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ABSTRACT

A necessary and sufficient condition for an op-

erator space to support a multiplication mak-

ing it completely isometric and isomorphic to

a unital operator algebra is proved.

The condition involves only the holomorphic

structure of the Banach spaces underlying the

operator space.



INTRODUCTION

If an operator space A (i.e., a closed linear

subspace of B(H)) is also a unital (not

necessarily associative) Banach algebra with

respect to a product which is completely

contractive, then according to the theorem of

Blecher,Ruan, and Sinclair (JFA 1990), it is

completely isometric via an algebraic

isomorphism to an operator algebra (i.e., an

associative subalgebra of some B(K)).

Our main result drops the algebra assumption

on A in favor of a holomorphic assumption.

Using only natural conditions on holomorphic

vector fields on Banach spaces, we are able

to construct an algebra product on A which is

completely contractive and unital, so that the

Blecher-Ruan-Sinclair result can be applied.



Our result is thus an instance where the

consideration of a ternary product, called the

partial triple product, which arises from the

holomorphic structure via the symmetric part

of the Banach space, leads to results for

binary products.

Examples of this phenomenon occurred in

papers of Arazy and Solel (JFA 1990) and

Arazy (Math. Scan. 1994) where this

technique is used to describe the algebraic

properties of isometries of certain operator

algebras.

The technique was also used in by Kaup and

Upmeier (PAMS 1978) to show that Banach

spaces with holomorphically equivalent unit

balls are linearly isometric .



Our main technique is to use a variety of

elementary isometries on n by n matrices over

A (most of the time, n = 2) and to exploit

the fact that isometries of arbitrary Banach

spaces preserve the partial triple product.

The first occurrence of this technique

appears in the construction, for each n ≥ 1,

of a contractive projection Pn on K⊗A (K=

compact operators on separable infinite

dimensional Hilbert space) with range Mn(A),

as a convex combination of isometries.



We define the completely symmetric part of

A to be the intersection of A (embedded in

K⊗A) and the symmetric part of K⊗A and

show it is the image under P1 of the

symmetric part of K⊗A.

It follows from a result of Neal and Russo

(PJM 2003) that the completely symmetric

part of A is a TRO, which is a crucial tool in

our work.



We note that if A is a subalgebra of B(H)

containing the identity operator I, then by

the Arazy-Solel paper, the symmetric part of

K⊗A is the maximal C∗-subalgebra of

K⊗B(H) contained in K⊗A, namely

K⊗A ∩ (K⊗A)∗.

This shows that the completely symmetric

part of A (an operator algebra) coincides with

the symmetric part A ∩A∗ of A, and therefore

contains I.



Our main result is the following theorem, in

which for any element v in the symmetric

part of a Banach space X, hv denotes the

corresponding complete holomorphic vector

field on the open unit ball of X.

THEOREM

An operator space A is completely isometric

to a unital operator algebra if and only if

there exists an element v in the completely

symmetric part of A such that:

1. For x ∈ A,

hv(x+ v)− hv(x)− hv(v) + v = −2x

2. For X ∈Mn(A), V = diag (v, . . . , v) ∈Mn(A),

‖V − hV (X)‖ ≤ ‖X‖2



Although we have phrased this theorem in

holomorphic terms, it should be noted that

the two conditions can be restated in terms

of partial triple products as

{xvv} = x and ‖{XVX}‖ ≤ ‖X‖2.

As another example, if A is a TRO (i.e., a

closed subspace of B(H) closed under the

ternary product ab∗c), then Since K⊗B(H) is

a TRO, hence a JC∗-triple, it is equal to its

symmetric part, which shows that the

completely symmetric part of A coincides

with A.
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Now suppose that the TRO A contains an

element v satisfying xv∗v = vv∗x = x for all

x ∈ X. Then it is trivial that A becomes a

unital C∗-algebra for the product xv∗y,

involution vx∗v, and unit v

By comparison, our main result starts only

with an operator space A containing a

distinguished element v in the completely

symmetric part of A (defined below) having a

unit-like property.

This is to be expected since the result of

Blecher, Ruan, and Sinclair fails in the

absence of a unit element.



STEPS IN THE PROOF

1. The completely symmetric part of an
arbritary operator space A is defined.

2. The assumption (1) that {xvv} = x for
some v in the completely symmetric part and
every x is used to construct, via 11 lemmas,
the binary product x · y on A by considering
properties of isometries on 2 by 2 matrices

over A.

3. The symmetrized product x · y + y · x is
expressed in terms of the partial Jordan triple

product on A. (namely = 2{xvy})

4. v is shown to be a unit for x · y :
x · v = v · x = x

5. The assumption (2) that
‖V − hV (X)‖ ≤ ‖X‖2 for X ∈Mn(A),

V = diag (v, . . . , v) ∈Mn(A) is used to show
that the product x · y is completely

contractive.
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According to a paper of Blecher and Zarikian

(PNAS 2004),

“The one-sided multipliers of an operator

space X are a key to the ‘latent operator

algebraic structure’ in X.”

The unified approach through multiplier

operator algebras developed in that paper

leads to simplifications of known results and

applications to quantum M-ideal theory.

They also state

“With the extra structure consisting of the

additional matrix norms on an operator

algebra, one might expect to not have to rely

as heavily on other structure, such as the

product.”



Our result is certainly in the spirit of this

statement.

Another approach to operator algebras is in a

paper of Kaneda (JFA 2007) in which the set

of operator algebra products on an operator

space is shown to be in bijective

correspondence with the space of norm one

quasi-multipliers on the operator space.



BACKGROUND

operator spaces, Jordan triples, and

holomorphy in Banach spaces.

Operator spaces

By an operator space, sometimes called a

quantum Banach space, we mean a closed

linear subspace A of B(H) for some complex

Hilbert space H, equipped with the matrix

norm structure obtained by the identification

of Mn(B(H)) with B(H ⊕H ⊕ · · · ⊕H).

Two operator spaces are completely

isometric if there is a linear isomorphism

between them which, when applied

elementwise to the corresponding spaces of n

by n matrices, is an isometry for every n ≥ 1.



By an operator algebra, sometimes called a

quantum operator algebra, we mean a closed

associative subalgebra A of B(H), together

with its matrix norm structure as an operator

space.

One important example of an operator space

is a ternary ring of operators, or TRO,

which is an operator space in B(H) which

contains ab∗c whenever it contains a, b, c.

A TRO is a special case of a JC∗-triple, that

is, a closed subspace of B(H) which contains

the symmetrized ternary product ab∗c+ cb∗a
whenever it contains a, b, c.



Jordan triples

More generally, a JB∗-triple is a complex

Banach space equipped with a triple product

{x, y, z} which is linear in the first and third

variables, conjugate linear in the second

variable, satisfies the algebraic identities

{x, y, z} = {z, y, x}

and

{a, b, {x, y, z}} = {{a, b, x}, y, z}
−{x, {b, a, y}, z}+ {x, y, {a, b, z}}

and the analytic conditions that the linear

map y 7→ {x, x, y} is hermitian and positive

and ‖{x, x, x}‖ = ‖x‖3.



The following two theorems are instrumental
in what follows.

THEOREM
(Kaup MZ 1983)

The class of JB∗-triples coincides with the
class of complex Banach spaces whose open

unit ball is a bounded symmetric domain.

(Also: isometry = isomorphism)

THEOREM
(Friedman-Russo JFA 1985,Kaup MS

1984,Stacho AM Szeged 1982)

The class of JB∗-triples is stable under
contractive projections. More precisely, if P is

a contractive projection on a JB∗-triple E
with triple product denoted by {x, y, z}E, then
P (E) is a JB∗-triple with triple product given
by {a, b, c}P (E) = P{a, b, c}E for a, b, c ∈ P (E).

(Also: ‖{x, y, z}‖ ≤ ‖x‖‖y‖‖z‖)



The following two theorems have already

been mentioned above.

THEOREM

(Blecher,Ruan,Sinclair JFA 1990)

If an operator space supports a unital Banach

algebra structure in which the product (not

necessarily associative) is completely

contractive, then the operator space is

completely isometric to an operator algebra.

THEOREM

(Neal-Russo PJM 2003)

If an operator space has the property that the

open unit ball of the space of n by n matrices

is a bounded symmetric domain for every

n ≥ 2, then the operator space is completely

isometric to a TRO.



Holomorphy in Banach spaces

Finally, we review the construction and

properties of the partial Jordan triple product

in an arbitrary Banach space.

Let X be a complex Banach space with open

unit ball X0.

Every holomorphic function h : X0 → X, also

called a holomorphic vector field, is locally

integrable, that is, the initial value problem

∂

∂t
ϕ(t, z) = h(ϕ(t, z)) , ϕ(0, z) = z,

has a unique solution for every z ∈ X0 for t in

a maximal open interval Jz containing 0.

A complete holomorphic vector field is one

for which Jz = R for every z ∈ X0.



It is a fact that every complete holomorphic

vector field is the sum of the restriction of a

skew-Hermitian bounded linear operator A on

X and a function ha of the form

ha(z) = a−Qa(z), where Qa is a quadratic

homogeneous polynomial on X.

The symmetric part of X is the orbit of 0

under the set of complete holomorphic vector

fields, and is denoted by S(X). It is a closed

subspace of X and is equal to X precisely

when X has the structure of a JB∗-triple (by

the Theorem of Kaup).



If a ∈ S(X), we can obtain a symmetric

bilinear form on X, also denoted by Qa via

the polarization formula

Qa(x, y) =
1

2
(Qa(x+ y)−Qa(x)−Qa(y))

and then the partial Jordan triple product

{·, ·, ·} : X × S(X)×X → X is defined by

{x, a, z} = Qa(x, z). The space S(X) becomes

a JB∗-triple in this triple product.

It is also true that the “main identity”

{a, b, {x, y, z}} = {{a, b, x}, y, z}
−{x, {b, a, y}, z}+ {x, y, {a, b, z}}

holds whenever a, y, b ∈ S(X) and x, z ∈ X.



The following lemma is an elementary

consequence of the definitions.

LEMMA 0

If ψ is a linear isometry of a Banach space X

onto itself, then

(a) For every complete holomorphic vector field

h on X0, ψ ◦ h ◦ ψ−1 is a complete holo-

morphic vector field. In particular, for a ∈
S(X), ψ ◦ ha ◦ ψ−1 = hψ(a).

(b) ψ(S(X)) = S(X) and ψ preserves the par-

tial Jordan triple product:

ψ{x, a, y} = {ψ(x), ψ(a), ψ(y)}

for a ∈ S(X), x, y ∈ X.
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The symmetric part of a Banach space

behaves well under contractive projections

THEOREM (Stacho AM Szeged 1982)

If P is a contractive projection on a Banach

space X and h is a complete holomorphic

vector field on X0, then P ◦ h|P (X)0
is a

complete holomorphic vector field on P (X)0.

In addition P (S(X)) ⊂ S(X) and the partial

triple product on P (S(X)) is given by

{x, y, z} = P{x, y, z} for x, z ∈ P (X) and

y ∈ P (S(X)).



Examples of the symmetric part S(X) of a
Banach space X f

• X = Lp(Ω,Σ, µ), 1 ≤ p <∞, p 6= 2;
S(X) = 0

• X = (classical) Hp, 1 ≤ p <∞, p 6= 2;
S(X) = 0

• X = H∞ (classical) or the disk algebra;
S(X) = C

• X = a uniform algebra A ⊂ C(K);
S(A) = A ∩A

(Braun-Kaup-Upmeier 1978)

• X = unital subalgebra of B(H)
S(A) = A ∩A∗

(Arazy-Solel 1990)
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More examples, due primarily to Stacho,

and involving Reinhardt domains are re-

cited in Arazy’s survey paper, along with

the following unpublished example due to

Vigue

PROPOSITION

There exists an equivalent norm on `∞ so

that `∞ in this norm has symmetric part

equal to c0



PROBLEM 1

Is there a Banach space with partial triple

product {x, a, y} for which the inequality

‖{x, a, y}‖ ≤ ‖x‖‖a‖‖y‖

fails?

PROBLEM 2

Is the symmetric part of the predual of a

von Neumann algebra equal to 0? What

about the predual of a JBW ∗-triple which

does not contain a Hilbert space as a direct

summand?



1. Completely symmetric part of an

operator space

Let A ⊂ B(H) be an operator space. We

let K denote the compact operators on a

separable infinite dimensional Hilbert space,

say `2. Then K = ∪∞n=1Mn(C) and thus

K⊗A = ∪∞n=1Mn ⊗A = ∪∞n=1Mn(A)

By an abuse of notation, we shall use K⊗A
to denote ∪∞n=1Mn(A). We tacitly assume

the embeddings Mn(A) ⊂Mn+1(A) ⊂ K⊗A
induced by adding zeros.

The completely symmetric part of A is de-

fined by CS(A) = A ∩ S(K⊗A)., where we

have identified A with M1(A) ⊂ K⊗A.
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For 1 ≤ m < N let ψN1,m : MN(A)→MN(A)

and ψN2,m : MN(A)→MN(A) be the isome-

tries of order two defined on[
Mm(A) Mm,N−m(A)

MN−m,m(A) MN−m(A)

]
by

ψN1,m :

[
a b
c d

]
→
[
a −b
−c d

]
and

ψN2,m :

[
a b
c d

]
→
[
a −b
c −d

]
.

These two isometries give rise in an obvi-

ous way to two isometries ψ̃1,m and ψ̃2,m on

K⊗A, which extend to isometries ψ1,m, ψ2,m

of K⊗A onto itself, of order 2 and fixing

elementwise Mm(A). The same analysis



applies to the isometries defined by, for ex-

ample,[
a b
c d

]
→
[
a b
−c −d

]
,

[
−a −b
c d

]
,

[
−a b
c −d

]
.

We then can define a projection P̃m on K⊗
A with range Mm(A) via

P̃mx =
ψ̃2,m

(
ψ̃1,m(x)+x

2

)
+

ψ̃1,m(x)+x
2

2
.

The projection P̃m on K ⊗ A extends to a

projection Pm on K⊗A, with range Mm(A)

given by

Pmx =
ψ2,m

(
ψ1,m(x)+x

2

)
+

ψ1,m(x)+x
2

2
,

or

Pm =
1

4
(ψ2,mψ1,m + ψ2,m + ψ1,m + Id).



PROPOSITION 1

With the above notation,

(a) Pn(S(K⊗A)) = Mn(CS(A))

(b)∗Mn(CS(A)) is a JB*-subtriple of S(K⊗A),

that is,

{Mn(CS(A)),Mn(CS(A)),Mn(CS(A))}

⊂Mn(CS(A)); Moreover,

{Mn(A),Mn(CS(A)),Mn(A)} ⊂Mn(A).

(c) CS(A) is completely isometric to a TRO.

∗Note that in the first displayed formula of (b), the
triple product is the one on the JB*-triple Mn(CS(A)),
namely, {xyz}Mn(CS(A)) = Pn({xyz}S(K⊗A)), which, it
turns out, is actually the restriction of the triple prod-
uct of S(K⊗A): whereas in the second displayed for-
mula, the triple product is the partial triple product on
K⊗A
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COROLLARIES

1. CS(A) = M1(CS(A)) = P1(S(K⊗A))

2. CS(A) ⊂ S(A) and Pn{yxy} = {yxy} for

x ∈Mn(CS(A)) and y ∈ A.



The symmetric part of a JC∗-triple coincides
with the triple.

The Cartan factors of type 1 are TROs, which
we have already observed are equal to their
completely symmetric parts.

Finite dimensional Cartan factors of type 2,3,
and 4 have zero completely symmetric part.

PROBLEM 3

What is the completely symmetric part of a
JC∗-triple? In particular, is the completely sym-
metric part of an infinite dimensional Cartan
factor of type 2,3, or 4 equal to zero?

PROBLEM 4

Is there an operator space whose completely
symmetric part is different from zero and from



the symmetric part of the underlying Banach

space?



2. Definition of the algebra product

REMARK 1

In the rest of this talk, we shall assume that

A is an operator space and v ∈ CS(A) satisfies

{xvv} = x for every x ∈ A.

This is enough to establish 13 lemmas.

The first 11 allow us to define the product x ·y



In what follows, we work only with M2(A),

which it turns out will be sufficient for our re-

sult.

LEMMA 1

{
[
x ±x
0 0

] [
v ±v
0 0

] [
x ±x
0 0

]
} = 2

[
{xvx} ±{xvx}

0 0

]

LEMMA 2

[
{xvx} 0

0 0

]
= {

[
0 x
0 0

] [
v 0
0 0

] [
0 x
0 0

]
}

+ 2{
[
x 0
0 0

] [
0 v
0 0

] [
0 x
0 0

]
}



Proof. (of Lemma 1).

Let X = K⊗A and consider projections Q1 and
Q2 on X defined by Q1 = P11P2, Q2 = SRP2
where P11 maps[

a b
c d

]
to

[
a 0
0 0

]
,

S maps [
a b
c d

]
to

[
a b
0 0

]
,

and R maps[
a b
c d

]
to

1

2

[
a+ b a+ b
c+ d c+ d

]
.

Let A′ = {
[
a 0
0 0

]
: a ∈ A} = Q1X and A′′ =

{
[
a a
0 0

]
: a ∈ A} = Q2X, and let ψ : A′ → A′′

be the isometry defined by

[
a 0
0 0

]
7→
[
a/
√

2 a/
√

2
0 0

]
.



Finally, let v′ =

[
v 0
0 0

]
and v′′ =

[
v/
√

2 v/
√

2
0 0

]
,

and more generally a′ =

[
a 0
0 0

]
, a′′ = ψ(a′) =[

a/
√

2 a/
√

2
0 0

]
.

Since a surjective isometry preserves partial
triple products and the partial triple product on
the range of a contractive projection is equal
to the projection acting on the partial triple
product of the original space, we have

ψ{a′v′b′}Q1X = {a′′v′′b′′}Q2X .

We unravel both sides of this equation. In the
first place

{a′v′b′}Q1X = Q1{a′v′b′}X

= P11P2{
[
a 0
0 0

]
,

[
v 0
0 0

]
,

[
b 0
0 0

]
}X

= P11P2

[
{avb} 0

0 0

]

=

[
{avb} 0

0 0

]
.



Thus

ψ{a′v′b′}Q1X =

[
{avb}/

√
2 {avb}/

√
2

0 0

]
.

Next, R and S are convex combinations of
isometries that fix the elements of the prod-
uct, so that {a′′v′′b′′}X is fixed by R and by S.
Hence,
{a′′v′′b′′}Q2X = Q2{a′′v′′b′′}X = SRP2{a′′v′′b′′}X =
{a′′v′′b′′}X. so that {a′′v′′b′′}Q2X

= {
[
a/
√

2 a/
√

2
0 0

]
,

[
v/
√

2 v/
√

2
0 0

]
,

[
b/
√

2 b/
√

2
0 0

]
}

This proves the lemma in the case of the plus
sign. The proof in the remaining case is iden-
tical, with R replaced by[

a b
c d

]
7→

1

2

[
a− b b− a
c− d d− c

]
,

A′′ replaced by {
[
a −a
0 0

]
: a ∈ A}, and ψ re-

placed by

[
a 0
0 0

]
7→
[
a/
√

2 −a/
√

2
0 0

]
.



The following two lemmas, and their proofs
parallel the previous two lemmas.

LEMMA 3

{
[
a 0
0 ±a

] [
v 0
0 ±v

] [
b 0
0 ±b

]
} =

[
{avb} 0

0 ±{avb}

]

Proof. Let ψ be the isometry defined by

[
a 0
0 0

]
7→
[
a 0
0 ±a

]
.

LEMMA 4

{
[
x 0
0 0

] [
0 0
0 v

] [
0 0
0 y

]
}+{

[
y 0
0 0

] [
0 0
0 v

] [
0 0
0 x

]
}

and

{
[

0 0
0 x

] [
v 0
0 0

] [
0 0
0 y

]
}

are both equal to 0.



LEMMA 5

{
[
x 0
0 0

] [
0 0
0 v

] [
a b
c d

]
} = 0

At this point, this can be proved only with d =

v. This is enough to define the binary product

but the general case will need Lemma 13 for

its proof.



Proof. The second statement follows from the

first by using the isometry[
a b
c d

]
7→
[
b a
d c

]
.

Using Lemma 4 and an appropriate isometry

(interchange both rows and columns simulta-

neously) yields

{
[
x 0
0 0

] [
0 0
0 v

] [
a 0
0 0

]
} = 0.

Next, the isometry[
a b
c d

]
7→
[
−a −b
c d

]
.

shows that

{
[
x 0
0 0

] [
0 0
0 v

] [
0 b
0 0

]
} =

[
0 0
C D

]
,

for some C,D ∈ A.



Similarly, the isometry[
a b
c d

]
7→
[
a −b
c −d

]
shows that

{
[
x 0
0 0

] [
0 0
0 v

] [
0 b
0 0

]
} =

[
0 0
C 0

]
.

Applying the isometry of multiplication of the
second row by the imaginary unit shows that
C = 0. Hence

{
[
x 0
0 0

] [
0 0
0 v

] [
0 b
0 0

]
} = 0.

By appropriate use of isometries as above,

{
[
x 0
0 0

] [
0 0
0 v

] [
0 0
c 0

]
} =

[
0 B
0 0

]
for some B ∈ A. Applying the isometry of mul-
tiplication of the second column by the imagi-
nary unit shows that B = 0. Hence

{
[
x 0
0 0

] [
0 0
0 v

] [
0 0
c 0

]
} = 0.



It remains to show that

{
[
x 0
0 0

] [
0 0
0 v

] [
0 0
0 v

]
} = 0,

To this end, by the main identity,

{
[
v 0
0 0

] [
v 0
0 0

]
{
[
v 0
0 0

] [
0 0
0 v

] [
0 0
0 x

]
}}

= R− S + T (1)

where

R = {{
[
v 0
0 0

] [
v 0
0 0

] [
v 0
0 0

]
}
[

0 0
0 v

] [
0 0
0 x

]
},

S = {
[
v 0
0 0

]
{
[
v 0
0 0

] [
v 0
0 0

] [
0 0
0 v

]
}
[

0 0
0 x

]
}

and

T = {
[
v 0
0 0

] [
0 0
0 v

]
{
[
v 0
0 0

] [
v 0
0 0

] [
0 0
0 x

]
}}.



Since

{
[
v 0
0 0

] [
0 0
0 v

] [
0 0
0 x

]
} =

[
A 0
0 0

]
, (2)

for some A ∈ A, the left side of (1) is equal to

{
[
v 0
0 0

] [
v 0
0 0

] [
A 0
0 0

]
} (3)

=

[
{vvA} 0

0 0

]
=

[
A 0
0 0

]
.

This term is also equal to R since

{
[
v 0
0 0

] [
v 0
0 0

] [
v 0
0 0

]
} =

[
v 0
0 0

]
.

Since S = 0, we have T = 0.



We next apply the main identity to get 0 =

T = R′ − S′+ T ′, where

R′ = {{
[
v 0
0 0

] [
0 0
0 v

] [
v 0
0 0

]
}
[
v 0
0 0

] [
0 0
0 x

]
},

S′ = {
[
v 0
0 0

]
{
[

0 0
0 v

] [
v 0
0 0

] [
v 0
0 0

]
}
[

0 0
0 x

]
}

and

T ′ = {
[
v 0
0 0

] [
v 0
0 0

]
{
[
v 0
0 0

] [
0 0
0 v

] [
0 0
0 x

]
}}.

By direct calculation, R′ = 0 and S′ = 0, and

since T = 0 we have T ′ = 0 so that by (2) and

(3),

0 = {
[
v 0
0 0

] [
v 0
0 0

]
{
[
v 0
0 0

] [
0 0
0 v

] [
0 0
0 x

]
}}

= {
[
v 0
0 0

] [
0 0
0 v

] [
0 0
0 x

]
}. Q.E.D.



LEMMA 6

[
{xvy} 0

0 0

]
= {

[
0 x
0 0

] [
v 0
0 0

] [
0 y
0 0

]
}

+ {
[
x 0
0 0

] [
0 v
0 0

] [
0 y
0 0

]
}

+ {
[

0 x
0 0

] [
0 v
0 0

] [
y 0
0 0

]
}

LEMMA 7

{
[

0 x
0 ±x

] [
0 v
0 ±v

] [
0 x
0 ±x

]
} =

[
0 2{xvx}
0 ±2{xvx}

]

Proof. Let ψ be the isometry defined by

[
0 a
0 0

]
7→
[

0 a/
√

2
0 ±a/

√
2

]
.



The proof of the following lemma parallels ex-
actly the proof of Lemma 2

LEMMA 8

[
0 {xvx}
0 0

]
= {

[
0 0
0 x

] [
0 v
0 0

] [
0 0
0 x

]
}

+ 2{
[

0 0
0 x

] [
0 0
0 v

] [
0 x
0 0

]
}

As in Lemma 6, polarization of Lemma 8 yields
the following lemma.

LEMMA 9

[
0 {xvy}
0 0

]
= {

[
0 0
0 x

] [
0 v
0 0

] [
0 0
0 y

]
}

+ {
[

0 0
0 x

] [
0 0
0 v

] [
0 y
0 0

]
}

+ {
[

0 0
0 y

] [
0 0
0 v

] [
0 x
0 0

]
}



LEMMA 10

{
[

0 v
0 0

] [
v 0
0 0

] [
0 x
0 0

]
} = 0.

LEMMA 11

{
[

0 x
0 0

] [
v 0
0 0

] [
0 y
0 0

]
} = 0.

PROOFS

• MAIN IDENTITY

• ORTHOGONALITY

• CS(A) is a TRO



DEFINITION

Let us now define a product y · x by[
y · x 0

0 0

]
= 2{

[
x 0
0 0

] [
0 v
0 0

] [
0 y
0 0

]
}

and denote the corresponding matrix product
by X · Y . That is, if X = [xij] and Y = [yij],
then X · Y = [zij] where

zij =
∑
k

xik · ykj.

Note that

{xvy} =
1

2
(y · x+ x · y).

since by Lemmas 6 and 11 we can write[
{xvy} 0

0 0

]
= {

[
x 0
0 0

] [
0 v
0 0

] [
0 y
0 0

]
}

+{
[

0 x
0 0

] [
0 v
0 0

] [
y 0
0 0

]
}.



LEMMA 12

{
[

0 0
x 0

] [
v 0
0 0

] [
0 y
0 0

]
} = {

[
0 0
x 0

] [
0 0
v 0

] [
0 0
0 y

]
}

Proof. Let ψ be the isometry[
x y
0 0

]
7→

1√
2

[
x y
x y

]
.

LEMMA 13

x · v = v · x = x for every x ∈ A.



Proof. Apply the main identity to write

{
[

0 v
0 0

] [
0 v
0 0

]
{
[
v 0
0 0

] [
0 v
0 0

] [
0 x
0 0

]
}}

= R− S + T

where

R = {{
[

0 v
0 0

] [
0 v
0 0

] [
v 0
0 0

]
}
[

0 v
0 0

][
0 x
0 0

]
}

=
1

2
{
[
v 0
0 0

] [
0 v
0 0

][
0 x
0 0

]
}

S = {
[
v 0
0 0

]
{
[

0 v
0 0

] [
0 v
0 0

] [
0 v
0 0

]
}
[

0 x
0 0

]
}

= {
[
v 0
0 0

] [
0 v
0 0

][
0 x
0 0

]
}

and

T = {
[
v 0
0 0

] [
0 v
0 0

]
{
[

0 v
0 0

] [
0 v
0 0

] [
0 x
0 0

]
}}

= {
[
v 0
0 0

] [
0 v
0 0

][
0 x
0 0

]
}.



Thus

{
[

0 v
0 0

] [
0 v
0 0

]
{
[
v 0
0 0

] [
0 v
0 0

] [
0 x
0 0

]
} =

1

2
{
[
v 0
0 0

] [
0 v
0 0

] [
0 x
0 0

]
} =

1

4

[
x · v 0

0 0

]
}.

(4)

Apply the main identity again to write

{
[

0 v
0 0

] [
0 v
0 0

]
{
[

0 v
0 0

] [
0 0
0 v

] [
0 0
x 0

]
}}

= R′ − S′+ T ′

where

R′ = {{
[

0 v
0 0

] [
0 v
0 0

] [
0 v
0 0

]
}
[

0 0
0 v

][
0 0
x 0

]
} =

= {
[

0 v
0 0

] [
0 0
0 v

] [
0 0
x 0

]
},

S′ = {
[

0 v
0 0

]
{
[

0 v
0 0

] [
0 v
0 0

] [
0 0
0 v

]
}
[

0 0
x 0

]
} =



=
1

2
{
[

0 v
0 0

] [
0 0
0 v

] [
0 0
x 0

]
},

and T ′ =

{
[

0 v
0 0

] [
0 0
0 v

]
{
[

0 v
0 0

] [
0 v
0 0

] [
0 0
x 0

]
}} = 0

by Lemma 5. Thus

{
[

0 v
0 0

] [
0 v
0 0

]
{
[

0 v
0 0

] [
0 0
0 v

] [
0 0
x 0

]
}} =

= R′ − S′+ T ′ =

1

2
{
[

0 v
0 0

] [
0 0
0 v

] [
0 0
x 0

]
} =

1

4

[
v · x 0

0 0

]
,

(5)

the last step by Lemma 12.

By Lemmas 6, 10, and 12[
x 0
0 0

]
= {

[
v 0
0 0

] [
0 v
0 0

] [
0 x
0 0

]
}+ (6)

{
[

0 v
0 0

] [
0 v
0 0

] [
0 0
x 0

]
}.



Adding (4) and (5) and using (6) results in

1

2

[
v · x 0

0 0

]
= {

[
0 v
0 0

] [
0 v
0 0

] [
x 0
0 0

]
}

=
1

4

[
x · v 0

0 0

]
+

1

4

[
v · x 0

0 0

]
.

Thus v ·x = x·v and since x·v+v ·x = 2{vvx} =

2x, the lemma is proved.



We now restate and prove our main result.

THEOREM 1

An operator space A is completely isometric to

a unital operator algebra if and only there ex-

ists an element v in the completely symmetric

part of A such that:

1. For x ∈ A,

hv(x+ v)− hv(x)− hv(v) + v = −2x

2. For X ∈Mn(A), V = diag (v, . . . , v) ∈Mn(A),

‖V − hV (X)‖ ≤ ‖X‖2



The following lemma is needed to fill the gap

in Lemma 5. The proof uses the isometry[
0 a
0 b

]
7→
[

0 0
a b

]
.

LEMMA 14

If B,D ∈ A are defined by

{
[

0 a
0 b

] [
0 v
0 0

] [
0 c
0 d

]
} =

[
0 B
0 D

]
,

then

{
[

0 0
a b

] [
0 0
v 0

] [
0 0
c d

]
} =

[
0 0
B D

]
,

In particular,

{
[

0 0
0 v

] [
0 0
v 0

] [
0 0
x 0

]
} = {

[
0 0
0 v

] [
0 v
0 0

] [
0 x
0 0

]
}

Corollary {
[
y 0
0 0

] [
0 0
0 v

] [
0 0
0 x

]
} = 0.



Proof. (of Corollary). By Lemma 5 and the

main identity,

0 = {
[

0 0
0 v

] [
0 v
0 0

]
{
[
y 0
0 0

] [
0 0
0 v

] [
0 x
0 0

]
}}

= R− S + T

where by two applications of Lemma 12

R = {{
[

0 0
0 v

] [
0 v
0 0

] [
y 0
0 0

]
}
[

0 0
0 v

][
0 x
0 0

]
}

= {{
[

0 0
y 0

] [
0 0
0 v

] [
0 0
0 v

]
}
[

0 0
0 v

][
0 x
0 0

]
}

=
1

2
{
[

0 0
v · y 0

] [
0 0
0 v

][
0 x
0 0

]
}

=
1

2
{
[
v · y 0

0 0

] [
0 v
0 0

][
0 x
0 0

]
}

=
1

2
{
[
y 0
0 0

] [
0 v
0 0

][
0 x
0 0

]
} =

1

4

[
x · y 0

0 0

]
,



and by direct calculation

S = {
[
y 0
0 0

]
{
[

0 v
0 0

] [
0 0
0 v

] [
0 0
0 v

]
}
[

0 x
0 0

]
}

=
1

2
{
[
y 0
0 0

] [
0 v
0 0

] [
0 x
0 0

]
} =

1

4

[
x · y 0

0 0

]
.

Thus

T = {
[
y 0
0 0

] [
0 0
0 v

]
{
[

0 0
0 v

] [
0 v
0 0

] [
0 x
0 0

]
}} = 0.

By Lemmas 13 and 14,

0 = T

= {
[
y 0
0 0

] [
0 0
0 v

]
{
[

0 0
0 v

] [
0 0
v 0

] [
0 0
x 0

]
}}

=
1

2
{
[
y 0
0 0

] [
0 0
0 v

] [
0 0
0 x · v

]
}

=
1

2
{
[
y 0
0 0

] [
0 0
0 v

] [
0 0
0 x

]
}.



The following proposition is critical.

PROPOSITION 2

For X,Y ∈Mn(A), and V = diag (v, v, . . . , v) =

v ⊗ In,

(a) {XV V } = X

(b)

[
0 Y ·X
0 0

]
= 2

[
Y 0
0 0

] [
v ⊗ In 0

0 0

] [
0 X
0 0

]
.

(c) X · Y + Y ·X = 2{XV Y }.



Proof. We shall prove by induction that the

proposition holds for n = 1,2, . . . ,2k.

If n = 1, (a) is the first assumption in Theorem

1, (b) is by definition, and (c) has been noted

as a consequence of Lemmas 6 and 11.

Now let n = 2.† Let us write

{
[
v 0
0 v

] [
v 0
0 v

] [
a b
c d

]
} =

{
[
v 0
0 0

] [
v 0
0 0

] [
a b
c d

]
}+{

[
v 0
0 0

] [
0 0
0 v

] [
a b
c d

]
}

+

{
[

0 0
0 v

] [
v 0
0 0

] [
a b
c d

]
}+{

[
0 0
0 v

] [
0 0
0 v

] [
a b
c d

]
}.

The two middle terms on the right side of this

equation vanish by (the full) Lemma 5.

†Although the proof of this case is long, it renders the
inductive step trivial



The first term can be written as

{
[
v 0
0 0

] [
v 0
0 0

] [
a b
c d

]
} =

{
[
v 0
0 0

] [
v 0
0 0

] [
a 0
0 0

]
}+{

[
v 0
0 0

] [
v 0
0 0

] [
0 b
0 0

]
}

+

{
[
v 0
0 0

] [
v 0
0 0

] [
0 0
c 0

]
}+{

[
v 0
0 0

] [
v 0
0 0

] [
0 0
0 d

]
}

=

[
{vva} 0

0 0

]
+

1

2

[
0 v · b
0 0

]
+

1

2

[
0 0
v · c 0

]
+

[
0 0
0 0

]

=

[
a b/2
c/2 0

]
.

The last term can be written (using Lemma 14

in the second term below) as

{
[

0 0
0 v

] [
0 0
0 v

] [
a b
c d

]
} =



{
[

0 0
0 v

] [
0 0
0 v

] [
a 0
0 0

]
}+{

[
0 0
0 v

] [
0 0
0 v

] [
0 b
0 0

]
}

+

{
[

0 0
0 v

] [
0 0
0 v

] [
0 0
c 0

]
}+{

[
0 0
0 v

] [
0 0
0 v

] [
0 0
0 d

]
}

=

[
0 0
0 0

]
+

1

2

[
0 v · b
0 0

]
+

1

2

[
0 0
v · c 0

]
+

[
0 0
0 d

]

=

[
0 b/2
c/2 d

]
.

This completes the proof of (a) for n = 2.

Lemmas 1 to 14 now follow automatically for
elements of M2(A), since the proofs for M2(A)
are the same as those for A once you have (a).

Once (b) is proved for n = 2, (c) will follow
from the fact that Lemmas 6 and 11 are valid
for M2(A).



It remains to prove (b). The left side of (b)
expands into 8 terms:[

0 Y ·X
0 0

]

=

 0

[
y11 · x11 0

0 0

]
0 0

+

 0

[
y12 · x21 0

0 0

]
0 0


+

 0

[
0 y11 · x12
0 0

]
0 0

+

 0

[
0 y12 · x22
0 0

]
0 0


+

 0

[
0 0

y21 · x11 0

]
0 0

+

 0

[
0 0

y22 · x21 0

]
0 0


+

 0

[
0 0
0 y21 · x12

]
0 0

+

 0

[
0 0
0 y22 · x22

]
0 0


For the right side, we have

{


[
y11 y12
y21 y22

]
0

0 0



[
v 0
0 v

]
0

0 0


 0

[
x11 x12
x21 x22

]
0 0

}
which is the sum of 32 terms.



We show that 24 of these 32 terms are zero,

and each of the other 8 terms is equal to one

of the 8 terms in the expansion of the left side.

We consider four cases (eight really).

Case 1:Y =

[
y11 0
0 0

]
, V =

[
v 0
0 0

]
or

[
0 0
0 v

]

Case 2:Y =

[
0 y12
0 0

]
, V =

[
v 0
0 0

]
or

[
0 0
0 v

]

Case 3:Y = y21⊗e21 =, V =

[
v 0
0 0

]
or

[
0 0
0 v

]

Case 4:Y =

[
0 0
0 y22

]
, V =

[
v 0
0 0

]
or

[
0 0
0 v

]

This completes the proof of (b) and hence of

(c) for n = 2, and the proposition for k = 1.



We now assume the the proposition holds for

n = 1,2, . . . ,2k. For any X ∈ Mn(A), let us

write

X̃ =


[
X 0
0 0

]
if n = 2k + 1,

X if n = 2k + 2.

We then write

X̃ =

[
X11 X12
X21 X22

]
where Xij ∈ Mk+1(A). Since k + 1 ≤ 2k,

the induction proceeds by simply repeating the

proofs in the case n = 2, with X,Y, V replaced

by X̃, Ỹ , Ṽ .

We can now complete the proof of our main

result.



THEOREM 1

An operator space A is completely isometric

to a unital operator algebra if and only there

exists v ∈ CS(A) such that:

(i) hv(x + v)− hv(x)− hv(v) + v = −2x for all

x ∈ A

(ii) Let V = diag(v, . . . , v) ∈ Mn(A). For all

X ∈Mn(A)

‖V − hV (X)‖ ≤ ‖X‖2.



Proof. As was already pointed out, the first as-

sumption is equivalent to the condition {xvv} =

x, so that all the machinery developed so far

is available. In particular, v is a unit element

for the product x · y and for every X ∈M2(A),

X ·X = {XVX}.

With X =

[
0 x
y 0

]
for elements x, y ∈ A of

norm 1, we have

max(‖x · y‖, ‖y · x‖) =

∥∥∥∥∥
[
x · y 0

0 y · x

]∥∥∥∥∥
= ‖X ·X‖ = ‖{XVX‖‖

≤ ‖X‖2 =

∥∥∥∥∥
[

0 x
y 0

]∥∥∥∥∥
2

= max(‖x‖, ‖y‖)2 = 1

so the multiplication on A is contractive. The

same argument shows that if X,Y ∈ Mn(A),

then ‖X · Y ‖ ≤ ‖X‖‖Y ‖ so the multiplication is

completely contractive. The result now follows

from Blecher-Ruan-Sinclair.



For the sake of completeness, we include the

detail of the last inequality:

max(‖X · Y ‖, ‖Y ·X‖)

=

∥∥∥∥∥
[
X · Y 0

0 Y ·X

]∥∥∥∥∥
=

∥∥∥∥∥
[

0 X
Y 0

]
·
[

0 X
Y 0

]∥∥∥∥∥
= ‖{

[
0 X
Y 0

] [
V 0
0 V

] [
0 X
Y 0

]
}‖

≤ ‖
[

0 X
Y 0

]
‖2 = max(‖X‖, ‖Y ‖)2.



REMARK The second condition in Theorem 1

can be replaced by the following.

(ii′) Let Ṽ denote the 2n by 2n matrix

[
V 0
0 0

]
,

where V = diag(v, . . . , v) ∈ Mn(A). For all

X,Y ∈Mn(A)

‖hṼ (

[
Y X
0 0

]
)−hṼ (

[
0 X
0 0

]
)−hṼ (

[
Y 0
0 0

]
+Ṽ ‖

≤ ‖X‖‖Y ‖.

Equivalently‡,

‖{
[
Y 0
0 0

] [
V 0
0 0

] [
0 X
0 0

]
}‖ ≤

1

2
‖X‖‖Y ‖,

(7)

‡Although the 1/2 in (7) conveniently cancels the 2 in
Proposition 2(b), its presence is justified by the fact
that (7) holds in case A is an operator algebra



Proof. (of Remark).

By Proposition 2

‖Y ·X‖ ≤ ‖X‖‖Y ‖.

By Lemma 13 and the first condition, A is a

unital (with a unit of norm 1 and not neces-

sarily associative) algebra. The Remark now

follows from Blecher-Ruan-Sinclair.


