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ABSTRACT

Unital operator algebras are characterized

among operator spaces in terms of the

holomorphic structure associated with the

underlying Banach space.



INTRODUCTION

If an operator space A (i.e., a closed linear

subspace of B(H)) is also a unital (not

necessarily associative) Banach algebra with

respect to a product which is completely

contractive, then according to the theorem of

Blecher,Ruan, and Sinclair (JFA 1990), it is

completely isometric via an algebraic

isomorphism to an operator algebra (i.e., an

associative subalgebra of some B(K)).

Our main result drops the algebra assumption

on A in favor of a holomorphic assumption.

Using only natural conditions on holomorphic

vector fields on Banach spaces, we are able

to construct an algebra product on A which is

completely contractive and unital, so that the

Blecher-Ruan-Sinclair result can be applied.



Our result is thus an instance where the

consideration of a ternary product, called the

partial triple product, which arises from the

holomorphic structure via the symmetric part

of the Banach space, leads to results for

binary products.

Examples of this phenomenon occurred in

papers of Arazy and Solel (JFA 1990) and

Arazy (Math. Scan. 1994) where this

technique is used to describe the algebraic

properties of isometries of certain operator

algebras.

The technique was also used in by Kaup and

Upmeier (PAMS 1978) to show that Banach

spaces with holomorphically equivalent unit

balls are linearly isometric .



Our main technique is to use a variety of

elementary isometries on n by n matrices over

A (most of the time, n = 2) and to exploit

the fact that isometries of arbitrary Banach

spaces preserve the partial triple product.

The first occurrence of this technique

appears in the construction, for each n ≥ 1,

of a contractive projection Pn on K⊗A (K=

compact operators on separable infinite

dimensional Hilbert space) with range Mn(A),

as a convex combination of isometries.



We define the completely symmetric part of

A to be the intersection of A (embedded in

K⊗A) and the symmetric part of K⊗A and

show it is the image under P1 of the

symmetric part of K⊗A.

It follows from a result of Neal and Russo

(PJM 2003) that the completely symmetric

part of A is a TRO, which is a crucial tool in

our work.



We note that if A is a subalgebra of B(H)

containing the identity operator I, then by

the Arazy-Solel paper, the symmetric part of

K⊗A is the maximal C∗-subalgebra of

K⊗B(H) contained in K⊗A, namely

K⊗A ∩ (K⊗A)∗.

This shows that the completely symmetric

part of A coincides with the symmetric part

of A, and therefore contains I.



Our main result is the following theorem, in

which for any element v in the symmetric

part of a Banach space X, hv denotes the

corresponding complete holomorphic vector

field on the open unit ball of X.

THEOREM

An operator space A is completely isometric

to a unital operator algebra if and only there

exists an element v in the completely

symmetric part of A such that:

1. For x ∈ A,

hv(x+ v)− hv(x)− hv(v) + v = −2x

2. For X ∈Mn(A), V = diag (v, . . . , v) ∈Mn(A),

‖V − hV (X)‖ ≤ ‖X‖2



Although we have phrased this theorem in

holomorphic terms, it should be noted that

the two conditions can be restated in terms

of partial triple products as

{xvv} = x and ‖{XVX}‖ ≤ ‖X‖2.

As another example, if A is a TRO (i.e., a

closed subspace of B(H) closed under the

ternary product ab∗c), then Since K⊗B(H) is

a TRO, hence a JC∗-triple, it is equal to its

symmetric part, which shows that the

completely symmetric part of A coincides

with A.



Now suppose that the TRO A contains an

element v satisfying xv∗v = vv∗x = x for all

x ∈ X. Then it is trivial that A becomes a

unital C∗-algebra for the product xv∗y,

involution vx∗v, and unit v

By comparison, our main result starts only

with an operator space A containing a

distinguished element v in the completely

symmetric part of A (defined below) having a

unit-like property.

This is to be expected since the result of

Blecher, Ruan, and Sinclair fails in the

absence of a unit element.



STEPS IN THE PROOF

1. The completely symmetric part of an

arbritary operator space A is defined.

2. The binary product x · y on A is

constructed using properties of isometries on

2 by 2 matrices over A. The symmetrized

product x · y + y · x is expressed in terms of

the partial Jordan triple product on A.

(namely = 2{xvy})

3. A formula is proved relating the matrix

product X · Y induced by x · y to a product of

2 by 2 matrices containing X and Y as blocks.

(first for X and Y 2 by 2, then n by n)

namely,[
0 Y ·X
0 0

]
= 2

[
Y 0
0 0

] [
v ⊗ In 0

0 0

] [
0 X
0 0

]
.



According to a paper of Blecher and Zarikian

(PNAS 2004),

“The one-sided multipliers of an operator

space X are a key to the ‘latent operator

algebraic structure’ in X.”

The unified approach through multiplier

operator algebras developed in that paper

leads to simplifications of known results and

applications to quantum M-ideal theory.

They also state

“With the extra structure consisting of the

additional matrix norms on an operator

algebra, one might expect to not have to rely

as heavily on other structure, such as the

product.”

Our result is certainly in the spirit of this

statement.



Another approach to operator algebras is in a

paper of Kaneda (JFA 2007) in which the set

of operator algebra products on an operator

space is shown to be in bijective

correspondence with the space of norm one

quasi-multipliers on the operator space.



BACKGROUND

operator spaces, Jordan triples, and

holomorphy in Banach spaces.

Operator spaces

By an operator space, sometimes called a

quantum Banach space, we mean a closed

linear subspace A of B(H) for some complex

Hilbert space H, equipped with the matrix

norm structure obtained by the identification

of Mn(B(H)) with B(H ⊕H ⊕ · · · ⊕H).

Two operator spaces are completely

isometric if there is a linear isomorphism

between them which, when applied

elementwise to the corresponding spaces of n

by n matrices, is an isometry for every n ≥ 1.



By an operator algebra, sometimes called a

quantum operator algebra, we mean a closed

associative subalgebra A of B(H), together

with its matrix norm structure as an operator

space.

One important example of an operator space

is a ternary ring of operators, or TRO,

which is an operator space in B(H) which

contains ab∗c whenever it contains a, b, c.

A TRO is a special case of a JC∗-triple, that

is, a closed subspace of B(H) which contains

the symmetrized ternary product ab∗c+ cb∗a
whenever it contains a, b, c.



Jordan triples

More generally, a JB∗-triple is a complex

Banach space equipped with a triple product

{x, y, z} which is linear in the first and third

variables, conjugate linear in the second

variable, satisfies the algebraic identities

{x, y, z} = {z, y, x}

and

{a, b, {x, y, z}} = {{a, b, x}, y, z}
−{x, {b, a, y}, z}+ {x, y, {a, b, z}}

and the analytic conditions that the linear

map y 7→ {x, x, y} is hermitian and positive

and ‖{x, x, x}‖ = ‖x‖3.



The following two theorems are instrumental

in what follows.

THEOREM

(Kaup MZ 1983)

The class of JB∗-triples coincides with the

class of complex Banach spaces whose open

unit ball is a bounded symmetric domain.

THEOREM

(Friedman-Russo JFA 1985,Kaup MS

1984,Stacho AM Szeged 1982)

The class of JB∗-triples is stable under

contractive projections. More precisely, if P is

a contractive projection on a JB∗-triple E

with triple product denoted by {x, y, z}E, then

P (E) is a JB∗-triple with triple product given

by {a, b, c}P (E) = P{a, b, c}E for a, b, c ∈ P (E).



The following two theorems have already

been mentioned above.

THEOREM

(Blecher,Ruan,Sinclair JFA 1990)

If an operator space supports a unital Banach

algebra structure in which the product (not

necessarily associative) is completely

contractive, then the operator space is

completely isometric to an operator algebra.

THEOREM

(Neal-Russo PJM 2003)

If an operator space has the property that the

open unit ball of the space of n by n matrices

is a bounded symmetric domain for every

n ≥ 2, then the operator space is completely

isometric to a TRO.



Holomorphy in Banach spaces

Finally, we review the construction and

properties of the partial Jordan triple product

in an arbitrary Banach space.

Let X be a complex Banach space with open

unit ball X0.

Every holomorphic function h : X0 → X, also

called a holomorphic vector field, is locally

integrable, that is, the initial value problem

∂

∂t
ϕ(t, z) = h(ϕ(t, z)) , ϕ(0, z) = z,

has a unique solution for every z ∈ X0 for t in

a maximal open interval Jz containing 0.

A complete holomorphic vector field is one

for which Jz = R for every z ∈ X0.



It is a fact that every complete holomorphic

vector field is the sum of the restriction of a

skew-Hermitian bounded linear operator A on

X and a function ha of the form

ha(z) = a−Qa(z), where Qa is a quadratic

homogeneous polynomial on X.

The symmetric part of X is the orbit of 0

under the set of complete holomorphic vector

fields, and is denoted by S(X). It is a closed

subspace of X and is equal to X precisely

when X has the structure of a JB∗-triple (by

the Theorem of Kaup).



If a ∈ S(X), we can obtain a symmetric

bilinear form on X, also denoted by Qa via

the polarization formula

Qa(x, y) =
1

2
(Qa(x+ y)−Qa(x)−Qa(y))

and then the partial Jordan triple product

{·, ·, ·} : X × S(X)×X → X is defined by

{x, a, z} = Qa(x, z). The space S(X) becomes

a JB∗-triple in this triple product.

It is also true that the “main identity”

{a, b, {x, y, z}} = {{a, b, x}, y, z}
−{x, {b, a, y}, z}+ {x, y, {a, b, z}}

holds whenever a, y, b ∈ S(X) and x, z ∈ X.



The following lemma is an elementary

consequence of the definitions.

LEMMA 0

If ψ is a linear isometry of a Banach space X

onto itself, then

(a) For every complete holomorphic vector field

h on X0, ψ ◦ h ◦ ψ−1 is a complete holo-

morphic vector field. In particular, for a ∈
S(X), ψ ◦ ha ◦ ψ−1 = hψ(a).

(b) ψ(S(X)) = S(X) and ψ preserves the par-

tial Jordan triple product:

ψ{x, a, y} = {ψ(x), ψ(a), ψ(y)

for a ∈ S(X), x, y ∈ X.



The symmetric part of a Banach space

behaves well under contractive projections

THEOREM (Stacho AM Szeged 1982)

If P is a contractive projection on a Banach

space X and h is a complete holomorphic

vector field on X0, then P ◦ h|P (X)0
is a

complete holomorphic vector field on P (X)0.

In addition P (S(X)) ⊂ S(X) and the partial

triple product on P (S(X)) is given by

{x, y, z} = P{x, y, z} for x, z ∈ P (X) and

y ∈ P (S(X)).



Examples of the symmetric part S(X) of
a Banach space X

• X = Lp(Ω,Σ, µ), 1 ≤ p <∞, p 6= 2;
S(X) = 0

• X = (classical) Hp, 1 ≤ p <∞, p 6= 2;
S(X) = 0

• X = H∞ (classical) or the disk algebra;
S(X) = C

• X = a uniform algebra A ⊂ C(K);
S(A) = A ∩A

(Braun-Kaup-Upmeier 1978)

• X = unital subalgebra of B(H)
S(A) = A ∩A∗

(Arazy-Solel 1994)



More examples, due primarily to Stacho,

and involving Reinhardt domains are re-

cited in Arazy’s survey paper, along with

the following unpublished example due to

Vigue

PROPOSITION

There exists an equivalent norm on `∞ so

that `∞ in this norm has symmetric part

equal to c0

PROBLEM 1

Is the symmetric part of the predual of a

JBW∗-triple equal to 0?. What about the

predual of a von Neumann algebra?



1. Completely symmetric part of an

operator space

Let A ⊂ B(H) be an operator space. We

let K denote the compact operators on a

separable infinite dimensional Hilbert space,

say `2. Then K = ∪∞n=1Mn(C) and thus

K⊗A = ∪∞n=1Mn ⊗A = ∪∞n=1Mn(A)

By an abuse of notation, we shall use K⊗A
to denote ∪∞n=1Mn(A). We tacitly assume

the embeddings Mn(A) ⊂Mn+1(A) ⊂ K⊗A
induced by adding zeros.

The completely symmetric part of A is de-

fined by CS(A) = A ∩ S(K⊗A)., where we

have identified A with M1(A) ⊂ K⊗A.



For 1 ≤ m < N let ψN1,m : MN(A)→MN(A)

and ψN2,m : MN(A)→MN(A) be the isome-
tries of order two defined on[

Mm(A) Mm,N−m(A)
MN−m,m(A) MN−m(A)

]
by

ψN1,m :

[
a b
c d

]
→
[
a −b
−c d

]
and

ψN2,m :

[
a b
c d

]
→
[
a −b
c −d

]
.

These two isometries give rise in an obvi-
ous way to two isometries ψ̃1,m and ψ̃2,m on
K⊗A, which extend to isometries ψ1,m, ψ2,m
of K⊗A onto itself, of order 2 and fixing
elementwise Mm(A). The same analysis
applies to the isometries defined by, for ex-
ample,[
a b
c d

]
→
[
a b
−c −d

]
,

[
−a −b
c d

]
,

[
−a b
c −d

]
.



We then can define a projection P̃m on K⊗
A with range Mm(A) via

P̃mx =
ψ̃2,m

(
ψ̃1,m(x)+x

2

)
+

ψ̃1,m(x)+x
2

2
.

The projection P̃m on K ⊗ A extends to a

projection Pm on K⊗A, with range Mm(A)

given by

Pmx =
ψ2,m

(
ψ1,m(x)+x

2

)
+

ψ1,m(x)+x
2

2
,

or

Pm =
1

4
(ψ2,mψ1,m + ψ2,m + ψ1,m + Id).



PROPOSITION 1

With the above notation,

(a) Pn(S(K⊗A)) = Mn(CS(A))

(b) ∗Mn(CS(A)) is a JB*-subtriple of S(K⊗A),

that is,

{Mn(CS(A)),Mn(CS(A)),Mn(CS(A))}

⊂Mn(CS(A)); Moreover,

{Mn(A),Mn(CS(A)),Mn(A)} ⊂Mn(A).

(c) CS(A) is completely isometric to a TRO.

∗note that in the first displayed formula of (b), the
triple product is the one on the JB*-triple Mn(CS(A)),
namely, {xyz}Mn(CS(A)) = Pn({xyz}S(K⊗A)), which, it
turns out, is actually the restriction of the triple prod-
uct of S(K⊗A): whereas in the second displayed for-
mula, the triple product is the partial triple product on
K⊗A



Proof. Since Pn is a linear combination of

isometries of K⊗A, and since isometries

preserve the symmetric part, Pn(S(K⊗A)) ⊂
S(K⊗A).

Suppose x = (xij) ∈ Pn(S(K⊗A)). Write

x = (R1, · · · , Rn)t = (C1, · · · , Cn) where Ri, Cj
are the rows and columns of x. Let ψ1 =

ψn1 and ψ2 = ψn2 be the isometries on K⊗A
whose action is as follows: for x ∈Mn(A),

ψn1(x) = (R1,−R2, · · · ,−Rn)t

ψn2(x) = (−C1, · · · ,−Cn−1, Cn),

and for an arbitrary element y = [yij] ∈
K ⊗A, say y ∈MN ⊗A, where without loss

of generality N > n, and for k = 1,2, ψnk

maps y into

[
ψnk [yij]n×n 0

0 [yij]n<i,j≤N−n

]
.

Then x1n⊗e1n =
ψ2

(
ψ1(x)+x

2

)
+
ψ1(x)+x

2

2 ∈ S(K⊗A).



Now consider the isometry ψ3 given by
ψ3(C1, · · · , Cn) = (Cn, C2, · · · , Cn−1, C1). Then
x1,n⊗ e11 = ψ3(x1n⊗ e1n) ∈ S(K⊗A)), and
by definition, x1n ∈ CS(A). Continuing in
this way, one sees that each xij ∈ CS(A),
proving that Pn(S(K⊗A)) ⊂Mn(CS(A))

Conversely, suppose that x = (xij) ∈Mn(CS(A)).
Since each xij ∈ CS(A), then by definition,
xij⊗e11 ∈ S(K⊗A). By using isometries as
in the first part of the proof, it follows that
xij ⊗ eij ∈ S(K⊗A), and x =

∑
i,j xij ⊗ eij ∈

S(K⊗A). This proves (a).

As noted above, Pn is a contractive pro-
jection on the JB*-triple S(K⊗A), so that
by the Theorem of Frieman-Russo-Kaup-
Stacho, the range of Pn, namely Mn(CS(A)),
is a JB*-triple with triple product

{xyz}Mn(CS(A)) = Pn({xyz}S(K⊗A)),

for x, y, z ∈Mn(CS(A)). This proves (c) by
the Theorem of Neal-Russo.



However, Pn is a linear combination of isome-

tries of K⊗A which fix Mn(A) elementwise,

and any isometry ψ of K⊗A preserves the

partial triple product: ψ{abc} = {ψ(a)ψ(b)ψ(c)}
for a, c ∈ K⊗A and b ∈ S(K⊗A). This

shows that

{xyz}Mn(CS(A)) = {xyz}S(K⊗A)

for x, y, z ∈ Mn(CS(A)), proving the first

part of (b). To prove the second part of

(b), just note that if x, z ∈ Mn(A) and y ∈
Mn(CS(A)), then Pn fixes {xyz}.



COROLLARIES

1. CS(A) = M1(CS(A)) = P1(S(K⊗A))

2. CS(A) ⊂ S(A) and Pn{yxy} = {yxy} for

x ∈Mn(CS(A)) and y ∈ A.

Proof. For x ∈ CS(A), let x̃ = x ⊗ e11.

Then x̃ ∈ S(K⊗A) and so there exists a

complete holomorphic vector field hx̃ on

(K⊗A)0. Since P1 is a contractive projec-

tion of K⊗A onto A, by the Theorem of

Stacho, P1 ◦ hx̃|A0
is a complete holomor-

phic vector field on A0. But P1◦hx̃|A0
(0) =

P1 ◦ hx̃(0) = P1(x̃) = x, proving that x ∈
S(A).

Recall from the proof of the second part of

(b) that if x, z ∈Mn(A) and y ∈Mn(CS(A)),

then Pn fixes {xyz}.



The Cartan factors of type 1 are TROs,

which we have already observed are equal

to their completely symmetric parts.

The symmetric part of a JC∗-triple coin-

cides with the triple.

PROBLEM 2

What is the completely symmetric part of a

JC∗-triple? In particular, of a Cartan factor

of type 2,3, or 4.



2. Definition of the algebra product

REMARK 1

In the rest of this talk, we shall assume

that A is an operator space and v ∈ CS(A)

satisfies {xvv} = x for every x ∈ A. In what

follows, we work only with M2(A), which it

turns out will be sufficient for our result.

LEMMA 1

{
[
x ±x
0 0

] [
v ±v
0 0

] [
x ±x
0 0

]
} =

2

[
{xvx} ±{xvx}

0 0

]

Proof. Let ψ be the isometry defined by

[
a 0
0 0

]
7→
[
a/
√

2 ±a/
√

2
0 0

]
.



LEMMA 2

[
{xvx} 0

0 0

]
= {

[
0 x
0 0

] [
v 0
0 0

] [
0 x
0 0

]
}

+ 2{
[
x 0
0 0

] [
0 v
0 0

] [
0 x
0 0

]
}

Proof. By Lemma 1,

4

[
{xvx} 0

0 0

]
= 2

[
{xvx} {xvx}

0 0

]

+ 2

[
{xvx} −{xvx}

0 0

]

= {
[
x x
0 0

] [
v v
0 0

] [
x x
0 0

]
}

+ {
[
x −x
0 0

] [
v −v
0 0

] [
x −x
0 0

]
}.



LEMMA 3

{
[
a 0
0 ±a

] [
v 0
0 ±v

] [
b 0
0 ±b

]
} =

[
{avb} 0

0 ±{avb}

]

Proof. Let ψ be the isometry defined by

[
a 0
0 0

]
7→
[
a 0
0 ±a

]
.



LEMMA 4

{
[
x 0
0 0

] [
0 0
0 v

] [
0 0
0 y

]
}+{

[
y 0
0 0

] [
0 0
0 v

] [
0 0
0 x

]
}

and

{
[

0 0
0 x

] [
v 0
0 0

] [
0 0
0 y

]
}

are both equal to 0.

Proof. By Lemma 3

2

[
{xvx} 0

0 0

]
=

[
{xvx} 0

0 {xvx}

]

+

[
{xvx} 0

0 −{xvx}

]

= {
[
x 0
0 x

] [
v 0
0 v

] [
x 0
0 x

]
}

+ {
[
x 0
0 −x

] [
v 0
0 −v

] [
x 0
0 −x

]
}.



LEMMA 5

{
[
x 0
0 0

] [
0 0
0 v

] [
a b
c 0

]
} = 0

and†

{
[
x 0
0 0

] [
0 0
0 v

] [
0 0
0 v

]
} = 0,

Equivalently,

{
[

0 x
0 0

] [
0 0
v 0

] [
a b
0 d

]
} = 0

and

{
[

0 x
0 0

] [
0 0
v 0

] [
0 0
v 0

]
} = 0,

†This is true with the second v replaced by an arbitrary
element of A. On the other hand, this fact is not
needed in the proof of the main result.



Proof. The second statement follows from the

first by using the isometry[
a b
c d

]
7→
[
b a
d c

]
.

Using Lemma 4 and an appropriate isometry

(interchange both rows and columns simulta-

neously) yields

{
[
x 0
0 0

] [
0 0
0 v

] [
a 0
0 0

]
} = 0.

Next, the isometry[
a b
c d

]
7→
[
−a −b
c d

]
.

shows that

{
[
x 0
0 0

] [
0 0
0 v

] [
0 b
0 0

]
} =

[
0 0
C D

]
,

for some C,D ∈ A.



Similarly, the isometry[
a b
c d

]
7→
[
a −b
c −d

]
shows that

{
[
x 0
0 0

] [
0 0
0 v

] [
0 b
0 0

]
} =

[
0 0
C 0

]
.

Applying the isometry of multiplication of the
second row by the imaginary unit shows that
C = 0. Hence

{
[
x 0
0 0

] [
0 0
0 v

] [
0 b
0 0

]
} = 0.

By appropriate use of isometries as above,

{
[
x 0
0 0

] [
0 0
0 v

] [
0 0
c 0

]
} =

[
0 B
0 0

]
for some B ∈ A. Applying the isometry of mul-
tiplication of the second column by the imagi-
nary unit shows that B = 0. Hence

{
[
x 0
0 0

] [
0 0
0 v

] [
0 0
c 0

]
} = 0.



It remains to show that

{
[
x 0
0 0

] [
0 0
0 v

] [
0 0
0 v

]
} = 0,

To this end, by the main identity,

{
[
v 0
0 0

] [
v 0
0 0

]
{
[
v 0
0 0

] [
0 0
0 v

] [
0 0
0 x

]
}}

= R− S + T (1)

where

R = {{
[
v 0
0 0

] [
v 0
0 0

] [
v 0
0 0

]
}
[

0 0
0 v

] [
0 0
0 x

]
},

S = {
[
v 0
0 0

]
{
[
v 0
0 0

] [
v 0
0 0

] [
0 0
0 v

]
}
[

0 0
0 x

]
}

and

T = {
[
v 0
0 0

] [
0 0
0 v

]
{
[
v 0
0 0

] [
v 0
0 0

] [
0 0
0 x

]
}}.



Since

{
[
v 0
0 0

] [
0 0
0 v

] [
0 0
0 x

]
} =

[
A 0
0 0

]
, (2)

for some A ∈ A, the left side of (1) is equal to

{
[
v 0
0 0

] [
v 0
0 0

] [
A 0
0 0

]
} (3)

=

[
{vvA} 0

0 0

]
=

[
A 0
0 0

]
.

This term is also equal to R since

{
[
v 0
0 0

] [
v 0
0 0

] [
v 0
0 0

]
} =

[
v 0
0 0

]
.

Since S = 0, we have T = 0.



We next apply the main identity to get 0 =

T = R′ − S′+ T ′, where

R′ = {{
[
v 0
0 0

] [
0 v
0 0

] [
v 0
0 0

]
}
[
v 0
0 0

] [
0 0
0 x

]
},

S′ = {
[
v 0
0 0

]
{
[

0 0
0 v

] [
v 0
0 0

] [
v 0
0 0

]
}
[

0 0
0 x

]
}

and

T ′ = {
[
v 0
0 0

] [
v 0
0 0

]
{
[
v 0
0 0

] [
0 0
0 v

] [
0 0
0 x

]
}}.

By direct calculation, R′ = 0 and S′ = 0, and

since T = 0 we have T ′ = 0 so that by (2) and

(3),

0 = {
[
v 0
0 0

] [
v 0
0 0

]
{
[
v 0
0 0

] [
0 0
0 v

] [
0 0
0 x

]
}}

= {
[
v 0
0 0

] [
0 0
0 v

] [
0 0
0 x

]
}.



LEMMA 6

[
{xvy} 0

0 0

]
= {

[
0 x
0 0

] [
v 0
0 0

] [
0 y
0 0

]
}

+ {
[
x 0
0 0

] [
0 v
0 0

] [
0 y
0 0

]
}

+ {
[

0 x
0 0

] [
0 v
0 0

] [
y 0
0 0

]
}

Proof. Replace x in Lemma 2 by x+ y.



LEMMA 7

{
[

0 x
0 ±x

] [
0 v
0 ±v

] [
0 x
0 ±x

]
} =

[
0 2{xvx}
0 ±2{xvx}

]

Proof. Let ψ be the isometry defined by

[
0 a
0 0

]
7→
[

0 a/
√

2
0 ±a/

√
2

]
.



The proof of the following lemma parallels ex-
actly the proof of Lemma 2

LEMMA 8

[
0 {xvx}
0 0

]
= {

[
0 0
0 x

] [
0 v
0 0

] [
0 0
0 x

]
}

+ 2{
[

0 0
0 x

] [
0 0
0 v

] [
0 x
0 0

]
}

As in Lemma 6, polarization of Lemma 8 yields
the following lemma.

LEMMA 9

[
0 {xvy}
0 0

]
= {

[
0 0
0 x

] [
0 v
0 0

] [
0 0
0 y

]
}

+ {
[

0 0
0 x

] [
0 0
0 v

] [
0 y
0 0

]
}

+ {
[

0 0
0 y

] [
0 0
0 v

] [
0 x
0 0

]
}



LEMMA 10

{
[

0 v
0 0

] [
v 0
0 0

] [
0 x
0 0

]
} = 0.

Proof. Set y = v in Lemma 9 and apply

D

([
0 v
0 0

]
,

[
v 0
0 0

])
to each side of the equation in that lemma.

The three terms on the right each vanish, as

is seen by applying the main identity to each

term and making use of Lemma 5, and the fact

that CS(A) is a TRO, and hence M2(CS(A))

is a JB∗-triple.



LEMMA 11

{
[

0 x
0 0

] [
v 0
0 0

] [
0 y
0 0

]
} = 0.

Proof. By applying the isometries of multipli-
cation of the second column and second row
by −1, we see that

{
[

0 x
0 0

] [
v 0
0 0

] [
0 y
0 0

]
} =

[
a 0
0 0

]
and that

{
[
x 0
0 0

] [
0 v
0 0

] [
y 0
0 0

]
} =

[
0 a
0 0

]
.

By Lemma 6[
a 0
0 0

]
=

[
{avv} 0

0 0

]

= {
[

0 a
0 0

] [
v 0
0 0

] [
0 v
0 0

]
}+



+ {
[
a 0
0 0

] [
0 v
0 0

] [
0 v
0 0

]
}

+ {
[

0 a
0 0

] [
0 v
0 0

] [
v 0
0 0

]
} (4)

The first term on the right side of (4) is zero

by Lemma 10.

Let us write the second term on the right side

of (4) as

{
[
a 0
0 0

] [
0 v
0 0

] [
0 v
0 0

]
} =

{
[

0 v
0 0

][
0 v
0 0

]
{
[

0 x
0 0

] [
v 0
0 0

] [
0 y
0 0

]
}}

and apply the main Jordan identity to the right

side, which we write symbolically as {AB{CDE}}
to obtain



{AB{CDE}} = {{ABC}DE} (5)

−{C{BAD}E}+ {CD{ABE}}

We then calculate each term on the right side

of (5) to obtain

{{ABC}DE} = {
[

0 {vvx}
0 0

] [
v 0
0 0

] [
0 y
0 0

]
} =

{
[

0 x
0 0

] [
v 0
0 0

] [
0 y
0 0

]
}

{C{BAD}E} =
1

2
{
[

0 x
0 0

] [
vv∗v 0

0 0

] [
0 y
0 0

]
} =

1

2
{
[

0 x
0 0

] [
v 0
0 0

] [
0 y
0 0

]
}

{CD{ABE}} =

{
[

0 x
0 0

] [
v 0
0 0

]
{
[

0 v
0 0

] [
0 v
0 0

] [
0 y
0 0

]
}} =



= {
[

0 x
0 0

] [
v 0
0 0

] [
0 y
0 0

]
}.

The second term on the right side of (4) is

therefore equal to

3

2
{
[

0 x
0 0

] [
v 0
0 0

] [
0 y
0 0

]
}

Let us write the third term on the right side of

(4) as

{
[

0 a
0 0

] [
0 v
0 0

] [
v 0
0 0

]
} =

{
[
v 0
0 0

][
0 v
0 0

]
{
[
x 0
0 0

] [
0 v
0 0

] [
y 0
0 0

]
}}

and apply the main Jordan identity to the right

side, which we again write symbolically as

{A′B′{C′D′E′}} to obtain {A′B′{C′D′E′}} =

{{A′B′C′}D′E′}−{C′{B′A′D′}E′}+{C′D′{A′B′E′}}
We then calculate each term on the right side

and find that each of these terms vanishes, the



first and third by Lemma 10 and the second by

the fact that CS(A) is a TRO.

We have thus shown that

{
[

0 x
0 0

] [
v 0
0 0

] [
0 y
0 0

]
} =

3

2
{
[

0 x
0 0

] [
v 0
0 0

] [
0 y
0 0

]
},

proving the lemma.



DEFINITION

Let us now define a product y · x by[
y · x 0

0 0

]
= 2{

[
x 0
0 0

] [
0 v
0 0

] [
0 y
0 0

]
}

and denote the corresponding matrix product
by X · Y . That is, if X = [xij] and Y = [yij],
then X · Y = [zij] where

zij =
∑
k

xik · ykj.

Note that

{xvy} =
1

2
(y · x+ x · y).

since by Lemmas 6 and 11 we can write[
{xvy} 0

0 0

]
= {

[
x 0
0 0

] [
0 v
0 0

] [
0 y
0 0

]
}

+{
[

0 x
0 0

] [
0 v
0 0

] [
y 0
0 0

]
}.



Formula for X · Y as block matrices

The following lemma, in which the right side

is equal to 1
2

[
0 0
0 x · y

]
, is needed to prove

Proposition 2 below.

LEMMA 12

{
[

0 0
x 0

] [
v 0
0 0

] [
0 y
0 0

]
} = {

[
0 0
x 0

] [
0 0
v 0

] [
0 0
0 y

]
}

Proof. Let ψ be the isometry[
x y
0 0

]
7→

1√
2

[
x y
x y

]
.



LEMMA 13

x · v = v · x = x for every x ∈ A.

Proof. Apply the main identity to write

{
[

0 v
0 0

] [
0 v
0 0

]
{
[
v 0
0 0

] [
0 v
0 0

] [
0 x
0 0

]
}}

= R− S + T

where

R = {{
[

0 v
0 0

] [
0 v
0 0

] [
v 0
0 0

]
}
[

0 v
0 0

][
0 x
0 0

]
}

=
1

2
{
[
v 0
0 0

] [
0 v
0 0

][
0 x
0 0

]
}

S = {
[
v 0
0 0

]
{
[

0 v
0 0

] [
0 v
0 0

] [
0 v
0 0

]
}
[

0 x
0 0

]
}

= {
[
v 0
0 0

] [
0 v
0 0

][
0 x
0 0

]
}



and

T = {
[
v 0
0 0

] [
0 v
0 0

]
{
[

0 v
0 0

] [
0 v
0 0

] [
0 x
0 0

]
}}

= {
[
v 0
0 0

] [
0 v
0 0

][
0 x
0 0

]
}.

Thus

{
[

0 v
0 0

] [
0 v
0 0

]
{
[
v 0
0 0

] [
0 v
0 0

] [
0 x
0 0

]
} =

1

2
{
[
v 0
0 0

] [
0 v
0 0

] [
0 x
0 0

]
} =

1

4

[
x · v 0

0 0

]
}.

(7)

Apply the main identity again to write

{
[

0 v
0 0

] [
0 v
0 0

]
{
[

0 v
0 0

] [
0 0
0 v

] [
0 0
x 0

]
}}

= R′ − S′+ T ′

where

R′ = {{
[

0 v
0 0

] [
0 v
0 0

] [
0 v
0 0

]
}
[

0 0
0 v

][
0 0
x 0

]
} =



= {
[

0 v
0 0

] [
0 0
0 v

] [
0 0
x 0

]
},

S′ = {
[

0 v
0 0

]
{
[

0 v
0 0

] [
0 v
0 0

] [
0 0
0 v

]
}
[

0 0
x 0

]
} =

=
1

2
{
[

0 v
0 0

] [
0 0
0 v

] [
0 0
x 0

]
},

and T ′ =

{
[

0 v
0 0

] [
0 0
0 v

]
{
[

0 v
0 0

] [
0 v
0 0

] [
0 0
x 0

]
}} = 0

by Lemma 5. Thus

{
[

0 v
0 0

] [
0 v
0 0

]
{
[

0 v
0 0

] [
0 0
0 v

] [
0 0
x 0

]
}} =

= R′ − S′+ T ′ =

1

2
{
[

0 v
0 0

] [
0 0
0 v

] [
0 0
x 0

]
} =

1

4

[
v · x 0

0 0

]
,

(8)

the last step by Lemma 12.



By Lemmas 6, 10, and 12[
x 0
0 0

]
= {

[
v 0
0 0

] [
0 v
0 0

] [
0 x
0 0

]
}+ (9)

{
[

0 v
0 0

] [
0 v
0 0

] [
0 0
x 0

]
}.

Adding (7) and (8) and using (9) results in

1

2

[
v · x 0

0 0

]
= {

[
0 v
0 0

] [
0 v
0 0

] [
x 0
0 0

]
}

=
1

4

[
x · v 0

0 0

]
+

1

4

[
v · x 0

0 0

]
.

Thus v ·x = x·v and since x·v+v ·x = 2{vvx} =

2x, the lemma is proved.



The following lemma and corollary are not needed

for the main result, and are stated for the sake

of completeness.

LEMMA 14

{
[

0 0
0 v

] [
0 0
v 0

] [
0 0
x 0

]
} = {

[
0 0
0 v

] [
0 v
0 0

] [
0 x
0 0

]
}

COROLLARY

{
[
y 0
0 0

] [
0 0
0 v

] [
0 0
0 x

]
} = 0.



REMARK 2

Lemmas 1 through 11 remain valid, with the

same proofs, with the elements x, a, b, c, d re-

placed by elements X,A,B,C,D of Mn(A) and

v replaced by any element V of Mn(CS(A))

satisfying {V V X} = X, in particular, with V =

diag (v, v, . . . , v) = v ⊗ In.

Thus, for X,Y ∈Mn(A) and V = diag (v, v, . . . , v),

X · Y + Y ·X = 2{XV Y } and X ·X = {XVX}

and (analog of Lemma 5):

LEMMA 15

For X,A,B,C,D ∈Mn(A) and V = diag (v, v, . . . , v).

{
[
X 0
0 0

] [
0 0
0 V

] [
A B
C D

]
} = 0.



PROPOSITION 2

For X,Y ∈Mn(A).[
0 Y ·X
0 0

]
= 2

[
Y 0
0 0

] [
v ⊗ In 0

0 0

] [
0 X
0 0

]
.

Proof. We assume first that n = 2 (n = 1

corresponds to the definition). The left side

expands into 8 terms:

[
0 Y ·X
0 0

]
=

=

 0

[
y11 · x11 0

0 0

]
0 0

+

 0

[
y12 · x21 0

0 0

]
0 0


+

 0

[
0 y11 · x12
0 0

]
0 0

+

 0

[
0 y12 · x22
0 0

]
0 0


+

 0

[
0 0

y21 · x11 0

]
0 0

+

 0

[
0 0

y22 · x21 0

]
0 0





+

 0

[
0 0
0 y21 · x12

]
0 0

+

 0

[
0 0
0 y22 · x22

]
0 0


For the right side, we have

{


[
y11 y12
y21 y22

]
0

0 0



[
v 0
0 v

]
0

0 0


 0

[
x11 x12
x21 x22

]
0 0

}
which is the sum of 32 terms. We show now

that 24 of these 32 terms are zero, and each

of the other 8 terms is equal to one of the 8

terms in the expansion of the left side.

The proof for arbitrary n is carried out in the

same way. There will be n2 cases correspond-

ing to the elements yij and each of these cases

will have n subcases corresponding to the ele-

ments v⊗eii. Each of these subcases will have

n2 further subcases corresponding to the ele-

ments xij. Many of these latter two subcases

can be handled simultaneously, as illustrated in

the cases n=2 (above) and n = 3.



We can now state and prove our main result.

THEOREM 1

An operator space A is completely isometric to

a unital operator algebra if and only there ex-

ists an element v in the completely symmetric

part of A such that:

1. For x ∈ A,

hv(x+ v)− hv(x)− hv(v) + v = −2x

2. For X ∈Mn(A), V = diag (v, . . . , v) ∈Mn(A),

‖V − hV (X)‖ ≤ ‖X‖2



Proof. The first assumption is equivalent to
the condition {xvv} = x, so that all the ma-
chinery developed so far is available if we re-
place elements of A by elements of Mn(A).
In particular, for every X ∈ M2(X), X · X =
{XVX}.

We now apply Proposition 2 with Y = X =[
0 x
y 0

]
for elements x, y ∈ A of norm 1. The

result is
[
x · y 0

0 y · x

]
0

0 0

 = 2{
[
X 0
0 0

] [
0 V
0 0

] [
0 X
0 0

]
}

and therefore

max(‖x·y‖, ‖y·x‖) ≤ ‖X‖2 = max(‖x‖, ‖y‖) = 1,

so the multiplication on A is contractive. The
same argument shows that if X,Y ∈ Mn(A),
then ‖X · Y ‖ ≤ ‖X‖‖Y ‖ so the multiplication is
completely contractive. The result now follows
from the theorem of Blecher-Ruan-Sinclair.



The following is a variant of our main result
which may be of interest.

THEOREM 2

An operator space A is completely isometric
to a unital operator algebra if and only there
exists v ∈ CS(A) such that:

1. hv(x + v) − hv(x) − hv(v) + v = −2x for all
x ∈ A

2. Let Ṽ denote the 2n by 2n matrix

[
V 0
0 0

]
,

where V = diag(v, . . . , v) ∈ Mn(A). For all
X,Y ∈Mn(A)

‖hṼ (

[
Y X
0 0

]
)−hṼ (

[
0 X
0 0

]
)−hṼ (

[
Y 0
0 0

]
+Ṽ ‖

≤ ‖X‖‖Y ‖



These conditions can be rewritten as {xvv} = x

and

‖{
[

0 X
0 0

] [
V 0
0 0

] [
Y 0
0 0

]
}‖ ≤

1

2
‖X‖‖Y ‖

Proof. We know that A is a unital algebra with

unit v of norm 1. By the second condition and

Proposition 2,

‖Y ·X‖ ≤ ‖X‖‖Y ‖.

By Lemma 13 A is a unital (with a unit of

norm 1 and not necessarily associative) alge-

bra. The result now follows from the theorem

of Blecher-Ruan-Sinclair.



REMARK 3

The logic for the proof of Theorems 1 and 2

is the following.

1. Prove {V V X} = X for V = diag (v, v) and

X ∈M2(A)

2. Prove Lemmas 1 to 15 for M2(A).

(AUTOMATIC ONCE YOU HAVE STEP 1)

3. Prove Prop. 2 for n=2.

4. The proofs of Theorems 1 and 2 now show

that the multiplication is 2-contractive.



5. Prove {V V X} = X for V = diag (v, v, v)

and X ∈ M3(A) (uses steps 1, 2 and 3). The

same proof works for V = diag (v, v, v, v) and

X ∈M4(A)

6. Steps 2 and 3 are now valid for n=3 and 4.

So in Theorems 1 and 2, the multiplication is

3-contractive and 4-contractive.

7. Continuing in this way we see that the

multiplications in Theorems 1 and 2 are (2n−
1)-contractive and 2n-contractive for every n,

hence completely contractive.



REMARK 4

It does not appear to be true that (2) of Theo-

rem 1 implies (2) of Theorem 2 by polarization.

REMARK 5

Since application of the theorem of Blecher-

Ruan-Sinclair forces the product to be asso-

ciative,[
(x · y) · z 0

0 0

]
=

[
x · (y · z) 0

0 0

]
implies

{
[
z 0
0 0

] [
0 v
0 0

]
{
[

0 y
0 0

] [
v 0
0 0

] [
x 0
0 0

]
}} =

{{
[

0 y
0 0

] [
v 0
0 0

] [
x 0
0 0

]
}
[

0 v
0 0

] [
z 0
0 0

]
}
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