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ABSTRACT

Unital operator algebras are characterized
among operator spaces in terms of the
holomorphic structure associated with the
underlying Banach space.



INTRODUCTION

If an operator space A (i.e., a closed linear
subspace of B(H)) is also a unital (not
necessarily associative) Banach algebra with
respect to a product which is completely
contractive, then according to the theorem of
Blecher,Ruan, and Sinclair (JFA 1990), it is
completely isometric via an algebraic
isomorphism to an operator algebra (i.e., an
associative subalgebra of some B(K)).

Our main result drops the algebra assumption
on A in favor of a holomorphic assumption.
Using only natural conditions on holomorphic
vector fields on Banach spaces, we are able
to construct an algebra product on A which is
completely contractive and unital, so that the
Blecher-Ruan-Sinclair result can be applied.



Our result is thus an instance where the
consideration of a ternary product, called the
partial triple product, which arises from the
holomorphic structure via the symmetric part
of the Banach space, leads to results for
binary products.

Examples of this phenomenon occurred in
papers of Arazy and Solel (JFA 1990) and
Arazy (Math. Scan. 1994) where this
technique is used to describe the algebraic
properties of isometries of certain operator
algebras.

The technique was also used in by Kaup and

Upmeier (PAMS 1978) to show that Banach

spaces with holomorphically equivalent unit
balls are linearly isometric .



Our main technique is to use a variety of
elementary isometries on n by n matrices over
A (most of the time, n = 2) and to exploit
the fact that isometries of arbitrary Banach
spaces preserve the partial triple product.

The first occurrence of this technique
appears in the construction, for each n > 1,
of a contractive projection P, on KRA (K=

compact operators on separable infinite

dimensional Hilbert space) with range M, (A),
as a convex combination of isometries.



We define the completely symmetric part of
A to be the intersection of A (embedded in
K®A) and the symmetric part of K®A and
show it is the image under Py of the
symmetric part of KQA.

It follows from a result of Neal and Russo
(PJM 2003) that the completely symmetric
part of A is a TRO, which is a crucial tool in
our work.



We note that if A is a subalgebra of B(H)
containing the identity operator I, then by
the Arazy-Solel paper, the symmetric part of
K®A is the maximal C*-subalgebra of
K®B(H) contained in K®A, namely
KRAN(KRQA)*.

This shows that the completely symmetric
part of A coincides with the symmetric part
of A, and therefore contains I.



Our main result is the following theorem, in
which for any element v in the symmetric
part of a Banach space X, hy denotes the

corresponding complete holomorphic vector

field on the open unit ball of X.

THEOREM

An operator space A is completely isometric
to a unital operator algebra if and only there
exists an element v in the completely
symmetric part of A such that:

1. For x € A,

ho(x +v) — hy(x) — hp(v) +v = -2z

IV — hy (X)) < |1X]12



Although we have phrased this theorem in

holomorphic terms, it should be noted that

the two conditions can be restated in terms
of partial triple products as

{zvv} =z and [{XVX}]| < ||X]°.

As another example, if Ais a TRO (i.e., a
closed subspace of B(H) closed under the
ternary product ab*c), then Since KQB(H) is
a TRO, hence a JC*-triple, it is equal to its
symmetric part, which shows that the
completely symmetric part of A coincides
with A.



Now suppose that the TRO A contains an
element v satisfying zv*v = vv*x = « for all
x € X. Then it is trivial that A becomes a
unital C*-algebra for the product zv*y,
involution vz*v, and unit v

By comparison, our main result starts only
with an operator space A containing a
distinguished element v in the completely
symmetric part of A (defined below) having a
unit-like property.

This is to be expected since the result of
Blecher, Ruan, and Sinclair fails in the
absence of a unit element.



STEPS IN THE PROOF

1. The completely symmetric part of an
arbritary operator space A is defined.

2. The binary product =z -y on A is
constructed using properties of isometries on
2 by 2 matrices over A. The symmetrized
product x -y + y - x is expressed in terms of
the partial Jordan triple product on A.
(namely = 2{zvy})

3. A formula is proved relating the matrix
product X -Y induced by x -y to a product of
2 by 2 matrices containing X and Y as blocks.

(first for X and Y 2 by 2, then n by n)

namely,

HEe St [EH(Hh



According to a paper of Blecher and Zarikian
(PNAS 2004),

“The one-sided multipliers of an operator
space X are a key to the ‘latent operator
algebraic structure’ in X."

T he unified approach through multiplier
operator algebras developed in that paper
leads to simplifications of known results and
applications to quantum M-ideal theory.

They also state
“With the extra structure consisting of the
additional matrix norms on an operator
algebra, one might expect to not have to rely
as heavily on other structure, such as the
product.”

Our result is certainly in the spirit of this
statement.



Another approach to operator algebras is in a
paper of Kaneda (JFA 2007) in which the set
of operator algebra products on an operator
space is shown to be in bijective
correspondence with the space of norm one
quasi-multipliers on the operator space.



BACKGROUND

operator spaces, Jordan triples, and
holomorphy in Banach spaces.

Operator spaces

By an operator space, sometimes called a
quantum Banach space, we mean a closed
linear subspace A of B(H) for some complex
Hilbert space H, equipped with the matrix
norm structure obtained by the identification
of M, (B(H)) with B(H®H®---® H).

Two operator spaces are completely
iIsometric if there is a linear isomorphism
between them which, when applied
elementwise to the corresponding spaces of n
by n matrices, is an isometry for every n > 1.



By an operator algebra, sometimes called a
quantum operator algebra, we mean a closed
associative subalgebra A of B(H), together
with its matrix norm structure as an operator
space.

One important example of an operator space
is a ternary ring of operators, or TRO,
which is an operator space in B(H) which
contains ab*c whenever it contains a, b, c.

A TRO is a special case of a JC*-triple, that

is, a closed subspace of B(H) which contains

the symmetrized ternary product ab*c + cb*a
whenever it contains a,b, c.



Jordan triples

More generally, a JB*-triple is a complex
Banach space equipped with a triple product
{x,y, 2z} which is linear in the first and third

variables, conjugate linear in the second

variable, satisfies the algebraic identities

{z,y,2} = {z,y,z}
and

{a,b,{z,y,2}} = {{a,b,x},y, 2}
_{xa {b7 a, y}a Z} _I_ {QU, Y, {(l, ba Z}}
and the analytic conditions that the linear

map y — {x,x,y} is hermitian and positive
and |{z, =, z}|| = ||=|]>.



The following two theorems are instrumental
in what follows.

THEOREM
(Kaup MZ 1983)

The class of JB*-triples coincides with the
class of complex Banach spaces whose open
unit ball is a bounded symmetric domain.

THEOREM
(Friedman-Russo JFA 1985,Kaup MS
1984,Stacho AM Szeged 1982)

The class of JB*-triples is stable under
contractive projections. More precisely, if P is
a contractive projection on a JB*-triple E
with triple product denoted by {x,y, z} g, then
P(F) is a JB*-triple with triple product given
by {a,b,c}ppy = P{a,b,c}g for a,b,c € P(E).



The following two theorems have already
been mentioned above.

THEOREM
(Blecher,Ruan,Sinclair JFA 1990)

If an operator space supports a unital Banach
algebra structure in which the product (not
necessarily associative) is completely
contractive, then the operator space is
completely isometric to an operator algebra.

THEOREM
(Neal-Russo PJM 2003)

If an operator space has the property that the
open unit ball of the space of n by n matrices
IS a bounded symmetric domain for every
n > 2, then the operator space is completely
isometric to a TRO.



Holomorphy in Banach spaces

Finally, we review the construction and
properties of the partial Jordan triple product
in an arbitrary Banach space.

Let X be a complex Banach space with open
unit ball Xg.

Every holomorphic function h : Xg — X, also
called a holomorphic vector field, is locally
integrable, that is, the initial value problem

0

asp(ta Z) — h(gO(t,Z)) y 90(072) — %

has a unique solution for every z € Xg for t in
a maximal open interval J, containing O.

A complete holomorphic vector field is one
for which J, = R for every z € Xy.



It is a fact that every complete holomorphic
vector field is the sum of the restriction of a
skew-Hermitian bounded linear operator A on
X and a function hg of the form
hao(2) = a — Qq(z), where @Q, IS a quadratic
homogeneous polynomial on X.

The symmetric part of X is the orbit of O
under the set of complete holomorphic vector
fields, and is denoted by S(X). It is a closed

subspace of X and is equal to X precisely
when X has the structure of a JB*-triple (by

the Theorem of Kaup).



If a € S(X), we can obtain a symmetric
bilinear form on X, also denoted by @, via
the polarization formula

Qu(w,y) = 5 (Qulw + ) ~ Qul®) — Qu(v))

and then the partial Jordan triple product
{,-,-}: X xS(X) x X - X is defined by
{x,a,z} = Qua(x,z). The space S(X) becomes
a JB*-triple in this triple product.

It is also true that the “main identity”

{a,b,{z,y,2}} = {{a,b,2},y, 2}
_{xa {b> a, y}a Z} + {:U, Y, {av b, Z}}

holds whenever a,y,b € S(X) and z,z € X.



The following lemma is an elementary
consequence of the definitions.

LEMMA O

If ¢y is a linear isometry of a Banach space X
onto itself, then

(a) For every complete holomorphic vector field
h on Xg, Yohoy 1 is a complete holo-
morphic vector field. In particular, for a &

S(X), wohan_l = h¢(a)

(b) ¥(S(X)) = S5(X) and 1 preserves the par-
tial Jordan triple product:

V{z,a,y}t = {¢(z),¢(a), v (y)
for ae S(X), =,y € X.



The symmetric part of a Banach space
behaves well under contractive projections

THEOREM (Stacho AM Szeged 1982)

If P is a contractive projection on a Banach
space X and h is a complete holomorphic
vector field on Xg, then Poh|px), is a
complete holomorphic vector field on P(X)g.
In addition P(S(X)) € S(X) and the partial
triple product on P(S(X)) is given by
{z,y,z} = P{x,y,z} for x,z € P(X) and
y € P(S(X)).



Examples of the symmetric part S(X) of
a Banach space X

o X =Lp(2,x,p), L<p<oo, p#*2,
S(X) =0

e X = (classical) Hp, 1 <p < oo, p#2;
S(X)=0

e X = Hy (classical) or the disk algebra;
S(X)=C

e X = a uniform algebra A C C(K);
S(A)=ANA

(Braun-Kaup-Upmeier 1978)

e X = unital subalgebra of B(H)
S(A) = AN A*

(Arazy-Solel 1994)



More examples, due primarily to Stacho,
and involving Reinhardt domains are re-
cited in Arazy’s survey paper, along with
the following unpublished example due to
Vigue

PROPOSITION

There exists an equivalent norm on ¢4 SO
that /5 in this norm has symmetric part
equal to ¢

PROBLEM 1

Is the symmetric part of the predual of a
JBW*-triple equal to 07. What about the
predual of a von Neumann algebra?



1. Completely symmetric part of an
operator space

Let A C B(H) be an operator space. We
let K denote the compact operators on a
separable infinite dimensional Hilbert space,
say {o>. Then K = U>2 ; Mn(C) and thus

KQRA=U,Z1MpR A=U,21Mp(A)

By an abuse of notation, we shall use K A
to denote US2_ ; Mn(A). We tacitly assume
the embeddings Mp(A) C M,4+1(A) C KRA
induced by adding zeros.

The completely symmetric part of A is de-
fined by CS(A) = ANS(KRA)., where we
have identified A with M71(A) C KQA.



For 1 <m < N let 7', : My(A) = My(A)

and ¥ My(A) = My(A) be the isome-
tries of order two defined on

[ Mm(A)  Mp N—m(A) ]
MN—m,m(A) MN—m(A)

and

These two isometries give rise in an obvi-
ous way to two isometries 91 ,,, and 5 ,, ON
K®A, which extend to isometries 11y, VY2 m,
of KRA onto itself, of order 2 and fixing
elementwise M;,(A). The same analysis
applies to the isometries defined by, for ex-
ample,

PR S v B



We then can define a projection P, on K®
A with range M,,(A) via

&Q,m (wl,m(;)-ﬁf) + ¢1,m(293‘)+33

Py = 5
The projection P, on K ® A extends to a
projection P, on K®A, with range M,,(A)
given by

2
2 ’

¢2,m (¢1,m(2513)+3?> + ¢1,m(fﬁ)+$

Pmaj:

or

1
Py = Z(ZpQ,mwl,m + ¢2,m + lpl,m +1d).



PROPOSITION 1

With the above notation,
(a) Pn(S(K®A)) — Mn(CS(A))

(b) * M,(CS(A)) is a JB*-subtriple of S(K®A),
that is,

{Mn(CS(A)), Mn(CS(A)), Mn(CS(A))}
C Mn(CS(A)), Moreover,

{Mn(A), Mn(CS(A)), Mn(A)} C Mn(A).

(c) CS(A) iscompletely isometric to a TRO.

*note that in the first displayed formula of (b), the
triple product is the one on the JB*-triple M, (CS(A)),
namely, {zyz}uy,(cs)y) = Pon({zyzlgxga)), which, it
turns out, is actually the restriction of the triple prod-
uct of S(K®A): whereas in the second displayed for-
mula, the triple product is the partial triple product on
K®A



Proof. Since P, is a linear combination of
isometries of K®A, and since isometries
preserve the symmetric part, P,(S(K®A)) C
S(KRA).

Suppose = = (z;;) € Po(S(K®A)). Write
z=(Ry, - ,Rn)' = (C1,--+,Cr) Where R;, C;
are the rows and columns of . Let ¢ =
Y7 and Yo = 95 be the isometries on KQA
whose action is as follows: for x € M,(A),

i (z) = (R1, —Ro, -+, —Rn)’
¢g(x) — (_C17 Tty T n—laCn)a
and for an arbitrary element y = [yij] S

K®A,say ye My ® A, where without loss
of generality N > n, and for £k = 1, 2, 102

VE Wil nxn 0
0 [Wijln<iji<N-n
o <¢1 (ﬂg)-l-w) _|_¢1(5L‘)+:L‘

Then z1,Qe1,, = 5 2 c S(KRA).

maps y into




Now consider the isometry 3 given by
Y3(C1,--+,Cn) = (Cn,Co,---,Cp_1,C1). Then
1, ®e11 = Y3(r1,®e1,) € S(K®A)), and
by definition, xz1, € CS(A). Continuing in
this way, one sees that each z;; ¢ CS(A),
proving that P,(S(K®A)) C M,(CS(A))

Conversely, suppose that z = (z;;) € Mn(CS(A)).
Since each z;; € CS(A), then by definition,
r;;®e11 € S(K®A). By using isometries as
in the first part of the proof, it follows that
T Qe € S(K®RA), and x = i Tij @ €5 €
S(K®A). This proves (a).

As noted above, P, is a contractive pro-
jection on the JB*-triple S(K®A), so that
by the Theorem of Frieman-Russo-Kaup-
Stacho, the range of P,, namely M,(CS(A)),
is a JB*-triple with triple product

{zyz}ar,(cscay = Pn{zyzlskgay)
for x,y,z € M,(CS(A)). This proves (c) by
the Theorem of Neal-Russo.



However, P, is a linear combination of isome-
tries of K®QA which fix My, (A) elementwise,
and any isometry ¢ of K®QA preserves the
partial triple product: ¥ {abc} = {y(a)y(b)¥(c)}
for a,c € KQA and b € S(K®A). This
shows that

{zxyz}ar,csca)) =292k s(kmA)
for z,y,z € M,(CS(A)), proving the first
part of (b). To prove the second part of
(b), just note that if 2,z € M,(A) and y €
M,(CS(A)), then P, fixes {xyz}.



COROLLARIES

1. CS(A) = M1(CS(A)) = P1(S(K®A))

2. CS(A) C S(A) and Py{yzy} = {yxy} for
x € M,(CS(A)) and y € A.

Proof. For x € CS(A), let 2 = = ® e11.
Then z € S(K®A) and so there exists a
complete holomorphic vector field hz on
(K®A)g. Since Py is a contractive projec-
tion of KA onto A, by the Theorem of
Stacho, P; Ohi|Ao is a complete holomor-
phic vector field on Ag. But Piohg|4,(0) =
P; o hz(0) = Pi(Z) = x, proving that =z €
S(A).

Recall from the proof of the second part of
(b) thatifz,z € M,(A) andy € M,(CS(A)),
then P, fixes {xyz}.



The Cartan factors of type 1 are TROs,
which we have already observed are equal
to their completely symmetric parts.

The symmetric part of a JC*-triple coin-
cides with the triple.

PROBLEM 2

What is the completely symmetric part of a
JC*-triple? In particular, of a Cartan factor
of type 2,3, or 4.



2. Definition of the algebra product
REMARK 1

In the rest of this talk, we shall assume
that A is an operator space and v € CS(A)
satisfies {zxvv} = x for every x € A. In what
follows, we work only with M>(A), which it
turns out will be sufficient for our result.

LEMMA 1
r +x v Tw r =+x
{[o o”o o”o o]}:

{xvz} +{zvz}
2 0 0

Proof. Let ¢ be the isometry defined by

a O a/V2 +a/\2
5 0] [ 707



LEMMA 2

578 = e sl e]lo )

s e]los][ss)

Proof. By Lemma 1,

4 [ {zvz} O ] S | {zvz} {zvx) ]

O O 0 0
| {zvz} —{zvx}
T 2 0 0 ]

= o slloolles)
:

olle olle 5




LEMMA 3

a O v O b | {avb} 0
{[O :I:a][O :I:v][O :I:b]} [ 0 :I:{afub}]

Proof. Let ¢ be the isometry defined by

ool e ol



(oa]lov][svhels]lo][s2)

and
{ O O v O O O )
0 x O O 0 vy
are both equal to 0.

Proof. By Lemma 3

5 {xvx} O] _ | {zvz) 0 ]

0 0 0 {zxvx}
- {zvz} 0
T 5 0 —{wvx}]
=520 v]]s 2]

€T
_O
+ 1{| §

2o e 2p



LEMMA 5
z 0][oo][a b
{[o O][OU][CO]}:O
+ 0][ool][o 0O
{[o O][Ov][Ov]}:O’
Equivalently,

(sa]leo)[s b=

sa]lal[voh=e

and’

and

This is true with the second v replaced by an arbitrary
element of A. On the other hand, this fact is not
needed in the proof of the main result.



Proof. The second statement follows from the
first by using the isometry

a b s b a
c d d c
Using Lemma 4 and an appropriate isometry

(interchange both rows and columns simulta-
neously) yields

as][e][s8p-o

Next, the isometry
a b . —a —b
c d C d |’
shows that

(50]lov]oo)t=]cn)

for some C, D € A.




Similarly, the isometry
a b . a —b
c d c —d
shows that

(50]lov]oo)t=c ¢

Applying the isometry of multiplication of the
second row by the imaginary unit shows that
C = 0. Hence

r 0][oo][o b
U o o”o v”o O]}:o.

By appropriate use of isometries as above,

IR N

0O v

for some B € A. Applying the isometry of mul-
tiplication of the second column by the imagi-
nary unit shows that B = 0. Hence

(s o][e2][2 eh=o




It remains to show that
x O O O O O .
doolle2]lsop=0
To this end, by the main identity,
v O v O v O O O O O
Qo ollooldoallsolls o

—R-S4+T (1)




Since

v 0][oo]fo o A 0O
{[o o] Ov][Oaz]}:[O o]’ (2)

for some A € A, the left side of (1) is equal to

(solloalloc) @
=" 5)=155)

This term is also equal to R since

(50]lo][o0p=[55]

Since S = 0, we have T'= 0.



We next apply the main identity to get 0 =
T=R —S"+T' where

?=tlss]los]loc]|s )]s 7]

,  Jv o]l[v o0 v ol[oo][o O
r=1lo ol oo ol o]0
By direct calculation, R’ = 0 and S’ = 0, and
since T'= 0 we have T = 0 so that by (2) and

(3).
(v 0]]v O]l v O]]OO][0O O
O:{_o 0|0 o_{[o O][Ov][Ox]}}
(v 0][]0 0]]0 O
:{_o O__Ov_[O:c]}'




LEMMA 6

{xvy} O _{_O z]lv 0]]O
0 o 10 0)][00]]0
'z 0][0 v ]|]|O

+{_O 0][{0 0] |0

(0 z ][0 w _y

+{_O 0[O0 0] |0

Proof. Replace x in Lemma 2 by x 4+ y.

OO O Ow




LEMMA 7
{O:L' 0O w Oa:}_OQ{:Uv:I:}
0O +x || O =w 0 +z |7 | 0 +2{zvz}
Proof. Let ¢ be the isometry defined by

0O a 0 a/V?2
[o o]H[o ia/\@]'



The proof of the following lemma parallels ex-
actly the proof of Lemma 2

LEMMA 8
0 {zvx} | __ 00 0O v 00
oS =5 2o 6] 0]

s e]le (s s)

As in Lemma 6, polarization of Lemma 8 yields
the following lemma.

LEMMA 9

[o {xvy}] _ {'o ollo w]]oO o'}

0O O 0z ||0O0||0y
+ {0 2]low|]o6]
ML




LEMMA 10
0O v v O 0O =x
{[o o”o o”o O]}:o.

Proof. Set y = v in Lemma 9 and apply

o([s 515 5))

to each side of the equation in that lemma.

The three terms on the right each vanish, as
IS seen by applying the main identity to each
term and making use of Lemma 5, and the fact
that CS(A) is a TRO, and hence M>(CS(A))
is a JB*-triple.



LEMMA 11
0O x v O 0
{[o o”o o”o g]}:o.

Proof. By applying the isometries of multipli-
cation of the second column and second row
by —1, we see that

0O =x v O 0 a O
{[o o”o o”o g]}:[o o]
and that

x O 0O v O O a
{[o o”o o”g o]}:[o o]'
By Lemma 6
a O| _ | A{avv} O
5] =[5 0]

= 0 5)|o0) 00+



(o 0[]0 w 0 v |
+{_OO _O O_ OO_}

(0 a0 v][v O]
+{_O O__O O_ OO_} (4)

The first term on the right side of (4) is zero
by Lemma 10.

et us write the second term on the right side
of (4) as

(5 0)00]lo )=

(50][5c)so]ls ][5 5]

and apply the main Jordan identity to the right
side, which we write symbolically as {AB{CDFE}}
to obtain



{AB{CDE}} = {{ABC}DE} (5)

_{C{BAD)E} + {CD{ABE}}

We then calculate each term on the right side
of (5) to obtain

wsoyer =g 5 |5 5] |0 )=
0 z|[v 0][O
{[O O_[O 0|0
ewansr =g 5] |"5" 5] |0 &)=
110 «x v O 0
LI
{CD{ABE}} =

(sa]loa)tsa]los][osn-




=[5 5)00)[0 5]

The second term on the right side of (4) is
therefore equal to

e elloollss]

Let us write the third term on the right side of
(4) as
{ O a 0O v v O 1 —
O O O O O O o

(sa][so)sollos][s o)

and apply the main Jordan identity to the right
side, which we again write symbolically as
{A'B{C'D'E'}} to obtain {A'B{C'D'E'}} =
{{A'B'C'YD'E"}—{C'{B’A'D"} E"}4+{C'D'{A’B’'E'}}
We then calculate each term on the right side
and find that each of these terms vanishes, the




first and third by Lemma 10 and the second by
the fact that CS(A) is a TRO.

We have thus shown that

doslloollosp=

e elloollesh

proving the lemma.




DEFINITION

Let us now define a product y - x by

y-x 0| x O O wv 0 vy
ol =2s o]0 6 ll0 s
and denote the corresponding matrix product

by X -Y. Thatis, if X = [z;;] and Y = [y;,],
then X -Y = [z;;] where

2ij = ) Tik - Ykj-
k

Note that
1
{zoy} = (v 2+ -y).

since by Lemmas 6 and 11 we can write
{xvy} O —J z 0O 0O v 0 y )
0 o| O O O O O O

(o sl[so]le o]



Formula for X - Y as block matrices

The following lemma, in which the right side

10 o

IS equal to 5| o -y

Proposition 2 below.

], IS needed to prove

(2ellos][osp=t2a]lva][sy]

Proof. Let ¢ be the isometry

x 1l |z
58l



LEMMA 13

r-v=wv-x=ux for every z € A.

Proof. Apply the main identity to write

0O v 0O v v O O v 0O x
{oo”o o]{[o o”o o”o o]}}
—R-S4+T

where
0O v 0O w v O 0O w 0O x
R:{{[o o”o o] oo_}[o o”o o]}
v O 0O v 0 x|
_5{[0 o”o o] oo_}
v 0O 0O v 0O w 0 v 0O x
S:{_oo {[oo [o o”o o]}[o o]}
v 0O 0O v 0O =x
:{_oo [o o] oo]}




o< O=c
oo OO0

oo OO0
o< Oc

Thus _

(5] 0 0)tsol[o0]o0)-
Ao ol[osl[e =5 o]
Apply the main identity again to write

(o o)oolos]o v o

=R -5 4+T1

where

w=ilos][sol[soplo el o]



and T/ =

3512 0818 ]2 s

by Lemma 5. Thus

0 v 0 v 0 v O O O O

(38][8 13 8 22 8-
=R -5 +T =

O O 0O 0 l{v.2 O

Ao s]ov][2op=a" 3

the last step by Lemma 12.



By Lemmas 6, 10, and 12
ol=eollsells s+ ©
(o ollo sl o
Adding (7) and (8) and using (9) results in
1 ol =e olleolls ol
ORI R

Thus v-x = z-v and since z-v+v-x = 2{vvz} =
2x, the lemma is proved.



T he following lemma and corollary are not needed
for the main result, and are stated for the sake
of completeness.

(ov]lesllzeh=ts]los][os]

COROLLARY

(2 2]z 2][3 2=



REMARK 2

Lemmas 1 through 11 remain valid, with the
same proofs, with the elements x,a,b,c,d re-
placed by elements X, A, B,C,D of My,(A) and
v replaced by any element V of M,(CS(A))
satisfying {VV X} = X, in particular, with V =
diag (v,v,...,v) = v ® Ip.

Thus, for X,Y € M,(A) and V = diag (v,v,...,v),
X-Y4+Y - X=2{XVY}and X -X = {XVX}

and (analog of Lemma 5):

LEMMA 15

For X, A,B,C,D € M,(A) and V = diag (v,v,...,v).

os]lovi[enp=e



PROPOSITION 2

For X,Y € M,(A).

O YV X
O 0

Y O
O O

-+

|

v In
O

ol

Proof. We assume first that n = 2 (n

0 X
O O

|

=1

corresponds to the defi_nition). The left side

expands into 8 terms:

y11-x11 O

O 0
O

O w11 712

O YV -X
0

0

|

y12-x21 O




_O 5 5 ]
+ O yo1- 212 +
O 0 0 O

For the right side, we have

Y21 Y22 0 v
O O 0 0 O 0

which is the sum of 32 terms. We show now
that 24 of these 32 terms are zero, and each
of the other 8 terms is equal to one of the 8
terms in the expansion of the left side.

The proof for arbitrary n is carried out in the
same way. T here will be n? cases correspond-
ing to the elements y;; and each of these cases
will have n subcases corresponding to the ele-
ments v®e;;. Each of these subcases will have
n? further subcases corresponding to the ele-
ments z;;. Many of these latter two subcases
can be handled simultaneously, as illustrated in
the cases n=2 (above) and n = 3.

_[yll y12] O_ —[’U 0] O_ _O [5’311 12
21 T2

I




We can now state and prove our main result.
THEOREM 1

An operator space A is completely isometric to
a unital operator algebra if and only there ex-
ists an element v in the completely symmetric
part of A such that:

1. Forz € A,

ho(x +v) — hy(x) — hp(v) +v = -2z

IV — hy (X)] < 1 X2



Proof. The first assumption is equivalent to
the condition {xvv} = x, so that all the ma-
chinery developed so far is available if we re-
place elements of A by elements of M,(A).
In particular, for every X € M>(X), X - X =
{XVX}.

We now apply Proposition 2 with ¥ = X =

[ 2 :g ] for elements x,y € A of norm 1. The

result is

and therefore

2
max(f|z-yll, [[y-z[[) < X7 = max(llz]], [[y]) = 1,

so the multiplication on A is contractive. The
same argument shows that if X,Y ¢ M,(A),
then || X - Y| < ||X||||Y|] so the multiplication is
completely contractive. The result now follows
from the theorem of Blecher-Ruan-Sinclair.

_””'yO]o x ol[loVv][o x
[0 y-a :2{[o o”o o”o 0

i



The following is a variant of our main result
which may be of interest.

THEOREM 2

An operator space A is completely isometric
to a unital operator algebra if and only there
exists v € CS(A) such that:

1. hp(z +v) — hy(x) — hy(v) + v = —2x for all
xre A

2. Let V denote the 2n by 2n matrix [ ‘5 0 ]

where V = diag(v,...,v) € M,(A). For all
X,Y € Mp(A)

Y X 0 X
0 o])_hV( 0 o])_hV(

< [IXIHY]

Y O ~
0 o |+

| A (



These conditions can be rewritten as {zvv} =«
and

o 3|6 o]l b 6fmszixmr

Proof. We know that A is a unital algebra with
unit v of norm 1. By the second condition and
Proposition 2,

1Y - X < I XYY

By Lemma 13 A is a unital (with a unit of
norm 1 and not necessarily associative) alge-
bra. The result now follows from the theorem
of Blecher-Ruan-Sinclair.



REMARK 3

The logic for the proof of Theorems 1 and 2
is the following.

1. Prove {VVX} = X for V = diag (v,v) and
X € M>(A)

2. Prove Lemmas 1 to 15 for M>(A).
(AUTOMATIC ONCE YOU HAVE STEP 1)

3. Prove Prop. 2 for n=2.

4. The proofs of Theorems 1 and 2 now show
that the multiplication is 2-contractive.



5. Prove {VVX} = X for V = diag (v,v,v)
and X € M3(A) (uses steps 1, 2 and 3). The
same proof works for V = diag (v,v,v,v) and
X € Ma(A)

6. Steps 2 and 3 are now valid for n=3 and 4.
So in Theorems 1 and 2, the multiplication is
3-contractive and 4-contractive.

7. Continuing in this way we see that the
multiplications in Theorems 1 and 2 are (2n —
1)-contractive and 2n-contractive for every n,
hence completely contractive.



REMARK 4

It does not appear to be true that (2) of Theo-
rem 1 implies (2) of Theorem 2 by polarization.

REMARK 5

Since application of the theorem of Blecher-
Ruan-Sinclair forces the product to be asso-
Ciative,

[(:L'y)z O]:[x(yz) O]
0 0 O O

T 2llE s 2] s 210 S

was]lsollsaplocllsa)
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