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TWO BASIC QUESTIONS CONCERNING

DERIVATIONS ON BANACH ALGEBRAS

A→ A and A→M (MODULE)

1. AUTOMATIC CONTINUITY?

2. INNER?

(IF NOT, WHY NOT?)



CONTEXTS

(i) C*-ALGEBRAS

(associative Banach algebras)

(ii) JC*-ALGEBRAS

(Jordan Banach algebras)

(iii) JC*-TRIPLES

(Banach Jordan triples)

(i’) associative triple systems

(ii’) Lie algebras

(iii’) Lie triple systems



I. C*-ALGEBRAS

derivation: D(ab) = a ·Db+Da · b

inner derivation: ad x(a) = x · a− a · x (x ∈M)

1. AUTOMATIC CONTINUITY RESULTS

KAPLANSKY 1949: C(X)

SAKAI 1960:

RINGROSE 1972: (module)

2. INNER DERIVATION RESULTS

SAKAI, KADISON 1966

CONNES 1976 (module)

HAAGERUP 1983 (module)



Irving Kaplansky (1917–2006)

Kaplansky made major contributions to group
theory, ring theory, the theory of operator

algebras and field theory.



THEOREM (Sakai 1960)

Every derivation from a C∗-algebra into itself

is continuous.

Soichiro Sakai (b. 1928)

THEOREM (Ringrose 1972)

Every derivation from a C∗-algebra into a

Banach A-bimodule is continuous.



John Ringrose (b. 1932)

John Ringrose is a leading world expert on
non-self-adjoint operators and operator
algebras. He has written a number of

influential texts including Compact
non-self-adjoint operators (1971) and, with R

V Kadison, Fundamentals of the theory of
operator algebras in four volumes published in

1983, 1986, 1991 and 1992.



Richard Kadison (b. 1925)

Richard V. Kadison is an American

mathematician known for his contributions to

the study of operator algebras.



THEOREM (1966-Sakai, Kadison)

EVERY DERIVATION OF A C∗-ALGEBRA

IS OF THE FORM x 7→ ax− xa FOR SOME

a IN THE WEAK CLOSURE OF THE

C∗-ALGEBRA

POP QUIZ: WHO PROVED THIS FOR

Mn(C)?



Gerhard Hochschild (1915–2010)

(Photo 1968)

Gerhard Paul Hochschild was an American

mathematician who worked on Lie groups,

algebraic groups, homological algebra and

algebraic number theory.



Joseph Henry Maclagan Wedderburn

(1882–1948)

Scottish mathematician, who taught at

Princeton University for most of his career. A

significant algebraist, he proved that a finite

division algebra is a field, and part of the

Artin–Wedderburn theorem on simple

algebras. He also worked on group theory and

matrix algebra.



Amalie Emmy Noether (1882–1935)

Amalie Emmy Noether was an influential
German mathematician known for her

groundbreaking contributions to abstract
algebra and theoretical physics. Described as
the most important woman in the history of
mathematics, she revolutionized the theories

of rings, fields, and algebras. In physics,
Noether’s theorem explains the fundamental

connection between symmetry and
conservation laws.



Nathan Jacobson (1910–1999)

Nathan Jacobson was an American

mathematician who was recognized as one of

the leading algebraists of his generation, and

he was also famous for writing more than a

dozen standard monographs.



JACOBSON’S PROOF
(1937)

If δ is a derivation, consider the two
representations of Mn(C)

z 7→
[
z 0
0 z

]
and z 7→

[
z 0

δ(z) z

]

The first is a direct sum of two copies of the
identity representation; but so is the second,

since

[
0 0

δ(z) z

]
is equivalent to

[
0 0
0 z

]

so

[
z 0

δ(z) 0

] [
a b
c d

]
=

[
a b
c d

] [
z 0
0 z

]

Thus az = za, bz = zb

δ(z)a = cz − zc and δ(z)b = dz − zd.
a and b are multiples of I and can’t both be

zero. QED



THEOREM (1976-Connes)

EVERY AMENABLE C∗-ALGEBRA IS

NUCLEAR.

Alain Connes b. 1947



Alain Connes is the leading specialist on

operator algebras.

In his early work on von Neumann algebras in

the 1970s, he succeeded in obtaining the

almost complete classification of injective

factors.

Following this he made contributions in

operator K-theory and index theory, which

culminated in the Baum-Connes conjecture.

He also introduced cyclic cohomology in the

early 1980s as a first step in the study of

noncommutative differential geometry.

Connes has applied his work in areas of

mathematics and theoretical physics,

including number theory, differential geometry

and particle physics.



THEOREM (1983-Haagerup)
EVERY NUCLEAR C∗-ALGEBRA IS

AMENABLE.

THEOREM (1983-Haagerup)
EVERY C∗-ALGEBRA IS WEAKLY

AMENABLE.

Uffe Haagerup b. 1950

Haagerup’s research is in operator theory, and
covers many subareas in the subject which

are currently very active - random matrices,
free probability, C*-algebras and applications

to mathematical physics.



DIGRESSION

A BRIDGE TO JORDAN ALGEBRAS

A Jordan derivation from a Banach algebra A

into a Banach A-module is a linear map D

satisfying D(a2) = aD(a) +D(a)a, (a ∈ A), or

equivalently,

D(ab+ ba) = aD(b) +D(b)a+D(a)b+ bD(a),

(a, b ∈ A).

Sinclair proved in 1970 that a bounded

Jordan derivation from a semisimple Banach

algebra to itself is a derivation, although this

result fails for derivations of semisimple

Banach algebras into a Banach bi-module.

Nevertheless, a celebrated result of B.E.

Johnson in 1996 states that every bounded

Jordan derivation from a C∗-algebra A to a

Banach A-bimodule is an associative

derivation.



Alan M. Sinclair (retired)

Barry Johnson (1937–2002)



In view of the intense interest in automatic

continuity problems in the past half century,

it is therefore somewhat surprising that the

following problem has remained open for

fifteen years.

PROBLEM

Is every Jordan derivation from a C∗-algebra

A to a Banach A-bimodule automatically

continuous (and hence a derivation, by

Johnson’s theorem)?

In 2004, J. Alaminos, M. Brešar and A.R.

Villena gave a positive answer to the above

problem for some classes of C∗-algebras

including the class of abelian C∗-algebras



Combining a theorem of Cuntz from 1976
with the theorem just quoted yields

THEOREM
Every Jordan derivation from a C∗-algebra
A to a Banach A-module is continuous.

In the same way, using the solution in 1996
by Hejazian-Niknam in the commutative case

we have

THEOREM
Every Jordan derivation from a

C∗-algebra A to a Jordan Banach
A-module is continuous.

(Jordan module will be defined below)

These two results will also be among the
consequences of our results on automatic
continuity of derivations into Jordan triple

modules.

(END OF DIGRESSION)



Pascual Jordan (1902–1980)

Pascual Jordan was a German theoretical and
mathematical physicist who made significant

contributions to quantum mechanics and
quantum field theory.



II. JC*-ALGEBRA

derivation: D(a ◦ b) = a ◦Db+Da ◦ b

inner derivation:
∑
i[L(xi)L(ai)− L(ai)L(xi)]

(xi ∈M,ai ∈ A)

b 7→
∑
i[xi ◦ (ai ◦ b)− ai ◦ (xi ◦ b)]

1. AUTOMATIC CONTINUITY RESULTS

UPMEIER 1980

HEJAZIAN-NIKNAM 1996 (module)

ALAMINOS-BRESAR-VILLENA 2004
(module)

2. INNER DERIVATION RESULTS

JACOBSON 1951 (module)

UPMEIER 1980



THEOREM (1951-Jacobson)

EVERY DERIVATION OF A FINITE

DIMENSIONAL SEMISIMPLE JORDAN

ALGEBRA INTO A (JORDAN) MODULE

IS INNER

(Lie algebras, Lie triple systems)

THEOREM (1980-Upmeier)

EVERY DERIVATION OF A REVERSIBLE

JC*-ALGEBRA EXTENDS TO A

DERIVATION OF ITS ENVELOPING

C*-ALGEBRA. (IMPLIES SINCLAIR)

THEOREM (1980-Upmeier)

1. Purely exceptional JBW-algebras have the

inner derivation property

2. Reversible JBW-algebras have the inner

derivation property

3. ⊕L∞(Sj, Uj) has the inner derivation

property if and only if supj dimUj <∞,

Uj spin factors.



Nathan Jacobson (1910-1999)

Harald Upmeier (b. 1950)



JACOBSON’S PROOF
(1949)

First note that for any algebra, D is a deriva-
tion if and only if [Ra, D] = RDa.

If you polarize the Jordan axiom (a2b)a = a2(ba),
you get [Ra, [Rb, Rc]] = RA(b,a,c) where A(b, a, c) =
(ba)c− b(ac) is the “associator”.

From the commutative law ab = ba, you get

A(b, a, c) = [Rb, Rc]a

and so [Rb, Rc] is a derivation, sums of which
are called inner, forming an ideal in the Lie
algebra of all derivations.

The Lie multiplication algebra L of the Jor-
dan algebra A is the Lie algebra generated by
the multiplication operators Ra. It is given by

L = {Ra +
∑
i

[Rbi, Rci] : a, bi, ci ∈ A}



so that L is the sum of a Lie triple system and
the ideal of inner derivations.

Now let D be a derivation of a semisimple finite
dimensional unital Jordan algebra A. Then D̃ :
X 7→ [X,D] is a derivation of L.

It is well known to algebraists that L = L′+C
where L′ (the derived algebra [L,L]) is semisim-
ple and C is the center of L. Also D̃ maps L′

into itself and C to zero.

By the Cartan-Zassenhaus-Hochschild (?) The-
orem, D̃ is an inner derivation of L′ and hence
also of L, so there exists U ∈ L such that
[X,D] = [X,U ] for all X ∈ L and in particu-
lar [Ra, D] = [Ra, U ].

Then Da = RDa1 = [Ra, D]1 = [Ra, U ]1 =
(RaU − URa)1 = a · U1 − Ua so that D =
RU1 − U ∈ L. Thus, D = Ra +

∑
[Rbi, Rci]

and so

0 = D1 = a+ 0 = a QED



Jordan triple structures

Kevin McCrimmon b. 1941



Wilhelm Kaup



Ottmar Loos + Erhard Neher



Max Koecher (1924–1990)

Max Koecher was a German mathematician.
His main research area was the theory of Jor-
dan algebras, where he introduced the Kantor-
Koecher-Tits construction.



III. JC*-TRIPLE

KUDOS TO:

Lawrence A. Harris (PhD 1969)

1974 (infinite dimensional holomorphy)

1981 (spectral and ideal theory)

{x, y, z} = (xy∗z + zy∗x)/2



derivation:
D{a, b, c} = {Da.b, c}+ {a,Db, c}+ {a, b,Dc}

inner derivation:
∑
i[L(xi, ai)− L(ai, xi)]

(xi ∈M,ai ∈ A)

b 7→
∑
i[{xi, ai, b} − {ai, xi, b}]

1. AUTOMATIC CONTINUITY RESULTS

BARTON-FRIEDMAN 1990

(NEW) PERALTA-RUSSO 2010 (module)

2. INNER DERIVATION RESULTS

HO-MARTINEZ-PERALTA-RUSSO 2002

MEYBERG 1972

KÜHN-ROSENDAHL 1978 (module)

(NEW) HO-PERALTA-RUSSO 2011
(module) weak amenability



AUTOMATIC CONTINUITY RESULTS

THEOREM (1990 Barton-Friedman)

EVERY DERIVATION OF A JB*-TRIPLE IS

CONTINUOUS

THEOREM (2010 Peralta-Russo)

NECESSARY AND SUFFICIENT

CONDITIONS UNDER WHICH A

DERIVATION OF A JB*-TRIPLE INTO A

JORDAN TRIPLE MODULE IS

CONTINUOUS

(JB∗-triple and Jordan triple module are

defined below)



Tom Barton (b. 1955)

Tom Barton is Senior Director for

Architecture, Integration and CISO at the

University of Chicago. He had similar

assignments at the University of Memphis,

where he was a member of the mathematics

faculty before turning to administration.



Yaakov Friedman (b. 1948)

Yaakov Friedman is director of research at

Jerusalem College of Technology.



Antonio Peralta (b. 1974)

Bernard Russo (b. 1939)

GO LAKERS! 2010



1999 Pomona



PREVIOUS INNER DERIVATION

RESULTS

FINITE DIMENSIONS

THEOREM (1972 Meyberg)

EVERY DERIVATION OF A FINITE

DIMENSIONAL SEMISIMPLE JORDAN

TRIPLE SYSTEM IS INNER

(Lie algebras, Lie triple systems)

THEOREM (1978 Kühn-Rosendahl)

EVERY DERIVATION OF A FINITE

DIMENSIONAL SEMISIMPLE JORDAN

TRIPLE SYSTEM INTO A MODULE IS

INNER

(Lie algebras, Lie triple systems)



Kurt Meyberg



INFINITE DIMENSIONS

THEOREM 2002

(Ho-Martinez-Peralta-Russo)

CARTAN FACTORS OF TYPE In,n,

II (even or ∞), and III HAVE THE INNER

DERIVATION PROPERTY

THEOREM 2002

(Ho-Martinez-Peralta-Russo)

INFINITE DIMENSIONAL CARTAN

FACTORS OF TYPE Im,n,m 6= n, and IV

DO NOT HAVE THE INNER DERIVATION

PROPERTY.



Juan Martinez Moreno



SOME CONSEQUENCES FOR

JB*-TRIPLES OF OUR WORK ON

AUTOMATIC CONTINUITY

1. AUTOMATIC CONTINUITY OF

DERIVATION ON JB*-TRIPLE

(BARTON-FRIEDMAN)

2. AUTOMATIC CONTINUITY OF

DERIVATION OF JB*-TRIPLE INTO DUAL

(SUGGESTS WEAK AMENABILITY)

3. AUTOMATIC CONTINUITY OF

DERIVATION OF JB*-ALGEBRA INTO A

JORDAN MODULE

(HEJAZIAN-NIKNAM)



SOME CONSEQUENCES FOR

C*-ALGEBRAS OF OUR WORK ON

AUTOMATIC CONTINUITY

1. AUTOMATIC CONTINUITY OF

DERIVATION OF C*-ALGEBRA INTO A

MODULE (RINGROSE)

2. AUTOMATIC CONTINUITY OF

JORDAN DERIVATION OF C*-ALGEBRA

INTO A MODULE (JOHNSON)

3. AUTOMATIC CONTINUITY OF

JORDAN DERIVATION OF C*-ALGEBRA

INTO A JORDAN MODULE

(HEJAZIAN-NIKNAM)



PRELIMINARY WORK ON TERNARY

WEAK AMENABILITY FOR

C*-ALGEBRAS AND JB*-TRIPLES

(HO-PERALTA-RUSSO)

1. COMMUTATIVE C*-ALGEBRAS ARE

TERNARY WEAKLY AMENABLE (TWA)

2. COMMUTATIVE JB*-TRIPLES ARE

APPROXIMATELY WEAKLY AMENABLE

3. B(H),K(H) ARE TWA IF AND ONLY IF

FINITE DIMENSIONAL

4. CARTAN FACTORS In,1, IV ARE TWA

IF AND ONLY IF FINITE DIMENSIONAL



SAMPLE LEMMA

The C∗-algebra A = K(H) of all compact

operators on an infinite dimensional

Hilbert space H is not Jordan weakly

amenable.

By the theorems of Johnson and Haagerup,

we have

DJ(A,A∗) = Db(A,A∗) = Innb(A,A∗).

We shall identify A∗ with the trace-class

operators on H.

Supposing that A were Jordan weakly

amenable, let ψ ∈ A∗ be arbitrary. Then Dψ
(= adψ) would be an inner Jordan derivation,

so there would exist ϕj ∈ A∗ and bj ∈ A such

that

Dψ(x) =
n∑

j=1

[ϕj ◦ (bj ◦ x)− bj ◦ (ϕj ◦ x)]

for all x ∈ A.



For x, y ∈ A, a direct calculation yields

ψ(xy − yx) = −
1

4

 n∑
j=1

bjϕj − ϕjbj

 (xy − yx).

It is known (Pearcy-Topping 1971) that every
compact operator on a separable (which we

may assume WLOG) infinite dimensional
Hilbert space is a finite sum of commutators

of compact operators.

By the just quoted theorem of Pearcy and
Topping, every element of K(H) can be
written as a finite sum of commutators

[x, y] = xy − yx of elements x, y in K(H).
Thus, it follows that the trace-class operator

ψ = −
1

4

 n∑
j=1

bjϕj − ϕjbj


is a finite sum of commutators of compact

and trace-class operators, and hence has
trace zero. This is a contradiction, since ψ

was arbitrary.



PROPOSITION
The JB∗-triple A = Mn(C) is ternary

weakly amenable.
By a Proposition which is a step in the proof

that commutative C*-algebras are ternary
weakly amenable,

Dt(A,A∗) = Inn∗b(A,A
∗) ◦ ∗+ Innt(A,A∗),

so it suffices to prove that

Inn∗b(A,A
∗) ◦ ∗ ⊂ Innt(A,A∗).

As in the proof of the Lemma, if
D ∈ Inn∗b(A,A

∗) so that Dx = ψx− xψ for
some ψ ∈ A∗, then

ψ = [ϕ1, b1]− [ϕ2, b2] +
Tr (ψ)

n
I,

where b1, b2 are self adjoint elements of A and
ϕ1 and ϕ2 are self adjoint elements of A∗. It
is easy to see that, for each x ∈ A, we have

D(x∗) =

{ϕ1,2b1, x}−{2b1, ϕ1, x}−{ϕ2,2b2, x}+{2b2, ϕ2, x} ,
so that D ◦ ∗ ∈ Innt(A,A∗).



APPENDIX
MAIN AUTOMATIC CONTINUITY

RESULT
(Jordan triples, Jordan triple modules,

Quadratic annihilator, Separating spaces)

Jordan triples

A complex (resp., real) Jordan triple is a
complex (resp., real) vector space E equipped

with a non-trivial triple product

E × E × E → E

(x, y, z) 7→ {xyz}

which is bilinear and symmetric in the outer
variables and conjugate linear (resp., linear)

in the middle one satisfying the so-called
“Jordan Identity”:

L(a, b)L(x, y)− L(x, y)L(a, b) =

L(L(a, b)x, y)− L(x, L(b, a)y),

for all a, b, x, y in E, where L(x, y)z := {xyz}.



A JB∗-algebra is a complex Jordan Banach

algebra A equipped with an algebra involution
∗ satisfying ‖ {a, a∗, a} ‖ = ‖a‖3, a ∈ A. (Recall

that {a, a∗, a} = 2(a ◦ a∗) ◦ a− a2 ◦ a∗).

A (complex) JB∗-triple is a complex Jordan

Banach triple E satisfying the following

axioms:

(a) For each a in E the map L(a, a) is an

hermitian operator on E with non negative

spectrum.

(b) ‖{a, a, a}‖ = ‖a‖3 for all a in A.

Every C∗-algebra (resp., every JB∗-algebra) is

a JB∗-triple with respect to the product

{a, b, c} = 1
2 (ab∗c+ cb∗a) (resp.,

{a, b, c} := (a ◦ b∗) ◦ c+ (c ◦ b∗) ◦ a− (a ◦ c) ◦ b∗).



Jordan triple modules

If A is an associative algebra, an A-bimodule

is a vector space X, equipped with two

bilinear products (a, x) 7→ ax and (a, x) 7→ xa

from A×X to X satisfying the following

axioms:

a(bx) = (ab)x, a(xb) = (ax)b, and, (xa)b = x(ab),

for every a, b ∈ A and x ∈ X.

If J is a Jordan algebra, a Jordan J-module is

a vector space X, equipped with two bilinear

products (a, x) 7→ a ◦ x and (x, a) 7→ x ◦ a from

J ×X to X, satisfying:

a ◦ x = x ◦ a, a2 ◦ (x ◦ a) = (a2 ◦ x) ◦ a, and,

2((x◦a)◦b)◦a+x◦(a2◦b) = 2(x◦a)◦(a◦b)+(x◦b)◦a2,

for every a, b ∈ J and x ∈ X



If E is a complex Jordan triple, a Jordan triple
E-module (also called triple E-module) is a

vector space X equipped with three mappings

{., ., .}1 : X × E × E → X
{., ., .}2 : E ×X × E → X

{., ., .}3 : E × E ×X → X satisfying:

1. {x, a, b}1 is linear in a and x and conjugate
linear in b, {abx}3 is linear in b and x and
conjugate linear in a and {a, x, b}2 is conju-
gate linear in a, b, x

2. {x, b, a}1 = {a, b, x}3, and {a, x, b}2 = {b, x, a}2
for every a, b ∈ E and x ∈ X.

3. Denoting by {., ., .} any of the products {., ., .}1,
{., ., .}2 and {., ., .}3, the identity {a, b, {c, d, e}} =
{{a, b, c} , d, e} −{c, {b, a, d} , e}+{c, d, {a, b, e}} ,
holds whenever one of the elements a, b, c, d, e
is in X and the rest are in E.



It is a little bit laborious to check that the

dual space, E∗, of a complex (resp., real)

Jordan Banach triple E is a complex (resp.,

real) triple E-module with respect to the

products:

{a, b, ϕ} (x) = {ϕ, b, a} (x) := ϕ {b, a, x} (1)

and

{a, ϕ, b} (x) := ϕ {a, x, b}, ∀ϕ ∈ E∗, a, b, x ∈ E.
(2)

For each submodule S of a triple E-module

X, we define its quadratic annihilator,

AnnE(S), as the set

{a ∈ E : Q(a)(S) = {a, S, a} = 0}.



Separating spaces

Separating spaces have been revealed as a

useful tool in results of automatic continuity.

Let T : X → Y be a linear mapping between

two normed spaces. The separating space,

σY (T ), of T in Y is defined as the set of all z

in Y for which there exists a sequence

(xn) ⊆ X with xn → 0 and T (xn)→ z.

A straightforward application of the closed

graph theorem shows that a linear mapping T

between two Banach spaces X and Y is

continuous if and only if σY (T ) = {0}



Main Result

THEOREM Let E be a complex JB∗-triple,

X a Banach triple E-module, and let

δ : E → X be a triple derivation. Then δ is

continuous if and only if AnnE(σX(δ)) is a

(norm-closed) linear subspace of E and{
AnnE(σX(δ)),AnnE(σX(δ)), σX(δ)

}
= 0.

COROLLARY Let E be a real or complex

JB∗-triple. Then

(a) Every derivation δ : E → E is continuous.

(b) Every derivation δ : E → E∗ is continuous.



Elie Cartan 1869–1951

Elie Joseph Cartan was an influential French

mathematician, who did fundamental work in

the theory of Lie groups and their geometric

applications. He also made significant

contributions to mathematical physics,

differential geometry, and group theory. He

was the father of another influential

mathematician, Henri Cartan.



II’ LIE ALGEBRAS

(From Meyberg Notes 1972—Chapter 5)

An algebra L with multiplication (x, y) 7→ [x, y]
is a Lie algebra if [xx] = 0 and

[[xy]z] + [[yz]x] + [[zx]y] = 0.

Left multiplication in a Lie algebra is denoted
by ad(x): ad(x)(y) = [x, y]. An associative
algebra A becomes a Lie algebra A− under

the product, [xy] = xy − yx.

The first axiom implies that [xy] = −[yx] and
the second (called the Jacobi identity) implies

that x 7→ adx is a homomorphism of L into
the Lie algebra (EndL)−, that is,

ad [xy] = [adx, ad y].

Assuming that L is finite dimensional, the
Killing form is defined by
λ(x, y) = tr ad(x)ad(y).



CARTAN CRITERION
A finite dimensional Lie algebra L over a field
of characteristic 0 is semisimple if and only if

the Killing form is nondegenerate.

A linear map D is a derivation if
D · ad(x) = ad(Dx) + ad(x) ·D. Each ad(x) is

a derivation, called an inner derivation.

THEOREM OF E. CARTAN
If the finite dimensional Lie algebra L over a
field of characteristic 0 is semisimple, then

every derivation is inner.

PROOF

Let D be a derivation of L. Since x 7→ trD · ad (x)
is a linear form, there exists d ∈ L such that
trD · ad (x) = λ(d, x) = tr ad (d) · ad (x). Let
E be the derivation E = D − ad (d) so that

trE · ad (x) = 0. (3)



Note next that E · [ad (x), ad (y)] = E · ad (x) ·
ad (y)− E · ad (y) · ad (x) =
(ad (x) ·E+[E, ad (x)]) ·ad (y)−E ·ad (y) ·ad (x)
so that
[E, ad (x)] · ad (y) = E · [ad (x), ad (y)]
−ad (x) · E · ad (y) + E · ad (y) · ad (x)
= E · [ad (x), ad (y)] + [E · ad (y), ad (x)]
and
tr [E, ad (x)] · ad (y) = trE · [ad (x), ad (y)].
However, since E is a derivation
[E, ad (x)] · ad (y)
= E · ad (x) · ad (y)− ad (x) · E · ad (y)
= (ad (Ex)+ad (x) ·E) ·ad (y)−ad (x) ·E ·ad (y)
= ad (Ex) · ad (y).

Thus λ(Ex, y) = tr ad (Ex) · ad (y)

= tr [E, ad (x)] · ad (y)

= trE · [ad (x), ad (y)] = 0 by (3).

Since x and y are arbitrary, E = 0 and so D −
ad (d) = 0. QED



Hans Zassenhaus (1912–1991)

Hans Julius Zassenhaus was a German mathe-

matician, known for work in many parts of ab-

stract algebra, and as a pioneer of computer

algebra.



Sophus Lie (1842–1899)

Marius Sophus Lie was a Norwegian mathe-
matician. He largely created the theory of con-
tinuous symmetry, and applied it to the study
of geometry and differential equations.



(II”) LIE OPERATOR ALGEBRAS

C. Robert Miers, Lie derivations of von

Neumann algebras. DukeMath. J. 40 (1973),

403–409.

If M is a von Neumann algebra, [M,M ] the Lie

algebra linearly generated by {[X,Y ] = XY −
Y X : X,Y ∈ M} and L : [M,M ] → M a Lie

derivation, i.e., L is linear and L[X,Y ] = [LX, Y ]+

[X,LY ], then L has an extension D : M → M

that is a derivation of the associative algebra.

The proof involves matrix-like computations.

Using the Sakai-Kadison theorem, Miers shows

that if L : M → M is a Lie derivation, then

L = D+λ, where D is an associative derivation

and λ is a linear map into the center of M

vanishing on [M,M ].



THEOREM (JOHNSON 1996)

EVERY CONTINUOUS LIE DERIVATION OF

A C∗-ALGEBRA A INTO A BANACH BIMOD-

ULE X (IN PARTICULAR, X = A) IS THE

SUM OF AN ASSOCIATIVE DERIVATION AND

A “TRIVIAL” DERIVATION

(TRIVIAL=ANY LINEAR MAP WHICH VAN-

ISHES ON COMMUTATORS AND MAPS INTO

THE “CENTER” OF THE MODULE).

“It is also an interesting open question whether

or not every Lie derivation on a semisimple

Banach algebra to itself has this form.”

(H.G. Dales)



NOTE: Johnson’s 1996 paper does not quote

Miers’s 1973 paper, which it partially but sig-

nificantly generalizes.

The continuity assumption can be dropped in

Johnson’s result if X = A and A is a C*-algebra

or a semisimple symmetrically amenable Ba-

nach algebra

Mathieu, Martin; Villena, Armando R.

The structure of Lie derivations on C*-algebras.

J. Funct. Anal. 202 (2003), no. 2, 504–525.

Alaminos, J.; Mathieu, M.; Villena, A. R.

Symmetric amenability and Lie derivations.

Math. Proc. Cambridge Philos. Soc. 137

(2004), no. 2, 433–439.



III” LIE TRIPLE SYSTEMS

THEOREM

Every derivation of a finite dimensional semisim-

ple Lie triple system is inner

PROOF

(From Meyberg Notes 1972—Chapter 6)

Let F be a finite dimensional semisimple Lie

triple system over a field of characteristic 0

and suppose that D is a derivation of F .

Let L be the Lie algebra (InderF ) ⊕ F with

product

[(H1, x1), (H2, x2)] =

([H1, H2] + L(x1, x2), H1x2 −H2x1).



A derivation of L is defined by δ(H ⊕ a) =

[D,H]⊕Da.

We take as a leap of faith that F semisimple

implies L semisimple (IT’S TRUE!).

Thus there exists U = H1 ⊕ a1 ∈ L such that

δ(X) = [U,X] for all X ∈ L.

Then 0 ⊕ Da = δ(0 ⊕ a) = [H1 + a1,0 ⊕ a] =

L(a1, a) ⊕ H1a so L(a1, a) = 0 and D = H1 ∈
InderF . QED



(III”) LIE OPERATOR TRIPLE SYSTEMS

C. Robert Miers, Lie triple derivations of

von Neumann algebras. Proc. Amer. Math.

Soc. 71 (1978), no. 1, 57–61.

Authors summary: A Lie triple derivation of an

associative algebra M is a linear map L : M →
M such that

L[[X,Y ], Z] = [[L(X), Y ], Z]+

[[X,L(Y )], Z] + [[X,Y ], L(Z)]

for all X,Y, Z ∈M .

We show that if M is a von Neumann algebra

with no central Abelian summands then there

exists an operator A ∈ M such that L(X) =

[A,X] + λ(X) where λ : M → ZM is a linear

map which annihilates brackets of operators in

M .



III JORDAN TRIPLE SYSTEMS

(From Meyberg Notes 1972—Chapter 11)∗

Let V be a Jordan triple and let L(V ) be its

TKK Lie algebra (Tits-Kantor-Koecher)

L(V ) = V ⊕ V0 ⊕ V and the Lie product is

given by [(x, h, y), (u, k, v)] =

(hu− kx, [h, k] + x v − u y, k\y − h\v).

V0 = span{V V } is a Lie subalgebra of L(V )

and for h =
∑
i ai bi ∈ V0, the map h\ : V → V

is defined by h\ =
∑
i bi ai.

We can show the correspondence of

derivations δ : V → V and D : L(V )→ L(V )

for Jordan triple V and its TKK Lie algebra

L(V ).

∗slightly simplified by Chu and Russo 2012



Let θ : L(V )→ L(V ) be the main involution

θ(x⊕ h⊕ y) = y ⊕−h\ ⊕ x

LEMMA 1

Let δ : V → V be a derivation of a Jordan triple

V , with TKK Lie algebra (L(V ), θ). Then there

is a derivation D : L(V )→ L(V ) satisfying

D(V ) ⊂ V and Dθ = θD.

PROOF

Given a, b ∈ V , we define

D(a,0,0) = (δa,0,0)

D(0,0, b) = (0,0, δb)

D(0, a b,0) = (0, δa b+ a δb, 0)

and extend D linearly on L(V ). Then D is a

derivation of L(V ) and evidently, D(V ) ⊂ V .



It is readily seen that Dθ = θD, since

Dθ(0, a b,0) = D(0,−b a,0)

= (0, −δb a− b δa, 0)

= θ(0, δa b+ a δb, 0)

= θD(0, a b,0).QED



LEMMA 2

Let V be a Jordan triple with TKK Lie algebra

(L(V ), θ). Given a derivation D : L(V )→ L(V )

satisfying D(V ) ⊂ V and Dθ = θD, the restric-

tion D|V : V → V is a triple derivation.

THEOREM

Let V be a Jordan triple with TKK Lie algebra

(L(V ), θ). There is a one-one correspondence

between the triple derivations of V and the Lie

derivations D : L(V )→ L(V ) satisfying D(V ) ⊂
V and Dθ = θD.



LEMMA 3

Let V be a Jordan triple with TKK Lie algebra

(L(V ), θ). Let D : L(V ) → L(V ) be a Lie in-

ner derivation such that D(V ) ⊂ V . Then the

restriction D|V is a triple inner derivation of V .

COROLLARY

Let δ be a derivation of a finite dimensional

semisimple Jordan triple V . Then δ is a triple

inner derivation of V .

PROOF

The TKK Lie algebra L(V ) is semisimple. Hence

the result follows from the Lie result and Lemma

3



The proof of lemma 3 is instructive.

1. D(x, k, y) = [(x, k, y), (a, h, b)] for some (a, h, b) ∈
(V )

2. D(x,0,0) = [(x,0,0), (a, h, b)] = (−h(x), x b,0)

3. δ(x) = −h(x) = −
∑
iαi βi(x)

4. D(0,0, y) = [(0,0, y), (a, h, b)] = (0,−a y, h\(y))

5. δ(x) = −h\(x) =
∑
i βi αi(x)

6. δ(x) = 1
2
∑
i(βi αi − αi βi)(x)

QED



I ASSOCIATIVE TRIPLE SYSTEMS

EVERY DERIVATION OF A FINITE

DIMENSIONAL SEMISIMPLE

ASSOCIATIVE TRIPLE SYSTEM IS INNER

LISTER 1971

EVERY DERIVATION OF A FINITE

DIMENSIONAL SEMISIMPLE

ASSOCIATIVE TRIPLE SYSTEM INTO A

MODULE IS INNER

CARLSSON 1976



I’ ASSOCIATIVE OPERATOR TRIPLE
SYSTEMS

Borut Zalar, On the structure of
automorphism and derivation pairs of
B*-triple systems. Topics in Operator

Theory, operator algebras and applications
(Timisoara,1994),265-271, Rom.

Acad.,Bucharest, 1995

Let W ⊂ B(H,K) be a TRO which contains
all the compact operators. If D is a derivation

of W with respect to the associative triple
product ab∗c then there exist a = −a∗ ∈ B(K)
and b = −b∗ ∈ B(H) such that Dx = ax+ xb.

Extended to B(X,Y ) (X,Y Banach spaces) in

Maria Victoria Velasco and Armando R.
Villena; Derivations on Banach pairs.

Rocky Mountain J. Math 28 1998
1153–1187.



Magnus Hestenes (1906–1991)

Magnus Rudolph Hestenes was an American

mathematician. Together with Cornelius

Lanczos and Eduard Stiefel, he invented the

conjugate gradient method.



Table 1

ALGEBRAS

commutative algebras

ab = ba

associative algebras

a(bc) = (ab)c

Lie algebras

a2 = 0

(ab)c+ (bc)a+ (ca)b = 0

Jordan algebras

ab = ba

a(a2b) = a2(ab)



Table 2

TRIPLE SYSTEMS

associative triple systems

(abc)de = ab(cde) = a(dcb)e

Lie triple systems

aab = 0

abc+ bca+ cab = 0

de(abc) = (dea)bc+ a(deb)c+ ab(dec)

Jordan triple systems

abc = cba

de(abc) = (dea)bc− a(edb)c+ ab(dec)


