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Motivations

In this chapter, we provide several examples from biology, physics, and math-
ematics including topology and stochastic processes, which have motivated
the development of the theory of evolution algebras.

2.1 Examples from Biology

2.1.1 Asexual propagation

Prokaryotes are nonsexual reproductive organisms. Prokaryotic cells, unlike
eukaryotic cells, do not have nuclei. The genetic material (DNA) is concen-
trated in a region called the nucleoid, with no membrane to separate this
region from the rest of the cell. In prokaryote inheritance, there is no mitosis
and meiosis. Instead, prokaryotes reproduce by binary fission. That is, after
the prokaryotic chromosome duplicates and the cell enlarges, the enlarged cell
becomes two small cells divided by a cell wall. Basically, the genetic informa-
tion passed from one generation to the next should be conserved because of
the strictness of DNA self-replication. However, there are still many possible
factors in the environment that can induce the change of genetic informa-
tion from generation to generation. The inheritance of prokaryotes is then not
Mendelian. The first factor is DNA mutation. The second factor is related to
gene recombination between a prokaryotic gene and a viral gene, for example
bacteriophage λ′s gene. This process of recombination between a prokaryotic
gene and a viral gene is called gene transduction. For the detailed process
of transduction, please refer to Nell Campbell [15]. The third factor comes
from conjugation induced by sex plasmids. That is a direct transfer of ge-
netic material between two prokaryotic cells. The most extensively studied
case is Escherichia coli. Figure 2.1 depicts the division of bacterial cell from
the book [15].

Now, let’s mathematically formulate the asexual reproduction process.
Suppose that we have n genetically distinct prokaryotes, denoting them by
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Fig. 2.1. Bacterial cell division

p1, p2, . . . , pn. We also suppose that the same environmental conditions are
maintained from generation to generation. We look at changes in gene fre-
quencies over two generation. We can view it either from the population
standpoint or from the individual standpoint. To this end, we can set the
following relations: {

pi · pi =
∑n

k=1 cikpk,
pi · pj = 0, i �= j.

Here, we view the multiplication as asexual reproduction.

2.1.2 Gametic algebras in asexual inheritance

Let us recall some basic facts in general genetic algebras first [22]. Consider an
infinitely large, randomly mating population of diploid individuals, with indi-
viduals differing genetically at one or several autosomal loci. Let a1, a2, . . . , an

be the genetically distinct gametes produced by the population. By random
union of gametes ai and aj , zygotes of type aiaj are formed. Assume that a
zygote aiaj produces a number γijk of gametes of type ak, which survive in the
next generation, k, i, j = 1, 2, . . . , n. In the absence of selection, we assume all
zygotes have the same fertility, and every zygote produces the same number
of surviving gametes. Thus, one can have the probability that a zygote aiaj
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produces a gamete ak by number γijk, still denoting γijk as the probability
that satisfies

∑n
k=1 γijk = 1. The frequency of gamete ak produced by the

total population is
∑n

i,j=1 viγijkvj if the gamete frequency vector of parental
generation is (v1, v2, . . . , vn). Now, the gamete algebra is defined on the linear
space spanned by these gametes a1, a2, . . . , an over the real number field by
the following multiplication table

aiaj =
n∑

k=1

γijkak, i, j = 1, 2, . . . , n,

and then linear extension onto the whole space. However, when we consider the
asexual inheritance, the interpretation aiaj as a zygote does not make sense bi-
ologically if ai �= aj . But, aiai = a2

i can still be interpreted as self-replication.
Therefore, in asexual inheritance, we can use the following relations to define
an algebra {

ai · ai =
∑n

k=1 γikak,
ai · aj = 0, i �= j.

In the asexual inheritance, aiaj is no longer a zygote; actually, it does not
exist. Mathematically, we set aiaj = 0. Of course, this case is not of Mendelian
inheritance.

2.1.3 The Wright-Fisher model

In population genetics, one often considers evolutionary behavior of a diploid
population with a fixed size N . Suppose that the individuals in this population
are monoecious and that no selective differences exist between two alleles
A1 and A2 possible at a certain locus A. There are, g1, g2, . . . , gn, n = 2N
genes in the population in any generation. If we do not pay attention to
genealogical relations, it is sufficient to know the number X of A1 gene in
each generation for understanding population evolutionary behavior. Clearly
in any generation, X takes one of the values 0, 1, . . . , 2N, and we denote the
value assumed by X in generation t by X(t). We must assume some specific
model that describes the way in which the genes in generation t+1 are derived
from the genes in generation t. The Wright-Fisher model [2] [16] assumes that
the genes in generation t + 1 are derived by sampling with replacement from
the genes of generation t. This means that the number X(t + 1) is a binomial
random variable with index n and parameter X(t)

n . More explicitly, given
X(t) = k, the probability pkl of X(t + 1) = l is given by

pkl =
(

n

l

)(
k

n

)l(
1 − k

n

)n−l

.

It is clear that X(t) has markovian properties. Now, if we just overlook the
details of the reproduction process and consider these probabilities as num-
bers, we may say that a certain gene, name it gi in generation t, can reproduce
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pij genes gj in generation t+1. So, we focus on each individual gene to study
its reproduction from the population level. Of course, the crossing of genes
does not make any sense genetically, although the “replication” of a gene has
certain biological meanings. Therefore, this viewpoint suggests the following
symbolical formulae {

gi · gi =
∑n

j=1 mijgj

gi · gj = 0, i �= j
,

where mij is the number of “offspring” of gi. We will study a simple case that
includes selection as a parameter in Example 7.

2.2 Examples from Physics

2.2.1 Particles moving in a discrete space

Consider a particle moving in a discrete space, for example, in a graph G.
Suppose it starts at vertex vi, then, which vertex will be its second position
depends on which neighbor of vi this particle prefers to. We may attach a
preference coefficient to each edge from vi to its neighbor vj . For instance,
we use wij as the preference coefficient, which is not necessarily a proba-
bility. Thus, the second position will be the vertex that this particle most
prefers to. This particle will move on the graph continuously. If the parti-
cle stop at some vertex, its trace would be a path with the maximum of the
total preference coefficient. Now, a question we need to ask is that how one
can describe the motion of the particle algebraically and how one can find a
path with the maximum of the total preference coefficients once the starting
vertex and the end vertex are given. To discuss these problems, we can set up
an algebraic model by giving the generator set and the defining relations as
follows.

Let the vertex set V = {v1, v2, . . . , vr} be the generator set, the defining
relations are given: {

vi · vi =
∑

j wijvj

vi · vj = 0, i �= j
,

where preference coefficients wij and wji may be different, and i, j = 1, 2, . . . , r.
In this content a path with the maximum of the total preference coefficient
is just a principal power of an element in the algebra; we will see this point
later on.

2.2.2 Flows in a discrete space (networks)

Let us recall some basic definitions in a type of network flow theory. Let
G = (V, E) be a multigraph, s, t ∈ V be two fixed vertices, and c :

−→
E → N

be a map, where N is the set of the natural numbers with zero. We call c a
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Fig. 2.2. Example of networks

capacity function on G and the tuple (G, s, t, c) a network, where
−→
E is the set

of directed edges of G. Let us see an example of networks, Fig. 2.2.
Note that c is defined independently for the two directions of an edge.

A function f :
−→
E → R is a flow in the network (G, s, t, c) if it satisfies the

following three conditions
(F1) f(e, x, y) = −f(e, y, x), for all (e, x, y) ∈ −→

E with x �= y;
(F2) f(v, V ) = 0, for all v ∈ V − {s, t} ;
(F3) f(−→e ) ≤ c(−→e ), for all −→e ∈ −→

E .
Now, let us denote the capacity from vertex x to vertex y by cxy, which

is given by the capacity function c(e, x, y) = cxy. We define an algebra
A(G, s, t, c) by generators and defining relations. The generator set is V and
the defining relations are given by{

x · x =
∑

y cxyy

x · y = 0, x �= y
,

where x and y are vertices. In the algebra A (G, s, t, c) , a flow is just an
antisymmetric linear map. The interesting thing is that the requirement for
Kirchhoff’s law for a flow is automatically satisfied in the algebra.

2.2.3 Feynman graphs

Here let us recall some basic concepts in elementary particle physics.
A Feynman graph [17] is a graph, each edge of which topologically repre-
sents a propagation of a free elementary particle and each vertex of which
represents an interaction of elementary particles. Here, we regard a Feynman
graph as an abstract object. A Feynman graph may have some extraordinary
edges, called external edges, in addition to the ordinary edges, which are called
internal edges. Every external edge has only one end point. A vertex is called
an external vertex if at least one external edge is incident with it. Vertices
other than external vertices are called internal vertices. According to the total
number n of external edges, connected Feynman graphs have various names.
For n = 0, they are called vacuum polarization graphs; n = 1, tadpole graphs;
n = 2, self-energy graphs; n = 3, vertex graphs; n = 4, two-particle scattering
graphs; and n = 5, one-particle production graphs. There are many issues
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in the theory of the Feynman integral that can be addressed. But here as an
example to show that there exists an algebraic structure, we only mention one
problem. To find some supporting properties of the Feynman integral, we need
to discuss the so-called transport problem in a Feynman graph. That is, to
transport given loads placed at some of vertices to the remainders as requested
in such a way that when carrying a load along a edge l it does not exceed the
capacity assigned to l. Similar to the previous example about the flows in a
discrete space (networks), once we define an algebraic model as we did in the
previous example, we will have a simple version of the original problem. So,
our algebraic model can provide some insight into the theory of the Feynman
integral. Below, is an example of a Feynman graph, Fig. 2.3, which yields a
peculiar solution to the Landau equations and its corresponding algebra.

Denote their vertices as v1, v2, v3, v4, and two “infinite” vertices ε1 and ε2.
The algebra corresponding to this self-energy Feynman graph is a quotient al-
gebra whose generator set is {v1, v2, v3, v4, ε1, ε2} and whose defining relations
are given by

v2
1 = a12v2, v2

2 = pε1,

v2
3 = a31v1 + a32v2,

v2
4 = a41v1 + a43v3 − pε2,

ε2
1 = ε1, ε2

2 = ε2,

0 = vi · vj , i �= j,

0 = ε1 · ε2.

Here, coefficients aij and p are numbers that have physical significance.
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Fig. 2.3. Example of Feynman graph
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2.3 Examples from Topology

2.3.1 Motions of particles in a 3-manifold

Consider a particle moving in the space (a 3-manifold M , compact or non-
compact), and fix a time period t1 to record the positions of the particle, the
recorded trace of the particle is an embedded graph. There is a triangulation
of the 3-manifold whose skeleton is the graph. To describe the motion, we may
define {

vi · vi =
∑

j aijvj

vi · vj = 0, i �= j,

where vi is a vertex of the triangulation. The coefficient aij may be related
to properties of the 3-manifold. For example, when the manifold carries a
geometrical structure, aij may be related to the Gaussian curvature (could be
negative) along the curved edge. We use these relations to define an algebra
A(M, t1). This algebra will give information about the motion of the particle.
When the time period of the recording is changed to t2, we will obtain another
algebra A(M, t2). Let’s take an infinite sequence of time interval for recording,
we will have a sequence of algebras A(M, tk). When the time interval goes to
zero, we could ask what is the limit of the sequence A(M, tk). It is obvious
that the sequence of these algebras reflects the properties of the manifold
M . In Chapter 6, we give a different sequence of evolution algebras and an
interesting conjecture related to 3-manifolds.

2.3.2 Random walks on braids with negative probabilities

In the low-dimensional topology, there is an extensive literature on the Burau
representation. Jones, in his paper “Hecke algebra representation of braid
groups and link polynomials” [27], offered a probabilistic interpretation of the
Burau representation. We quote from this paper (with a small correction):

“For positive braids there is also a mechanical interpretation of the Burau
matrix: lay the braid out flat and make it into a bowling alley with n lanes,
the lanes going over each other according to the braid. If a ball travelling
along a lane has probability 1 − t of falling off the top lane (and continuing
in the lane below) at every crossing, then the (i, j) entry of the (nonreduced)
Burau matrix is the probability that a ball bowled in the ith lane will end up
in the jth.”

Lin, Tian, and Wang, in their paper “Burau representation and random
walks on string links” [28], generalized this idea to string links. Let’s quote
from their paper about the assignment of probability (weight) at each crossing
for random walks:

(1) If we come to a positive crossing on the upper segment, the weight is 1− t
if we choose to jump down and t otherwise; and

(2) If we come to a negative crossing on the upper segment, the weight is 1− t
if we choose to jump down and t otherwise, where t = t−1”.
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Now, we can see there are negative probabilities involved in this kind of
random walks on braids. We will not go through their model here.

2.4 Examples from Probability Theory

2.4.1 Stochastic processes

Consider a stochastic process that moves through a countable set S of states.
At stage n, the process decides where to go next by a random mechanism
that depends only on the current state, and not on the previous history or
even by the time n. These processes are called Markov chains on count-
able state spaces. Precisely, let Xn be a discrete-time Markov chain with
state space S = {si | i ∈ Λ}, the transition probability be given by
pij = Pr {Xn+1 = sj | Xn = si}. Here we first consider stationary Markov
chains. Then, we can reformulate such a Markov chain by an algebra. Taking
the generator set as S, and the defining relations as follows{

si · si =
∑

j pijsj

si · sj = 0, i �= j
,

then we obtain a quotient algebra. As examples, we will study these algebras
in detail in Chapter 4 of the book.


