c) — {abc} := %(ab*c + cb*a), (6)

under which it becomes a Jordan triple sys-
tem.



e A linear map which preserves the triple prod-
uct (6) will be called a triple homomor-

phism.

e Cartan factors are examples of JC*-triples,
as are C*-algebras, and Jordan C*-algebras.

e \We shall only make use of Cartan factors of
type 1, that is, spaces of the form B(H, K)
where H and K are complex Hilbert spaces.



(TROs revisited)

e A special case of a JC*-triple is a ternary
algebra, that is, a subspace of B(H,K)
closed under the ternary product (a,b,c) —

ab™c.

e A ternary homomorphism is a linear map ¢
satisfying ¢(ab*c) = ¢(a)d(b)*o(c).

e [ hese spaces are also called ternary rings
of operators and abbreviated TRO.



e [ ROs have come to play a key role in oper-
ator space theory, serving as the algebraic
model in the category.

e T he algebraic models for the categories of
order-unit spaces, operator systems, and
Banach spaces, are respectively Jordan C*-
algebras, C*-algebras, and JB*-triples.

e For TROs, a ternary isomorphism is the
same as a complete isometry.



(rank-one JC*-triples)

o Every JW*-triple of rank one is isometric to
a Hilbert space and every maximal collinear
family of partial isometries corresponds to
an orthonormal basis.

e Conversely, every Hilbert space with the
abstract triple product {zyz} = ((z|y)z +
(z|ly)x)/2 can be realized as a JC*-triple
of rank one in which every orthonormal
basis forms a maximal family of mutually
collinear minimal partial isometries.

e Collinear means:

v w + wvtv = w and ww*v + vwFw = v



OPERATOR SPACE STRUCTURE
OF HILBERTIAN JC*-TRIPLES

e The general setting: Y is a JC*-subtriple
of B(H) which is Hilbertian in the opera-
tor space structure arising from B(H), and
{u; 1+ € Q} is an orthonormal basis consist-
ing of a maximal family of mutually collinear
partial isometries of Y.

e We let T and A denote the TRO and the
C*-algebra respectively generated by Y. For
any subset G C 2, (vu*)g = [ljeg uiu; and
(v u)g = [ljeguju;. The elements (uu*)g
and (u*u)g lie in the weak closure of A and
more generally in the left and right linking
von Neumann algebras of T.



Fix m > 0. To construct HZ'" we make an
assumption on the ternary envelope of Y.

Assume (u*u)g # 0 for |G| < m 4+ 1 and
(uv*u)q = 0 for |G| > m + 2.

Define elements which are indexed by an
arbitrary pair of subsets I, J of €2 satisfying

2—I|=m+1, |[J[=m, (7)

as follows:

urjg =

(uu*)[_Juclu:‘ilucQu:‘iQ ce ucsuzsucs+1(u*u)J_[,
where

INJd ={dy,...,ds}and (JUJ)¢ = {cq,..., Cs—l—l}-



e In the special case where INJ = 0, uy y has
the form

ur, g = (uu™) ruc(u™u) g,
where TUJU{c} = Q is a partition of 2. We

call such an element a “one”, and denote
it also by uy . ;.

e LEMMA Fix m > 0.
Assume (u*u)g # 0 for |G| < m+ 1 and
(u*u)g = 0 for |G| > m+ 2. For any c € €,

Ue =) Urj=) Urc] (8)
I.J I.J

where the sum is taken over all disjoint I, J
satisfying (7) and not containing ¢, and
converges weakly in the weak closure of
T.



o The family {e(IJ)uy ;} forms a rectangular
grid which satisfies the extra property

e(IN)upsle( I NVup 1 e(I' T up 3 = e(I' Nup ;.
(9)

e The map e(IJ)uy; — Ej; is a ternary iso-
morphism (and hence complete isometry)
from the norm closure of spouyy; to the
norm closure of spo{FE;r}, where Ej; de-
notes an elementary matrix, whose rows
and columns are indexed by the sets J and
I, with a 1 in the (J, I)-position.

e [ his map can be extended to a ternary iso-
morphism from the w*-closure of spouj;
onto the Cartan factor of type I consisting
of all Rg by Rg complex matrices which act
as bounded operators on ¢>. By restriction
to Y and (8), Y is completely isometric to
a subtriple Y, of this Cartan factor of type
1.



DEFINITION
We shall denote the space Y above by HO@’R.

Explicitly, Hiv" =35p o{b™ : i € N}, where

b%n: Z E(I,i,J)ejJ.
INJ=0,(TuJ)c={i},|J|=m

An entirely symmetric argument (with J
infinite and I finite) under an entirely sym-
metric assumption on Y defines the space
Hm,L

OO .

Explicitly, Hi" =35p o{b™ : i € N}, where
b = > e(1,i,J)ezr,
INJ=0,(1uJ)e={i},|I|=m

with e(7,4,J) defined in the obvious analo-
gous way with [ finite instead of J.



e Having constructed the spaces HQZ;’R and

H@’L, we Nnow assume that Y is an arbitrary
rank-one JC*-subtriple of B(H)

Our analysis will consider the following three
mutually exhaustive and mutually exclusive

possibilities (in each case, the set F is al-

lowed to be empty):

Case 1 (uu™)o_p # 0 for some finite set
F C <,

Case 2 (u*u)o_p # 0 for some finite set
F C Q;

Case 3 (vu™)o_p = (v u)o_p = 0 for all
finite subsets F' of (2.



e In case 1,
Y is completely isometric to an intersection
Y1 NY> such that Y7 is completely isometric
to a space H? and Y> is a Hilbertian

JC*-triple.

e In case 2,
Y is completely isometric to an intersection
Y1 NY> such that Y7 is completely isometric
to a space H™' and Y, is an Hilbertian
JC*-triple.

e In case 3,
Y is completely isometric to &.



THEOREM 1

Let Y be a JC*-subtriple of B(H) which is a
separable infinite dimensional Hilbertian
operator space. Then Y is completely
iIsometric to one of the following spaces:

®, HE gl g gnh,



PROOF: Let = denote “completely isometric
to.”

1. YV = o, orY—YlmZ, where
vy = HF or HE

2. 7] = HWE o v = Rn Z, where R =
ﬂHmJ’R, m; T (finite or infinite).

3. Z=P,or £ =71 NW, where Z1 = HQ

4. 7 = LNW, where L = ﬂjHoé’ , ki T. Hence
Y=RNLNOOD.

5. HQI’L — H™! is a complete contraction
when m/ > m (and similarly for HZ.

6. & is completely isometric to ﬂoo OHO"Z;’L

nJ,L

kL

and to N°_, HZ™ and to N22 ) Hod

any sequence n; — oo QED

for



(further properties of Q’R, gl

Representation on the Fock space

H separable Hilbert space,
lm(h) : HN™ — N+ creation operator
Im(h)x = h A .
Creation operators C™ = sp{im(e;)}, {e;} an
orthonormal basis.
Operator space structure from
B(HAm,H/\m_I_l).
Annihilation operators A™ consists of the
adjoints of the creation operators on HAm—1

LEMMA

H™! is completely isometric to A™*+1 and

H™! is completely isometric to C™.



REMARK

Every finite or infinite dimensional separable
Hilbertian JC*-subtriple Y is completely
isometric to a finite or infinite intersection of
spaces of creation and annihilation operators,
as follows

(a) If Y is infinite dimensional, then it is com-
pletely isometric to one of

A cm AmNCek, N, CF

(b) If Y is of dimension n, then Y is completely
iIsometric to ﬂ;?lzlckj, wheren > k1 > --- >
km > 1



Completely bounded Banach-Mazur
distance
THEOREM 2
For m, k> 1,
R . kR\ __ L kLN |

(a) dcb(Hng , Hod )_dcb(Hg , Hol™) = T]?T—I_ll

when m > k
(b) dop(HE", HER) = oo
(€) dgp(HE", @) = dy(HE ", @) = oo



(contractively complemented Hilbertian
operator spaces)

THEOREM 3

Suppose Y is a separable infinite dimensional
Hilbertian operator space which is
contractively complemented (resp. normally
contractively complemented) in a C*-algebra
A (resp. W*-algebra A) by a projection P.

Then,
(a) {Y,A** P**} (resp. {Y,A,P}) is an ex-
pansion of its support {H, A* Q} (resp.
{H, A**, Q}, which is essential)

(b) H is contractively complemented in A**
(resp. A) by @ and is completely isometric
to either R, C, RN C, or &.

THEOREM 4 (converse)

The operator spaces R,C, RN C, and & are
each essentially normally contractively
complemented in a von Neumann algebra.



4. Operator space characterizations of
C*-algebras and TRO'’'s (Neal and Russo)

THEOREM 1

Let A C B(H) be an operator space and
suppose that M, (A)g is a bounded symmetric
domain for all n > 2, then A is ternary
isomorphic and completely isometric to a
TRO.

THEOREM 3

Let A C B(H) be an operator space and
suppose that M, (A)g is a bounded symmetric
domain for all n > 2 and Ag is of tube type.
Then A is completely isometric to a
C*-algebra.



5. Quantum operator algebras



