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Evolution Algebras

As a system of abstract algebra, evolution algebras are nonassociative algebras.
There is no deep structure theorem for general nonassociative algebra. How-
ever, there are deep structure theorem and classification theorem for evolu-
tion algebras because we introduce concepts of dynamical systems to evolution
algebras. In this chapter, we shall introduce the foundation of the evolution
algebras. Section 1 contains basic definitions and properties. Section 2 intro-
duces evolution operators and examines related algebras, including multipli-
cation algebras and derived Lie algebras. Section 3 introduces a norm to an
evolution algebra. In Section 4, we introduce the concepts of periodicity, al-
gebraic persistency, and algebraic transiency. In the last section, we obtain
the hierarchy of an evolution algebra. For illustration, there are examples in
each section.

3.1 Definitions and Basic Properties

In this section, we establish the algebraic foundation for evolution algebras.
We define evolution algebras by generators and defining relations. It is notable
that the generator set of an evolution algebra can serve as a basis of the
algebra. We study the basic algebraic properties of evolution algebras, for
example, nonassociativity, non-power-associativity, and existence of unitary
elements. We also study various algebraic concepts in evolution algebras, for
example, evolution subalgebras and evolution ideals. In particular, we define
occurrence relations among elements of an evolution algebra and the connect-
edness of an evolution algebra.

3.1.1 Departure point

We define algebras in terms of generators and defining relations. The method
of generators and relations is similar to the axiomatic method, where the role
of axioms is played by the relations.
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Let us recall the formal definition of an algebra A defined by the generators
x1, x2, . . . , xv and the defining relations

f1 = 0, f2 = 0, · · · , fr = 0.

(Both the set of generators and the set of relations, generally speaking, may
be infinite. Since there is no principal difference between finite and infinite
cases, we will only consider the finite cases for convenience.) We first consider
a nonassociative and noncommutative free algebra � with the set of gener-
ators X = {x1, x2, · · · , xv} over a field K. It is necessary to point out that
its elements are polynomials of noncommutative variables xi with coefficients
from K and the basis consists of bracketed words (bracketed monomials). By
a bracketed word, we mean a monomial of variables x1, x2, · · · , xv with brack-
ets inserted so that the order of multiplications in the monomial is uniquely
determined. In particular, all fi are elements of this free algebra �. Then we
consider the ideal I in � generated by these elements (i.e., the smallest ideal
contains these elements). The factor algebra �/I is the algebra defined by the
generators and the relations. We use notation

�/I = 〈x1, x2, · · · , xv | f1, f2, · · · , fr〉
for the algebra A defined by the generators x1, x2, · · · , xv and the defining
relations f1 = 0, f2 = 0, · · · , fr = 0.

Now let us define our evolution algebras.

Definition 1. Let X = {x1, x2, · · · , xv} be the set of generators and R =

{fl = x2
l +

v∑
k=1

alkxk, fij = xixj | alk ∈ K, i �= j, l, i, j = 1, 2, · · · , v} be the set

of defining relations, where K is a field, an evolution algebra is then defined
by

R(X) =

〈
x1, · · · , xv | x2

l +
v∑

k=1

alkxk, xixj , i �= j; i, j, l ∈ Λ

〉

where Λ is the index set, Λ = {1, 2, · · · , v} .

Remark 1. In many practical problems, the underlying field K should be the
real number field. We say an evolution algebra is real if the underlying field
is the real number field R. We say an evolution algebra is nonnegative if it is
real and any structural coefficient ajk in defining relations is nonnegative. An
evolution algebra is called Markov evolution algebra if it is nonnegative and
the summation of coefficients in each defining relation is 1,

∑v
k=1 ajk = 1, for

each j. We will study Markov evolution algebras in Chapter 4.

Remark 2. There are two types of trivial evolution algebras, zero evolution
algebras and nonzero trivial evolution algebras. If the defining relations are
given by xi · xj = 0 for all generators and any x2

i = 0, we say that the alge-
bra generated by these generators is a zero evolution algebra. If the defining
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relations are given by xi · xj = 0 for i �= j and xi · xi = kixi, where ki ∈ K is
not a zero element, we say that the algebra generated by these generators is a
nonzero trivial evolution algebra. To avoid triviality, we always assume that
an evolution algebra is not a zero algebra.

To understand evolution algebras defined this way, we need to understand
the properties of generators. To this end, we define a notion – the length of
a bracketed word. Let W (x1, x2, · · · , xv) be a bracketed word. We define the
length of W, denoting it by l(W ), to be the sum of the number of occurrence
of each generator xi in W . Thus, for the empty word φ, l(φ) = 0, and for any
generator xi, l(xi) = 1. For example, W = k(x1x2)((x3x1)x2), here l(W ) = 5,
where k ∈ K. Using this notion, we can prove the following theorem.

Theorem 1. If the set of generators X is finite, then the evolution algebra
R(X) is finite dimensional. Moreover, the set of generators X can serve as a
basis of the algebra R(X).

Proof. We know that a general element of the evolution algebra R(X) is a
linear combination of reduced bracketed words. By a reduced bracketed word,
we mean a bracketed word that is subject to the defining relations of R(X).
Therefore, if we can prove that any reduced word W can be expressed as a
linear combination of generators, we can conclude that R(X) has the set of
generators X as its basis. Now we use induction to finish the proof.

If l(w) = 0, then w = φ, and if l(w) = 1, then w must be a certain
generator xi. Furthermore, if l(w) = 2, w has to be x2

j for some generator xj ,

since xixj = 0 for two distinct generators. Since x2
j +

v∑
k=1

aj,kxk = 0, we have

w = x2
j =

v∑
k=1

−aj,kxk.

Now suppose that when l(w) = n, w can be written as a linear combina-
tion of generators. Then let us look at the case of l(w) = n+1. Because w here
is a reduced bracketed word, the first multiplication in w must be xi · xi for a

certain generator xi; otherwise w = φ. Since xi · xi =
v∑

k=1

−ai,kxk, after tak-

ing the first multiplication, w will become a polynomial, each term of which
has a length that is less than or equal to n. By induction, each term of the
polynomial can be written as a linear combination of generators. Therefore,
w can also be written as a linear combination of generators. Hence, by induc-
tion, every reduced bracketed word can be written as a linear combination of
generators. Thus, the generator set X is a basis for R (X).

We also need to prove that X is a linear independent set. Suppose∑
k akxk = 0, then multiply by xk on both sides of the equation, we have

akx2
k = 0. Since x2

k �= 0, thus ak = 0, for every index k (since R(X) is not a
zero algebra).

Actually, in the previous theorem, the restrictive condition of finiteness is
not necessary, because any element of R(X) is a finite linear combination of
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reduced bracketed words and each reduced bracketed word has a finite length
whether the number of generators is finite or infinite. Therefore, we have the
following two equivalent definitions for evolution algebras.

Definition 2. Let S = {x1, x2, . . . , xn, . . . } be a countable set of letters,
referred as the set of generators, VS be a vector space spanned by S over
a field K. We define a bilinear map m,

m : VS × VS −→ VS

by

m(xi, xj) = 0, if i �= j

m(xi, xi) =
∑

k

ai,kxk, for any i

and bilinear extension onto VS × VS . Then, we call the pair (VS , m) an evo-
lution algebra.

Or, alternatively,

Definition 3. Let (A, ·) be an algebra over a field K. If it admits a countable
basis x1, x2, · · · , xn, · · · , such that

xi · xj = 0, if i �= j

xi · xi =
∑

k

ai,kxk, for any i

we then call this algebra an evolution algebra. We call the basis a natural basis.

Now, let us discuss several basic properties of evolution algebras. They are
corollaries of the definition of an evolution algebra.

Corollary 1. 1) Evolution algebras are not associative, in general.
2) Evolution algebras are commutative, flexible.
3) Evolution algebras are not power-associative, in general.
4) The direct sum of evolution algebras is also an evolution algebra.
5) The Kronecker product of evolution algebras is an evolution algebra.

Proof. We always work with a generator set {e1, e2, · · · , en, · · · }, and consider
evolution algebras to be nontrivial.

1) Generally, for some index i, ei · ei =
∑
j

aijej, there is j �= i, such

that aij �= 0. Therefore, we have (ei · ei) · ej �= 0. But ei · (ei · ej) = ei · 0 = 0.
That is, (ei · ei) · ej �= ei · (ei · ej).

2) For any two elements x and y in an evolution algebra, x =
∑
i

aiei

and y =
∑
i

biei, we have
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x · y =
∑

i

aiei ·
∑

j

bjej =
∑
i, j

aibjei · ej =
∑

i

aibie
2
i = y · x.

Therefore, any evolution algebra is commutative. Recall that an algebra is
flexible if it satisfies x(yx) = (xy)x. It is easy to see that a commutative
algebra is flexible. Therefore, any evolution algebra is flexible.

3) Take ei, we look at

(ei · ei) · (ei · ei) =
∑

k

aikek ·
∑

l

ailel =
∑

k

a2
ike2

k

((ei · ei) · ei) · ei = ((
∑

k

aikek) · ei)ei

= (aiie
2
i ) · ei = (aii

∑
k

aikek) · ei

= a2
iie

2
i

generally,
(ei · ei) · (ei · ei) �= ((ei · ei) · ei) · ei.

Thus, an evolution algebra is not necessarily power-associative.
4) Consider two evolution algebras A1, A2 with generator sets {ei |

i ∈ Λ1} and {ηj | j ∈ Λ2}, respectively. Then, A1 ⊕ A2 has a generator set
{ei, ηj | i ∈ Λ1, j ∈ Λ2}, once we identify ei with (ei, 0), ηj with (0, ηj).
Actually, this generator set is a natural basis for A1 ⊕ A2. We can verify this
as follows:

ei · ei =
∑

k

aikek

ei · ej = 0, if i �= j

ηi · ηi =
∑

k

bikηk

ηi · ηj = 0, if i �= j

ei · ηj = (ei, 0) · (0, ηj) = 0.

Therefore A1 ⊕ A2 is an evolution algebra. It is clear that the dimension of
A1⊕A2 is the sum of the dimension of A1 and that of A2. The proof is similar
when the number of summands of the direct sum is bigger than 2.

5) First consider two evolution algebras A1 and A2 with generator
sets {ei | i ∈ Λ1} and {ηj | j ∈ Λ2}, respectively. On the tensor product of
two vector spaces A1 and A2, A1 ⊗K A2, we define a multiplication in the
usual way. That is, for x1 ⊗ x2 and y1 ⊗ y2, we define (x1 ⊗ x2) · (y1 ⊗ y2) =
x1y1⊗x2y2. Then, we have the Kronecker product of these two algebras. This
Kronecker product is also an evolution algebra, because the generator set of
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the Kronecker product is {ei ⊗ ηj | i ∈ Λ1, j ∈ Λ2} , and the defining relations
are given by

(ei ⊗ ηj) · (ei ⊗ ηj) �= 0,

(ei ⊗ ηj) · (ek ⊗ el) = 0, if i �= k or j �= l.

As to its dimension, we have dim (A1 ⊗ A2) = dim (A1) dim (A2) . The proof
is similar when the number of factors of Kronecker product is greater than 2.

3.1.2 Existence of unity elements

For an evolution algebra A, we can use a standard construction to obtain an
algebra A1 that does contain a unity element, such that A1 has (an isomorphic
copy of) A as an ideal and A1/A has dimension 1 over K. We take A1 to be
the set of all ordered pairs (k, x) with k ∈ K and x ∈ A; addition and
multiplication are defined by

(k, x) + (c, y) = (k + c, x + y) ,

and
(k, x) · (c, y) = (kc, ky + cx + xy) ,

where k, c ∈ K, x, y ∈ A. Then A1 is an algebra over K with unitary ele-
ment (1, 0) , where 1 is the unity element of the field K and 0 is the empty
element of A. The set A′ of all pairs (0, x) in A1 with x in A is an ideal of
A1 which is isomorphic to A. For commutative Jordan algebras and alterna-
tive algebras, we know that by adjoining a unity element to them we obtain
the same type of nonassociative algebras. However, in the case of evolution
algebras, A1 is no longer an evolution algebra generally. Although the subset
{(1, 0) , (0, ei) : i ∈ Λ} of A1 is a basis, and so is a generator set of algebra
A1, this subset does not satisfy the condition of generator set of an evolution
algebra. The following proposition characterizes an evolution algebra with a
unity element.

Proposition 1. An evolution algebra has a unitary element if and only if it
is a nonzero trivial evolution algebra.

Proof. Let an evolution algebra A has a generator set {ei | i ∈ Λ}, and µ =∑
i aiei be a unity element. We then have µei = ei for each i ∈ Λ. That is,

ei =

⎛
⎝∑

j

ajej

⎞
⎠ ei = aie

2
i = ai

∑
j

aijej.

We have to have aiaii = 1 and aij = 0 if i �= j. That means A must be
a nonzero trivial evolution algebra, and the unity element is given by µ =∑

i
1

aii
ei. On the other hand, if A is a nonzero trivial evolution algebra, it is

easy to check that there is a unity element, which is given by µ.
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3.1.3 Basic definitions

We need some more basic definitions: evolution subalgebras, evolution ideals,
principal powers, plenary powers, and simple evolution algebras. Now, let’s
define them.

Definition 4. 1) Let A be an evolution algebra, and A1 be a subspace of A.
If A1 has a natural basis {ei | i ∈ Λ1}, which can be extended to a natural
basis {ej | j ∈ Λ} of A, we call A1 an evolution subalgebra, where Λ1 and Λ
are index sets and Λ1 is a subset of Λ.

2) Let A be an evolution algebra, and I be an evolution subalgebra of A.
If AI ⊆ I, we call I an evolution ideal.

3) Let A and B be evolution algebras, we say a linear homomorphism f
from A to B is an evolution homomorphism, if f is an algebraic map and for
a natural basis {ei | i ∈ Λ} of A, {f(ei) | i ∈ Λ} spans an evolution subalgebra
of B. Furthermore, if an evolution homomorphism is one to one and onto, it
is an evolution isomorphism.

4) Let A be a commutative algebra, we define principal powers of a ∈ A as
follows:

a2 = a · a
a3 = a2 · a

· · · · · ·
an = an−1 · a;

and plenary powers of a ∈ A as follows:

a[1] = a(2) = a · a
a[2] = a(22) = a(2) · a(2)

a[3] = a(23) = a(4) · a(4)

· · · · · · · · ·
a[n] = a(2n) = a(2n−1) · a(2n−1).

For convenience, we denote a[0] = a.
Then, we have a property

(
a[n]

)[m]

= a[n+m],

where n and m are positive integers. The proof of this property can be obtained
by counting the number of a that contains in the mth plenary power of a[n],
therefore

(
a[n]

)[m]

=
(
a(2n)

)(2m)

= a(2n2m) = a(2n+m) = a[n+m].
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5) We say an evolution algebra E is connected if E can not be decomposed
into a direct sum of two proper evolution subalgebras.

6) An evolution algebra E is simple if it has no proper evolution ideal.
7) An evolution algebra E is irreducible if it has no proper subalgebra.

Natural bases of evolution algebras play a privileged role among all other
bases, since the generators represent alleles in genetics and states generally
in other problems. Importantly, natural bases are privileged for mathematical
reasons, too. The following example illustrates this point.

Example 1. Let E be an evolution algebra with basis e1, e2, e3 and multipli-
cation defined by e1e1 = e1 + e2, e2e2 = −e1 − e2, e3e3 = −e2 + e3. Let
u1 = e1 + e2, u2 = e1 + e3. Then (αu1 + βu2)(γu1 + δu2) = αγu2

1 + (αδ +
βγ)u1u2+βδu2

2 = (αδ+βγ)u1 +βδu2. Hence, F = Ku1+Ku2 is a subalgebra
of E. However, F is not an evolution subalgebra.

Let v1, v2 be a basis of F . Then v1 = αu1 + βu2, v2 = γu1 + δu2 for some
α, β, γ, δ ∈ K such that D = αδ − βγ �= 0. By the above calculation, v1v2 =
(αδ + βγ)u1 + βδu2. Assume that v1v2 = 0. Then βδ = 0 and αδ + βγ = 0. If
β = 0, we have αδ = 0. Then, D = 0, a contradiction. If δ = 0, we reach the
same contradiction. Hence v1v2 �= 0, and F is not an evolution subalgebra.

We have just seen that evolution algebras are not closed under subalgebras.
This is one reason we define these new notions, such as evolution subalgebras.
We shall see the relations between these concepts in next subsection.

3.1.4 Ideals of an evolution algebra

Classically, an ideal I in an algebra A is first a subalgebra, and then it sat-
isfies AI ⊆ I and IA ⊆ I. In the setting of evolution algebras, an evolution
ideal is first an evolution subalgebra. However, the conditions for evolution
subalgebras seem enough for evolution ideals. We have the following property.

Proposition 2. Any evolution subalgebra is an evolution ideal.

Proof. Let E1 be an evolution subalgebra of E, then E1 has a generator set
{ei | i ∈ Λ1} that can be extended to a generator set of E, {ei | i ∈ Λ}, where
Λ1 is a subset of Λ. For x ∈ E1, and y ∈ E, we write x =

∑
i∈Λ1

xiei and y =∑
i∈Λ yiei, where xi, yi ∈ K, we then have the product xy =

∑
i∈Λ1

xiyie
2
i ∈

E1. Therefore, E1E ⊆ E1. Since E is a commutative algebra, E1 is a two-sided
ideal.

This property makes the concept of evolution ideals superfluous. We will
use the notion, evolution ideals, as an equivalent concept of evolution sub-
algebras. As we know, a simple algebra does not have a proper ideal. And
an evolution algebra is irreducible if it does not have a proper subalgebra.
So, from the above proposition, an irreducible evolution algebra is a simple
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evolution algebra, and a simple evolution algebra is an irreducible evolution
algebra. They are, actually, the same concepts in evolution algebras. As in
general algebra theory, if an evolution algebra can be written as a direct sum
of evolution subalgebras, we call it a semisimple evolution algebra. Then we
have the following corollary.

Corollary 2. 1) A semisimple evolution algebra is not connected.
2) A simple evolution algebra is connected.

3.1.5 Quotients of an evolution algebra

To study structures of evolution algebras, particularly, hierarchies of evolution
algebras, quotients of evolution algebras should be studied. Let E1 be an
evolution ideal of an evolution algebra E, then the quotient algebra E = E/E1

consists of all cosets x = x + E1 with the induced operations kx = kx,
x + y = x + y, x · y = xy. We can easily verify that E is an evolution algebra.
The canonical map π : x �→ x of E onto E is an evolution homomorphism
with the kernel E1.

Lemma 1. Let η1, η2, · · ·, ηm be elements of an evolution algebra E with
dimension n, and satisfies ηiηj = 0 when i �= j. If some of these elements
form a basis of E, then there are (m − n) zeroes in this sequence.

Proof. Suppose η1, η2, · · ·, ηn form a natural basis of E. Then, ηn+k, 1 ≤ k ≤
(m − n), can be expressed as a linear combination of ηi, 1 ≤ i ≤ n. That is,
ηn+k =

∑n
i=1 aiηi. Multiplying by ηi on both sides of this equation, we have

ηn+kηi = aiη
2
i = 0; then, ai = 0, for each i, 1 ≤ i ≤ n. Therefore, ηn+k = 0,

where 1 ≤ k ≤ m − n.

Theorem 2. Let E1 and E2 be evolution algebras, and f : E1 −→ E2 be
an evolution algebraic homomorphism. Then, K = kernel(f) is an evolution
subalgebra of E1, and E1/K is isomorphic to E2 if f is surjective. Or, E1/K
is isomorphic to f(E1).

Proof. Let e1, e2, ···, em be a natural basis of E1, by the definition of evolution
algebra homomorphism, f(e1), f(e2), · · ·, f(em) span an evolution subalgebra
of E2; denote this subalgebra by B. When dim(B) = m, it is easy to see that
K = kernel(f) = 0. K is the zero subalgebra. When dim(B) = n < m, we
will prove dim(K) = m− n. For i �= j, f(ei)f(ej) = f(eiej) = 0, and some of
f(ei)s form a natural basis of the image of E1, which is an evolution subalgebra
of E2. By the Lemma 1, there are m − n zeroes; let’s say f(en+1) = 0, · · ·,
f(em) = 0. That means, en+1, · · ·, em ∈ K. Actually, they span an evolution
subalgebra, which is the kernel K of f with dimension m − n.

Set a map
f : E1/K −→ f(E1)
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by
x + K �−→ f(x).

It is not hard to see that f is an isomorphic.

We may conclude that an evolution algebra can be homomorphic and can
only be homomorphic to its quotients. We will study the automorphism group
of an evolution algebra in the next section.

3.1.6 Occurrence relations

When an element in a basis is viewed as an allele in genetics, or a state in
stochastic processes, we are most interested in the following questions: when
does the allele ei give rise to the allele ej? when does a state appear in the
next step of the process? To address this question, we introduce a notion,
occurrence relations.

Let E be an evolution algebra with the generator set {e1, e2, · · ·, ev}. We
say ei occurs in x ∈ E, if the coefficient αi ∈ K is nonzero in x =

∑v
j=1 αjej.

When ei occurs in x, we write ei ≺ x.
It is not hard to see that if ei ≺ e

[n]
i , then 〈ei〉 ⊆ 〈ei〉, where 〈x〉 means

the evolution subalgebra generated by x.
When we work on nonnegative evolution algebras, we can obtain a type

of partial order among elements.

Lemma 2. Let E be a nonnegative evolution algebra. Then for every x, y ∈
E+, and n ≥ 0, there is z ∈ E+, such that (x + y)[n] = x[n] + z, where
E+ =

∑
αiei; αi ≥ 0.

Proof. We prove the lemma by induction on n. We have (x + y)[0] = x[0] + y,
and it suffices to set z = y. Also, (x + y)[1] = x[1] + 2xy + y2. Since E+ is
closed under addition, multiplication, and multiplication by positive scalars,
z = 2xy + y2 belongs to E+.

Assume the claim is true for n > 1. In particular, give x, y ∈ E+, let
w ∈ E+ such that (x + y)[n] = x[n] + w. Then (x + y)[n+1] = (x[n] + w)[1] =
(x[n])[1] + z = x[n+1] + z for some z ∈ E+.

Proposition 3. Let E be a nonnegative evolution algebra. When ei ≺ e
[n]
j

and ej ≺ e
[m]
k , then ei ≺ e

[n+m]
k

Proof. We have e
[m]
k = αjej + y for some αj �= 0 and y ∈ E, such that

ej does not occur in y. We also have αj > 0 and y ∈ E+. By Lemma 2,
e
[n+m]
k = (e[m]

k )[n] = (αjej + y)[n] = (αjej)[n] + z = α
(2n)
j e

[n]
j + z for some

z ∈ E+. Now, e
[n]
j = βiei + v for some βi > 0 and v ∈ E that ei does not

occur in v. We therefore conclude that ei ≺ e
[n+m]
k .
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We can have a type of partial order relation among the generators of an
evolution algebra E. Let ei and ej be any two generators of E, if ei occurs in
a plenary power of ej, for example, ei occurs in e

[n]
j , we then set ei < ej , or

just ei ≺ e
[n]
j . This relation is a partial order in the following sense.

(1) ei ≺ e
[0]
i , for any generator of E.

(2) If ei ≺ e
[n]
j and ej ≺ e

[m]
i , then we say that ei and ej intercommuni-

cate. Generally, ei and ej are not necessarily the same, but the evolution
subalgebra generated by ei and the one by ej are the same.

(3) If ei ≺ e
[n]
j and ej ≺ e

[m]
k , then ei ≺ e

[n+m]
k . This is Proposition 3.

3.1.7 Several interesting identities

At the end of this section, let us give several interesting formulae, they are
identities.

Proposition 4. 1) Let {ei | i ∈ Λ} be a natural basis of an evolution algebra
A, then {e2

i |i ∈ Λ} generates a subalgebra A.
2) Let {ei | i ∈ Λ} be a natural basis of an evolution algebra A, then we have

the following identities:

em
i = am−2

ii e2
i , ∀ i ∈ Λ, ∀ m ≥ 2

e2
i · ej = aije

2
j , ∀ i, j ∈ Λ,

(em
i )2 = a2m−4

ii e
(4)
i , ∀ i ∈ Λ, ∀ m ≥ 2

e4
i · e4

i = a4
iie

(2)
i , ∀ i, j ∈ Λ,

where aij ’s are structural constants of A.
3) Let {ei | i ∈ Λ} be a natural basis of an evolution algebra, then, for any

finite subset Λ0 of the index set Λ, we have

(
∑
j∈Λ0

ej)2 =
∑
j∈Λ0

e2
j .

Proof. 1) Since {ei | i ∈ Λ} be a generator set, so

e2
i =

∑
k

aikek,

e2
i · e2

i =
∑

k

aikek ·
∑

l

ailel =
∑
l, k

aikailek · el =
∑

k

a2
ike2

k,

e2
i · e2

j =
∑

k

aikek ·
∑

l

ajlel =
∑
l, k

aikajke2
k.

Thus, any product of linear combinations of e2
i can still be written as a linear

combination of e2
i . This means that {e2

i |i ∈ Λ} generates a subalgebra of A.
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2) Since

e2
i =

∑
k

aikek,

e3
i = e2

i · ei = (
∑

k

aikek) · ei = aiie
2
i .

If em−1
i = am−3

ii e2
i , for any integer m > 2, then

em
i = em−1

i · ei = am−3
ii e2

i · ei = am−3
ii (

∑
k

aikek) · ei = am−2
ii e2

i .

By induction, we got the first formula.
As to the second formula, we have

e2
i · ej = (

∑
k

aikek) · ej = aije
2
j .

As to the third formula, we see

(em
i )2 = em

i · em
i = a2m−4

ii e2
i · e2

i = a2m−4
ii e

(4)
i .

Taking m = 4, we have

e4
i · e4

i = a4
iie

2
i · e2

i = a4
iie

(4)
i .

3) By directly computing, we have

(
∑
j∈Λ0

ej)2 =
∑
j∈Λ0

ej ·
∑
i∈Λ0

ei =
∑

i, j∈Λ0

ei · ej =
∑
j∈Λ0

e2
j .

3.2 Evolution Operators and Multiplication Algebras

Traditionally, in the study of nonassociative algebras, one usually studies the
associative multiplication algebra of a nonassociative algebra and its derived
Lie algebra to try to understand the nonassociative algebra. In this section,
we also study the multiplication algebra of an evolution algebra and conclude
that any evolution algebra is centroidal. We characterize the automorphism
group of an evolution algebra and its derived Lie algebra. Moreover, from
the viewpoint of dynamics, we introduce the evolution operator for an evolu-
tion algebra. This evolution operator will reveal the dynamic information of
an evolution algebra. Because we work with a generator set of an evolution
algebra, it is also necessary for us to study the change of generator set, or
transformations of natural bases.
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3.2.1 Evolution operators

Definition 5. Let E be an evolution algebra with a generator set {ei | i ∈ Λ}.
We define a K-linear map L to be

L : E −→ E
ei �→ e2

i ∀ i ∈ Λ

then linear extension onto E.

Consider L as a linear transformation, ignoring the algebraic structure of
E, then under a natural basis (the generator set), we can have the matrix
representation of the evolution operator L. Since

L(ei) = e2
i =

∑
k

akiek ∀i ∈ Λ,

then we have ⎛
⎜⎜⎜⎜⎜⎜⎝

a11 a12 · · · a1n · · ·
a21 a22 · · · a2n · · ·
...

...
...

...
...

an1 an2 · · · ann · · ·
...

...
...

...
...

⎞
⎟⎟⎟⎟⎟⎟⎠

.

If E is a finite dimensional algebra, this matrix will be of finite size. An
evolution operator, not being an algebraic map though, can reveal dynamical
properties of the evolution algebra, as we will see later on.

Alternatively, by using a formal notation θ =
∑
i∈Λ

ei , no matter whether

Λ is finite or infinite, we can define L as follows:

L(x) = θ · x = (
∑
i∈Λ

ei) · x,

for any x ∈ E. According to the distributive law of product to addition in
algebra E, L is a linear map. Because

L(ei) = (
∑
i∈Λ

ei) · ei = e2
i , ∀i ∈ Λ,

this definition for an evolution operator is the same as the previous one. We
do not feel uncomfortable about the notation θ =

∑
i∈Λ

ei , when Λ is infinite,

since the product (
∑
i∈Λ

ei) · x is always finite. We may call this θ a universal

element.
Now, we state a theorem that will be used to get the equilibrium state or

a fixed point of the evolution of an evolution algebra.
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Theorem 3. If E0 is an evolution subalgebra of an evolution algebra E, then
the evolution operator L of E leaves E0 invariant.

Proof. Let {ei | i ∈ Λ0} be a natural basis of E0, and {ei | i ∈ Λ} be
its extension to a natural basis of E, where Λ0 ⊂ Λ. Given x ∈ E0, then
x =

∑
i∈Λ0

ciei, and the action of the evolution operator is

L(x) =
∑
i∈Λ0

cie
2
i =

∑
i∈Λ0, k∈Λ0

ciakiek,

since E0 is a subalgebra. Therefore, L(x) ∈ E0, then L(E0) ⊂ E0. Further-
more, Ln(E0) ⊂ E0, for any positive integer n.

3.2.2 Changes of generator sets (Transformations of natural bases)

Let {ei | i ∈ Λ} and {ηj | j ∈ Λ} be two generator sets (natural bases) for
an evolution algebra E. Suppose the transformation between them is given
by ei =

∑
k akiηk or ηi =

∑
k bkiek. And suppose the defining relations are

ei · ej = 0 if i �= j, e2
i =

∑
k pkiek, and ηi · ηj = 0 if i �= j, η2

i =
∑

k qkiηk,
i, j ∈ Λ, respectively. Then, we have

ei · ej =

(∑
k

akiηk

)
·
(∑

k

akjηk

)

=
∑

k

akiakjη
2
k =

∑
v,k

akiakjqvkηv

=
∑

v

∑
k

qvkakiakjηv = 0.

Sinceeachcomponentcoefficientof zerovectormustbe0,weget
∑

k qvkakiakj =
0 for v ∈ Λ and i �= j. Similarly, from

ei · ei =

(∑
k

akiηk

)2

=
∑

k

a2
kiη

2
k

=
∑
v,k

a2
kiqvkηv =

∑
v,k,u

a2
kiqvkbuveu

=
∑

u

puieu,

we get pui =
∑

v,k buvqvka2
ki. Thus, summarizing all these information

together, we have

A−1QA(2) = P,

Q (A ∗ A) = 0,
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where A = (aij), Q = (qij) , P = (pij) , A(2) =
(
a2

ij

)
and “∗” of two matrices

is defined as follows.
Let A = (aij) and B = (bij) be two n × n matrices, then A ∗ B =

(
ck
ij

)
is

a matrix with size n × n(n−1)
2 , where ck

ij = aki · bkj for pairs (i, j) with i < j,
the rows are indexed by k and the columns indexed by pairs (i, j) with the
lexicographical order.

We can also use B to describe the above condition

B−1PB(2) = Q,

P (B ∗ B) = 0,

where BA = AB = I.

3.2.3 “Rigidness” of generator sets of an evolution algebra

By “rigidness,” we mean that an evolution operator is specified by a gener-
ator set. Let us illustrate this point in the following way. Given a generator
set {ei | i ∈ Λ} , we have an evolution operator, denoted by Le. When the
generator set is changed to {ηj | j ∈ Λ} , we also have an evolution operator,
denoted by Lη. Since a generator set is also a natural basis in evolution al-
gebras, it might be expected that Le and Lη, as linear maps, should be the
same. However, they are different, unless additional conditions are imposed.
Therefore, an evolution operator is not just a linear map. It is a map related
to a specific generator set. This property is very useful to study the dynamic
behavior of an algebra, because a multiplication in an algebra is viewed as a
dynamical step. In the following lemma, we describe an additional condition
about transformations of natural bases that guarantee Le and Lη will be the
same linear map.

Lemma 3. Le and Lη are the same invertible linear map if and only if the
generator sets {ei | i ∈ Λ} and {ηj | j ∈ Λ} are the same, or if one can be
obtained from the other by a permutation.

Proof. Here we use the same notations as those used in the previous sub-
section. The matrix representation of Lη is Q under the generator set
{ηj | j ∈ Λ} , and

Lη (e1, e2, · · · , en) = Lη (η1, η2, · · · , ηn)A

= (η1, η2, · · · , ηn)QA

= (e1, e2, · · · , en)A−1QA.

Thus, the matrix representation of Lη is A−1QA under the generator set
{ei | i ∈ Λ} . But as we know, the matrix representation of Le is P under the
natural basis {ei | i ∈ Λ} . Therefore, P = A−1QA, if Lη and Le can be taken as
the same linear maps. From the previous subsection, we know A−1QA(2) = P ,
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so we have A−1QA = A−1QA(2). Since Lη is invertible, we then have A = A(2).
Similarly, we have B = B(2). Since aij = a2

ij , aij must be 1 or 0 and bij must
also be 1 or 0, then we can prove A can only be a permutation matrix as
follows: ⎛

⎜⎜⎝
a11 a12 · · · a1n

a21 a22 · · · a2n

· · · · · · · · · · · ·
an1 an2 · · · ann

⎞
⎟⎟⎠
⎛
⎜⎜⎝

b11 b12 · · · b1n

b21 b22 · · · b2n

· · · · · · · · · · · ·
bn1 bn2 · · · bnn

⎞
⎟⎟⎠ =

⎛
⎜⎝

1 · · · 0

· · · . . . · · ·
0 · · · 1

⎞
⎟⎠

Without loss of generality, suppose that a11 �= 0, a12 �= 0, and a1k = 0 for k ≥
3. Then we have a11b11 + a12b21 = 1. Thus, we have either b11 �= 0 or b21 �= 0.
But only one of these two entries can be nonzero, otherwise a11b11+a12b21 = 2.
Now, suppose b21 �= 0, and b11 = 0, then a11b12 + a12b22 = 0, then we must
have b12 = 0; and by a11b13 + a12b23 = 0, we have b13 = 0; inductively,
b1j = 0, j = 2, 3, · · · . This means b11 = b12 = · · · = b1n = 0. This contradicts
the nonsingularity of B. If we suppose b11 �= 0, and b21 = 0, similarly we get
b21 = b22 = · · · = b2n = · · · = 0. That is a contradiction. Therefore, every row
of A can only have one entry that is not zero. Similarly, we can prove that
every column of A can only have one entry that is nonzero. Therefore, A is a
permutation matrix.

3.2.4 The automorphism group of an evolution algebra

Given an evolution algebra E, it is important to know how many generator
sets E can have. To study this problem, we need to study the automorphism
group of an evolution algebra.

Proposition 5. Let g be an automorphism of an evolution algebra E with a
generator set {ei | i ∈ Λ} , then G−1PG(2) = P and P (G ∗ G) = 0, where G
and P are the matrix representations of g and L respectively.

Proof. Write g (ei) =
∑

k gkiek and G = (gij) . For i �= j, we have

g (ei · ej) = 0
= g (ei) g (ej)

=
∑

k

gkiek ·
∑

k

gkjek

=
∑

k

gkigkje
2
k

=
∑
k,v

pvkgkigkjev.

So we have
∑

k pvkgkigkj = 0, for each v. That is P (G ∗ G) = 0. For i = i,
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g (ei · ei) = g (ei) g (ei)

=
∑

k

g2
kie

2
k

=
∑
k,j

g2
kipjkej

=
∑
k,j

pkigjkej.

Thus, we have
∑

k pjkg2
ki =

∑
k gjkpki. That is PG(2) = GP , thus

G−1PG(2) = P.

Therefore, we can characterize the automorphism group of E as

Auto (E) =
{

G | G−1PG(2) = P , and P (G ∗ G) = 0
}

.

We can use the automorphism group to give a description of the collection
of all generator sets. We write it as a corollary.

Corollary 3. Let B = ei : i ∈ Λ be a generator set of an evolution algebra E.
Then the family g(B) : g ∈ Auto(E) is the collection of all different generator
sets of E.

3.2.5 The multiplication algebra of an evolution algebra

Let E be an algebra, denote La and Ra as the operators of the left and right
multiplication by the element a respectively:

La : x �→ a · x
Ra : x �→ x · a.

The subalgebra of the full matrix algebra Hom (E, E) of the endomorphisms
of the linear space E, generated by all the operators La, a ∈ E, is called the
operator algebra of left multiplication of the algebra E, denoted by L(E).
The operator algebra of right multiplication R(E) of the algebra E is defined
analogously. The subalgebra of Hom (E, E) generated by all the operators
La, Ra, a ∈ E is called the multiplication algebra of the algebra E, denoted
by M(E), which is actually the enveloping algebra of all operators La, Ra,
a ∈ E.

Corollary 4. If E is an evolution algebra, L(E) = R(E) = M(E) is an
associative algebra with a unit.

Proof. Since E is commutative, it is obvious.

Corollary 5. If E is an evolution algebra with a natural basis {ei | i ∈ Λ},
then {Li | i ∈ Λ} spans a linear space, denoted by span(L, E), which is the set
of all the operators of left (right) multiplication, where Li = Lei . The vector
space span(L, E) and E have the same dimension. Generally, we also have
dim(E) < dim(L(E)) if dimE2 �= 1.
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Proof. For any operator of left multiplication Lx, we can write x =
∑

i aiei

uniquely, then by the linearity of multiplication in E, Lx =
∑

i aiLi. If

Lx = Ly,

for y =
∑

i biei, then

Lx(ek) = Ly(ek), and, (
∑

i

aiei) · ek = (
∑

i

biei) · ek.

Thus,

ake2
k = bke2

k,

(ak − bk)e2
k = 0,

(ak − bk)
∑

i

pkiei = 0.

Since E is a nontrivial algebra, there is j, pkj �= 0, and (ak−bk)pkjej = 0, thus
ak−bk = 0 for each k. Therefore x = y. This means that x �→ Lx is an injection.
So the linear space that is spanned by all operators of left multiplication can
be spanned by the set {Li|i ∈ Λ}. Moreover the set {Li|i ∈ Λ} is a basis for
span(L, E). However, since the algebra E is not associative, x �→ Lx is not
an algebraic map from E to L(E). Generally, {Li|i ∈ Λ} is not a basis for
L(E). Since dimE2 > 1, there are different generators ei and ej whose square
vectors e2

i and e2
j are not parallel to each other. For the sake of simplicity, we

denote them as e1 and e2. We claim that L2 ◦L1 can not be represented by a
linear combination of Li, i ∈ Λ. Suppose L2 ◦ L1 =

∑
i aiLi, then

L2 ◦ L1(ek) = (
∑

i

aiLi)(ek);

k �= 1, 0 = ake2
k, ak = 0;

k = 1, L2(e2
1) = a1e

2
1, p12e

2
2 = a1e

2
1;

so
p12p2k = a1p1k, ∀k.

If a1 was not zero, p1k = p12
a1

p2k, ∀k, but it is not possible since e2
1 and e2

2 are
not parallel. Therefore, L(E) can not be spanned by {Li | i ∈ Λ}.

3.2.6 The derived Lie algebra of an evolution algebra

As for any algebra, the subspace Der(E) of derivations of an evolution E
is a Lie algebra. Here, let us characterize an element that belongs to the
Der(E). Let {ei | i ∈ Λ} be a generator set of E, D ∈ Der(E), and suppose
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D (ei) =
∑

k dkiek for i ∈ Λ. By the definition of derivation D(xy) = D(x)y +
xD(y), we have

D(eiej) = D(ei)ej + eiD(ej)

=

(∑
k

dkiek

)
ej + ei

(∑
k

dkjek

)

= djie
2
j + dije

2
i

= dji

∑
k

pkjek + dij

∑
k

pkiek

=
∑

k

(djipkj + dijpki) ek

= 0,

so, for i �= j, pkjdji + pkidij = 0, i ∈ Λ. We also have

D
(
e2

i

)
= D

(∑
k

pkiek

)

=
∑

k

pkiD (ek)

=
∑
j,k

pkidjkej

= 2
∑

j

diipjiej ,

so, we get for any i, j ∈ Λ, 2pjidii =
∑

k pkidjk. Therefore, we have

Der(E) =

{
D ∈ End(E) | pkjdji + pkidij = 0, for i �= j; 2pjidii

=
∑

k

pkidjk

}
.

3.2.7 The centroid of an evolution algebra

We recall that the centroid Γ (E) of an algebra E is the set of all linear
transformations T ∈ Hom (E, E) that commute with all left and right multi-
plication operators

TLx = LxT, TRy = RyT, for all x, y ∈ E.

Or, the centroid centralizes the multiplication algebra M(E). That is

Γ (E) = CentHom(E,E) (M (E)) .
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Theorem 4. Any evolution algebra is centroidal.

Proof. Let T be an element of the centroid Γ (E). Suppose T (ei) =
∑

k tkiek,
for i �= j, we have

TLej (ei) = T (ejei) = 0
= Lej T (ei)

= ej

(∑
k

tkiek

)

= tjie
2
j = tji

∑
k

pkjek,

thus, tij = 0. Then, look at

TLei (ei) = T
(
e2

i

)
= T

(∑
k

pkiek

)

=
∑

k

pkiT (ek) =
∑
k,j

pkitjkej

=
∑
j,k

tjkpkiej ,

and

LeiT (ei) = ei

∑
k

tkiek

= tiie
2
i = tii

∑
k

pkiek,

comparing them, we can have

tiipji =
∑

k

tjkpki, for j ∈ Λ

tiipji = tjjpji, for j ∈ Λ.

Thus, we must have tii = tjj . Therefore,

T (ei) = k (T ) ei,

where k (T ) is a scalar in the ground field K. That is T is a scalar multiplica-
tion. So, we can conclude that Γ (E) ∼= K, E is centroidal.

3.3 Nonassociative Banach Algebras

To describe the evolution flow quantitatively in an evolution algebra, it is
necessary to introduce a norm. As we will see, under this norm, an evolution
algebra becomes a Banach algebra. We will define a norm for an evolution
algebra first and then prove that any finite dimensional evolution algebra is a
Banach algebra.
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3.3.1 Definition of a norm over an evolution algebra

Let E be an evolution algebra with a generator set {ei | i ∈ Λ}. Define a
function N from E to the underlying field K as follows,

N : E −→ K

N(x) =
∑

i

|ai|,
where x ∈ E and x =

∑
i aiei. We can verify that N is a norm as follows:

• Nonnegativity
N(x) =

∑
i

|ai| ≥ 0.

Furthermore, if N(x) = 0, then N(x) =
∑

i |ai| = 0. Thus |ai| = 0, which
means that ai must be 0. That is, x = 0. Therefore N(x) = 0 if and only
if x = 0.

• Linearity N(ax) = |a|N(x), a ∈ K, sinceN(ax) =
∑

i |aai| = |a|∑i |ai| =
|a|N(x).

• Triangle inequality N(x + y) ≤ N(x) +N(y). For x =
∑

i aiei and y =∑
i biei, we have

N(x + y) = N(
∑

i

(ai + bi)ei)

=
∑

i

|ai + bi|

≤
∑

i

(|ai| + |bi|)

=
∑

i

|ai| +
∑

i

|bi|

= N(x) + N(y).

Thus, an evolution algebra is a normed algebra. We denote N (x) = ‖x‖.
Proposition 6. Any evolution operator L is a bounded linear operator.

Proof. For x ∈ E, x =
∑

i ai ei under a natural basis {ei | i ∈ Λ} of an
evolution algebra E, we have

L(x) =
∑

i

ai L(ei) =
∑

i

ai e2
i =

∑
i j

aipjiej.

N(L(x)) =
∑

j

|
∑
i

aipji| ≤
∑

j

∑
i

|aipji|

≤
∑

i

|ai|
∑

j

|pji| ≤
∑

i

|ai|ci

≤ cN (x) ,

where ci =
∑

j |pji|, and c = max {ci | i ∈ Λ} . Therefore, T is bounded.
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Corollary 6. Each element of SP (�L, E) is a bounded linear operator, where
SP (L, E) is the linear space of all the operators of left multiplication of E.

Proof. We know SP (L, E) = Span(Li : i ∈ Λ) over K. We have Li(x) = ai e2
i ,

if x =
∑

i ai ei. Then we can see

N(Li(x)) = N(ai

∑
j

pjiej)

≤ ci|ai| ≤ c
∑

i

|ai| = cN(x),

so Li is bounded.
Now, ∀ θ ∈ Sp(L, E), write θ =

∑
i βi Li, βi ∈ K. For any x =

∑
ai ei,

we have
θ(x) =

∑
i

βi Li(x) =
∑

i

βi aie
2
i =

∑
i j

βi aipjiej,

then

N(θ(x)) =
∑
i j

|βi aipji| ≤ c
∑
i

|βi ai|

≤ c
∑

i

|βi | ·
∑

i

|ai|

≤ cbN(x),

where b =
∑

i |βi | is a constant for a given operator θ. Therefore θ is bounded.

3.3.2 An evolution algebra as a Banach space

In Functional Analysis, there is a theorem that a linear operator is bounded
if and only if it is a continuous operator. From Proposition6 and Corollary 6,
evolution operators and left multiplication operators are all bounded. There-
fore, they are continuous under the topology induced by the metric ρ(x, y) =
N(x − y), for x, y ∈ E.

Theorem 5. Let E be an evolution algebra with finite dimension n, then it is
complete as a normed linear space. That is, E is a Banach space.

Proof. Let xm =
n∑

i=1

am
i ei , m = 1, 2, · · · , be a sequence in E, then we have

ρ(am
i ei, a

k
i ei) = N(am

i ei − ak
i ei)

= |am
i − ak

i | ≤
n∑

i=1

|am
i − ak

i |

= ρ(xm, xk) ≤ n · max
1≤i≤n

|am
i − ak

i |.
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When xm is a Cauchy sequence, then, for any ε > 0, there is an integer
m0, and for any integers m, k > m0, we have ρ(xm, xk) < ε. So, we have
|am

i − ak
i | < ε/n. By the Cauchy principle in Real Analysis, there is a number

bi, such that |am
i − bi| < ε/n. That is, the coordinate sequence am

i converges

to bi, i = 1, 2, · · · , n. If we denote x0 =
n∑

i=1

biei, then

ρ(xm, x0) =
n∑

i=1

|am
i − ak

i | ≤ ε.

This means that xm converges to x0. Therefore, E is a complete normed linear
space, i.e. E is a Banach space.

Corollary 7. For a finite dimensional evolution algebra E, it is a nonasso-
ciative Banach algebra.

Proof. It is an immediate consequence of Theorem 5.

Theorem 6. Let E be a finite dimensional evolution algebra, and BL(E →
E) be the set of all bounded linear operators over E, then the subspace L(E) of
BL(E → E), all left multiplication operators of E, is a Banach subalgebra
of BL(E → E).

Proof. In Functional Analysis, there is a theorem that when X is Banach
space, �(X −→ X), the space of all bounded linear operators from X to X ,
is a Banach algebra. Because E is a Banach algebra, BL(E → E) is also a
Banach algebra. Since each element of L(E) is bounded and the composite
of two elements of L(E) is also bounded, then the operator algebra of left
multiplication is a subalgebra of BL(E → E),

But we know, generally, L(E) is not a Banach subalgebra of BL(E → E).

3.4 Periodicity and Algebraic Persistency

In this section, we introduce a periodicity for each generator of an evolution
algebra. It turns out all generators of a nonnegative simple evolution algebra
have the same periodicity. We also introduce an algebraic persistency and an
algebraic transiency for each generator of an evolution algebra. They are basic
concepts in the study of evolution in algebras.

3.4.1 Periodicity of a generator in an evolution algebra

Definition 6. Let ej be a generator of an evolution algebra E, the period d of

ej is defined to be the greatest common divisor of the set
{
log2 m | ej <

(
e
(m)
j

)}
,

where power e
(m)
j is some kth plenary power, 2k = m. That is
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d = g.c.d.
{
log2 m | ej <

(
e
(m)
j

)}
.

If d is 1, we say ej is aperiodic; if the set
{
log2 m | ej < (e(m)

j )
}

is empty, we
define d = ∞.

To understand this definition, we give a proposition that states relations
between evolution operators and plenary powers of an element.

Proposition 7. Generator ej has the period d if and only if d is the greatest
common divisor of the set {n | ρi Ln(ei) �= 0}. That is

d = g.c.d.{n | ρi Ln(ei) �= 0},

where ρi is a projection map of E, which maps every element of E to its ei

component.

Proof. We introduce a notion – plenary powers of a matrix. Let

(e1, e2, · · · · · · , en) · (e1, e2, · · · · · · , en)
= (e2

1, e
2
2, · · · · · · , e2

n) = (e1, e2, · · · · · · , en)B,

where B = (pij) is the structural constant matrix of E.
Look at

(e2
1, e

2
2, · · · · · · , e2

n) · (e2
1, e

2
2, · · · · · · , e2

n)
= (e1, e2, · · · · · · , en)B · (e1, e2, · · · · · · , en)B

= (e(4)
1 , e

(4)
2 , · · · · · · , e(4)

n )

= (
∑

k

pk1ek,
∑

k

pk2ek, · · · · · · ,
∑

k

pknek)

·(
∑

k

pk1ek,
∑

k

pk2ek, · · · · · · ,
∑

k

pknek)

= (
∑

k

p2
k1e

2
k,

∑
k

p2
k2e

2
k, · · · · · · ,

∑
k

p2
kne2

k)

= (e2
1, e

2
2, · · · · · · , e2

n)

⎛
⎜⎜⎜⎜⎜⎜⎝

p2
11 p2

21

... p2
n1

p2
12 p2

22

... p2
n2

...
...

...
...

p2
1n p2

2n

... p2
nn

⎞
⎟⎟⎟⎟⎟⎟⎠

= (e1, e2, · · · · · · , en)BB(2).
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We also compute

(e(4)
1 , e

(4)
2 , · · · · · · , e(4)

n )

·(e(4)
1 , e

(4)
2 , · · · · · · , e(4)

n )

= (e(8)
1 , e

(8)
2 , · · · · · · , e(8)

n )

= (e1, e2, · · · · · · , en)BB(2)

·(e1, e2, · · · · · · , en)BB(2)

= (e1, e2, · · · · · · , en)B(BB(2))(2).

Now, we define plenary powers for a matrix as follows:

A[1] = A

A[2] = AA(2) = A(A[1])(2)

A[3] = A(A[2])(2) = A(AA(2))(2)

· · · · · · · · · · · ·
A[k+1] = A(A[k])(2).

Thus, we have

(e[m]
1 , e

[m]
2 , · · · · · · , e[m]

n )

= (e1, e2, · · · · · · , en)B[m].

We note that the matrix representation of the evolution operator L is given
by the matrix B. ρjL

k(ej) �= 0 means the (j, j) entry of Bk is not zero. It is
not too hard to check that the (j, j) entry of Bk is not zero if and only if the

(j, j) entry of B[k] is not zero, which means ρj

(
e
(2k)
j

)
�= 0. That also means

ej < e
(2k)
j . This concludes the proof.

From the above proof, we can see that the kth plenary power and the kth
action of the evolution operator give us the same information in computing
the period of an element. We also obtain the following corollary.

Corollary 8. Generator ej has the period of d if and only if d is the greatest
common divisor of the set {n | ej < e

[n]
j }, where e

[n]
j = e

(2n)
j .

Theorem 7. All generators have the same period in a nonnegative simple
evolution algebra.

Proof. Let ei and ej be two generators in a simple evolution algebra E. The
periods of ei and ej are di and dj respectively. Since ei must occur in a plenary
power of ej, say ei < e

[n]
j , and ej must occur in a plenary power of ei, say

ej < e
[m]
i , from Theorem 3 we have ei < e

[n+m]
i and ej < e

[n+m]
j . Then

di | n+m, and dj | n+m. Since ej < e
[dj ]
j , so ei < e

[dj+n]
j and ei < e

[dj+n+m]
i ,

then di | dj + n + m. Therefore di | dj . Similarly, we have dj | di. Thus, we
get di = dj .
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3.4.2 Algebraic persistency and algebraic transiency

Let E be an evolution algebra with a generator set {ei | i ∈ Λ}. We say
that generator ej is algebraically persistent if the evolution subalgebra 〈ej〉,
generated by ej , is a simple subalgebra, and ei is algebraically transient if
the subalgebra 〈ei〉 is not simple. Then, it is obvious that every generator
in a simple evolution algebra is algebraically persistent, since each generator
generates the same algebra that is simple. We know that if x and y inter-
communicate, the evolution subalgebra generated by x is the same as the one
generated by y. Moreover, we have the following theorem.

Theorem 8. Let ei and ej be generators of an evolution algebra E. If ei and
ej can intercommunicate and both are algebraically persistent, then they belong
to the same simple evolution subalgebra of E.

Proof. Since ei and ej can intercommunicate, ei occurs in 〈ej〉 and ej occurs
in 〈ei〉 . Then, there are some powers of ei, denoted by P (ei) and some powers
of ej , denoted by Q(ej), such that

P (ei) = aej + u a �= 0,

Q(ej) = bei + v b �= 0.

Since subalgebras are also ideals in an evolution algebra, we have

P (ei)ej = ae2
j ∈ 〈ei〉 ,

Q(ej)ei = ae2
i ∈ 〈ej〉 .

Therefore, 〈ei〉 ∩ 〈ej〉 �= {0}. Since 〈ei〉 and 〈ej〉 are both simple evolution
subalgebras, then 〈ei〉 = 〈ej〉 . Thus, ei and ej belong to the same simple
evolution subalgebra.

For an evolution algebra, we can give certain conditions to specify whether
it is simple or not by the following corollary:

Corollary 9. 1) Let E be a connected evolution algebra, then E has a proper
evolution subalgebra if and only if E has an algebraically transient generator.

2) Let E be a connected evolution algebra, then E is a simple evolution
algebra if and only if E has no algebraically transient generator.

3) If E has no algebraically transient generator, then E can be written as
a direct sum of evolution subalgebras (the number of summands can be one).

Proof. 1) If E has no algebraically transient generator, each generator ei gen-
erates a simple evolution subalgebra. These subalgebras are all the same be-
cause E is connected. Otherwise, E would be a direct sum of these subalgebras.
This means the only nonempty subalgebra of E is itself. On the other hand,
if E has an algebraically transient generator ek, then the generated evolution
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subalgebra 〈ek〉 is not simple. This means 〈ek〉 has a proper subalgebra, so E
has a proper subalgebra.

2) It is obvious from (1).
3) It is also obvious from (1).

Now, the question is, for any evolution algebra, whether there is always an
algebraically persistent generator. Generally, this is not true. The following
statement tells us that for any finite dimensional evolution algebra, there
always is an algebraically persistent generator.

Theorem 9. Any finite dimensional evolution algebra has a simple evolution
subalgebra.

Proof. We assume the evolution algebra E is connected, otherwise we just
need to consider a component of a direct sum of E.

Let {e1, e2, · · · , en} be a generator set of E. Consider evolution subalge-
bras generated by each generator

〈e1〉 , 〈e2〉 , · · · · · · , 〈en〉 .

If there is a subalgebra that is simple, it is done. Otherwise, we choose
a subalgebra that contains the least number of generators, for example, 〈ei〉
and {ei1 , ei2 , · · · , eik

} ⊂ 〈ei〉 , where {ei1 , ei2 , · · · , eik
} is a subset of {e1, e2,

· · · , en}. Then, consider

〈ei1〉 , 〈ei2〉 , · · · · · · , 〈eik
〉 .

If there is some subalgebra that is simple in this sequence, we are done.
Otherwise, we choose a certain

〈
eij

〉
in the same way as we choose 〈ei〉. Since

the number of generators is finite, this process will stop. Therefore, we always
have a simple evolution subalgebra. Of course, any generator of the simple
evolution subalgebra is algebraically persistent.

3.5 Hierarchy of an Evolution Algebra

The hierarchical structure of an evolution algebra is a remarkable property
that gives a picture of the dynamical process when multiplication in the evo-
lution algebra is treated as a discrete time dynamical step. In this section,
we study this hierarchy and establish a principal theorem about evolution
algebras – the hierarchical structure theorem. Algebraically, this hierarchy is
a sequence of semidirect-sum decompositions of a general evolution algebra.
It depends upon the “relative” concepts of algebraic persistency and alge-
braic transiency. By the “relative” concepts here, we mean that we can define
higher algebraic persistency and algebraic transiency over the space generated
by transient generators in the previous level. The difference between algebraic
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persistency and algebraic transiency suggests a sequential semidirect-sum de-
composition, or suggests a direction of evolution from the viewpoint of dy-
namical systems. This hierarchical structure demonstrates that our evolution
algebra is a mixed algebraic and dynamical subject. We also establish the
structure theorem for simple evolution algebras. A method is given here to re-
duce a “big” evolution algebra to a “smaller” one, with the hierarchy being the
same. This procedure is called reducibility, which gives a rough classification
of all evolution algebras – the skeleton-shape classification.

3.5.1 Periodicity of a simple evolution algebra

As we know in Section 3.4 Theorem 7, all generators of a nonnegative simple
evolution algebra have the same period. It might be well to say that a simple
algebra has a period. Thus, simple evolution algebras can be roughly classified
as either periodic or aperiodic. The following theorem establishes the structure
of a periodic simple evolution algebra.

Theorem 10. Let E be a nonnegative simple evolution algebra with generator
set {ei | i ∈ Λ}, then all generators have the same period, denoted by d. There
is a partition of generators with d disjointed classes C0, C2, · · · , Cd−1, such
that L(∆k) ⊆ ∆k+1(modd), or ∆2

k ⊆ ∆k+1(modd), k = 1, 2, · · ·d − 1, where
∆k = Span (Ck) and L is the evolution operator of E, mod is taken with
respect to the index of the class of generators. There is also a direct sum of
linear subspaces

E = ∆0 ⊕ ∆1 ⊕ · · · ⊕ ∆d−1.

Proof. Since E is simple, if any generator ei has a period of d, then every
generator has a period of d. Set Cm =

{
ej | ej < e

[nd+m]
i , j ∈ Λ

}
, 0 ≤ m < d,

for any fixed ei. Because this evolution algebra is simple, each generator ej

will occur in some Cm. So

∪d−1
m=0Cm = {ek | k ∈ Λ}.

Claim that these Cm are disjoint. We show this as follows: if ej ∈ Cm1∩Cm2

for 0 ≤ m1, m2 < d, then ej < e
[n1d+m1]
i , and ej < e

[n2d+m2]
i for some

integers n1 and n2. Since 〈ei〉 = 〈ej〉 , so ei < 〈ej〉 . That is, ei < ek
j for

some integer k. Therefore ei < e
[n1d+m1+k]
i , and ei < e

[n2d+m2+k]
i , then we

have d | n1d + m1 + k, and d | n2d + m2 + k. Thus d | m1 − m2. But
0 ≤ |m1 − m2| < d, so we have m1 = m1, then Cm1 = Cm2 .

Therefore, a partition of the set {ek | k ∈ Λ} is obtained. We need to prove
that if we take ek as a fixed generator that is different from the previous
ei for partitioning, we can still get the same partition. Fix ek, let C

′
m ={

ej | ej < e
[nd+m]
k , j ∈ Λ

}
, where 0 ≤ m < d. Since E is simple, ei < e

[t]
k . If

eα, eβ ∈ Cm, then eα < e
[n1d+m]
i , and eβ < e

[n2d+m]
i for some integers n1 and
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n2. Then eα < e
[n1d+m+t]
k , eβ < e

[n2d+m2+k]
k . Since n1d+m+ t ≡ n2d+m+ t

(modd), so eα and eβ are still in the same cell C′
m of the partition.

Now, if ej ∈ Ck, then e
(2nd+k)
i = aej + v, a �= 0. We have e

[k+1]
i = a2e2

j +
v2 = a2L(ej) + v2, which means that generators occur in L(ej) ∈ Ck+1 or
generators occur in e2

j ∈ Ck+1.
Denote the linear subspace spanned by Ck as ∆k, k = 0, 1, 2, · · ·d−1, then

we have a direct sum for E

E = ∆0 ⊕ ∆1 ⊕ · · · ⊕ ∆d−1,

and
L : ∆k → ∆k+1 k = 1, 2, · · ·d − 1;

Ld : ∆k → ∆k, a linear map for each k.

Or, we have

∆2
k ⊆ ∆k+1, ∆d

k ⊆ ∆k, k = 1, 2, · · ·d − 1.

This concludes the proof.

3.5.2 Semidirect-sum decomposition of an evolution algebra

A general evolution algebra has algebraically persistent generators and al-
gebraically transient generators. These two types of generators have distinct
“reproductive behavior” – dynamical behavior. Algebraically persistent ones
can generate a simple subalgebra. Once an element belongs to the subalge-
bra, it will never “reproduce” any element that is not in the subalgebra. Or,
dynamically, once the dynamical process, represented by the evolution oper-
ator L, enters a simple evolution subalgebra, it will never escape from it. In
contrast, algebraically transient generators behave differently. They generate
reducible subalgebras. The following theorem demonstrates how to distinguish
these two types of generators algebraically. Actually, it is the starting level
of the hierarchy of an evolution algebra, and it can also serve as a sample of
structure in each level.

Theorem 11. Let E be a connected evolution algebra. As a vector space, E
has a decomposition of direct sum of subspaces:

E = A1 ⊕ A2 ⊕ · · · ⊕ An

•
+ B,

where Ai, i = 1, 2, · · · , n, are all simple evolution subalgebras, Ai ∩ Aj = {0}
for i �= j, and B is a subspace spanned by algebraically transient generators
(which we call a transient space). The summation A1 ⊕ A2 ⊕ · · · ⊕ An is a

direct sum of subalgebras. Symbol
•
+ indicates the summation is not a direct

sum of subalgebras, just a direct sum of subspaces. We call this decomposition
a semidirect-sum decomposition of an evolution algebra.
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Proof. Take a generator set for E, {ei | i ∈ Λ}, where Λ is a finite index
set, then we will have two categories of generators: algebraically transient
generators and algebraically persistent generators. Let

B = Span (ek | ek is algebraically transient) .

Take any algebraically persistent element ei1 , let A1 = 〈ei1〉 . Again take any
algebraically persistent element ei2 that does not occur in A1, let A2 = 〈ei2〉 .
Keep doing in this way. Since Λ is finite, we will end up with some An = 〈ein〉 .

By our construction, each Ak is simple, since eik
is algebraically persistent.

And Ai∩Aj = {0} for i �= j, since they are simple. Finally, as a vector space E,

A1⊕A2⊕· · ·⊕An

•
+ B is a direct sum decomposition, since Ai∩B = {0}, i =

1, 2, · · · , n. But B is not a subalgebra; it is just a linear subspace. Therefore,
as an algebra E, we just say that it is a semidirect-sum decomposition.

Note, if E is simple, n is 1 and B = φ. Otherwise, B is not zero.

3.5.3 Hierarchy of an evolution algebra

1). The 0th structure of an evolution algebra E : the 0th decomposition of E
is given by Theorem 11 as

E = A1 ⊕ A2 ⊕ · · · ⊕ An0

•
+ B0,

where B0 is the subspace spanned by algebraically transient generators of E,
we call it the 0th transient space.

2). The 1st structure of E, which is the decomposition of the 0th transient
space B0.

Although the 0th transient space B0 is not an evolution subalgebra, it
inherits evolution algebraic structure from E if the algebraic multiplication is
confined within B0. We shall make this point clear.

• The induced multiplication: we write generators for B0 as e0,k and k ∈ Λ0,
where Λ0 ⊂ Λ is a subset of the index set. Actually, they are algebraic
transient generators. Then, we have the induced multiplication on B0,
denoted by

1·, as follows

e0,i
1· e0,j = 0 if i �= j,

e0,i
1· e0,i = ρB0(e0,i · e0,i),

and linearly extend onto B0 × B0, where ρB0 is the projection from E to
B0. It is not hard to check that B0 is an evolution algebra, which we call
the first induced evolution algebra.
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• The first induced evolution operator in B0 is given by

LB0 = ρB0L.

Then, we have
L2

B0
= (ρB0L)(ρB0L) = ρB0L

2,

and for any positive integer n, we have

Ln
B0

= ρB0L
n.

• First induced evolution subalgebras generated by some generators of B0:
Denote the evolution subalgebra generated by e0,i in B0 by 〈e0,i | B0〉
(using multiplication

1· in B0). Sometimes we just use 〈e0,i〉1 for this sub-
algebra. (It may be a nilpotent subalgebra).

• First algebraically persistent generators in B0:
We say e0,i is a first algebraically persistent if 〈e0,i〉1 is a simple subalgebra.
Otherwise, we say e0,i is a first algebraically transient.
B0 is called irreducible (simple) if it has no proper first induced evolution
subalgebra. Similarly, we have a first reducible evolution subalgebra.
B0 is connected if B0 can not be decomposed as a direct sum of two first
induced evolution subalgebras.

• The 1st decomposition of E, the decomposition of B0:
We state the decomposition theorem for the 0th transition space B0 here.
The proof is essentially a repeat of that of the 0th decomposition theorem.
We therefore skip the proof.

Theorem 12. The 1st structure of an evolution algebra E : the 1st de-
composition of E is given by

B0 = A1,1 ⊕ A1,2 ⊕ A1,3 ⊕ · · · ⊕ A1,n1

•
+ B1

where A1,i , i = 1, 2, · · · , n1, are all first simple evolution subalgebras of
B0, A1,i ∩A1,j = {0}, if i �= j, and B1 is the first transient space spanned
by the first algebraically transient generators.

• The first induced periodicity and intercommunication:
The following is the definition of the first induced period

The period of e0,i = gcd{n | e0,i < e
[n]0
0,i },

where e
[n]0
0,i means that the plenary powers are taken within space B0.

We have a theorem about the intercommunications within the space B0.
The proof is the same as that at the 0th level. We will not give it here.
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Theorem 13. If e0,i and e0,j intercommunicate, then they have the same
first induced periods.

• The decomposition of a first simple periodical evolution subalgebra:

Theorem 14. If A1,k is a first nonnegative simple periodic reduced evo-
lution subalgebra and some e0,i of its generator has a period of d, then it
can be written as a direct sum

A1,k = ∆1,0 ⊕ ∆1,1 ⊕ · · · ⊕ ∆1,d−1.

(The proof is the same as that in the 0th level.)

3). We can construct the 2nd induced evolution algebra over the first tran-
sient space B1, if B1 is connected and not simple. If the kth transient space
Bk is disconnected and each component is simple, we will stop with a direct
sum of (k+ 1)th simple evolution subalgebras. Otherwise, we can continue to
construct evolution subalgebras until we reach a level where each evolution
subalgebra is simple. Now, we have the hierarchy as follows

E = A0,1 ⊕ A0,2 ⊕ · · · ⊕ A0,n0

•
+ B0

B0 = A1,1 ⊕ A1,2 ⊕ · · · ⊕ A1,n1

•
+ B1

B1 = A2,1 ⊕ A2,2 ⊕ · · · ⊕ A2,n2

•
+ B2

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
Bm−1 = Am,1 ⊕ Am,2 ⊕ · · · ⊕ Am,nm

•
+ Bm

Bm = Bm,1 ⊕ Bm,2 ⊕ · · · ⊕ Bm,h,

where Ak,l is a kth simple evolution subalgebra, Ak,l∩Ak,l′ = {0} if l �= l′, Bk

is the kth transient space. Bm can be decomposed as a direct sum of (m+ 1)th
simple evolution subalgebras. We may call these (m+ 1)th simple evolution
subalgebras the heads of the hierarchy, and h is the number of heads.

Example 2. Let’s look at an evolution algebra E with dimension 25. The gen-
erator set is e1, e2, · · ·, e25. The defining relation are given: eiej = 0 if i �= j;
when i = j, they are

e2
1 = e2 + 2e3 + e4 + 3e5, e2

2 = 2e3 + 7e6 + e9,

e2
3 = e2 + 5e7 + e8 + 9e9, e2

4 = 7e5 + e9 + e10 + 10e11,

e2
5 = e4 + 7e9 + 5e12, e2

6 = e7 + e8 + 7e13,

e2
7 = 6e6 + e8 + 2e13, e2

8 = e6 + 3e7 + e13 + 2e14,

e2
9 = 3e15 + 2e14, e2

10 = 4e11 + e12 + 2e16,

e2
11 = 6e10 + e12 + 5e15, e2

12 = e10 + 4e11 + 2e15 + e16,

e2
13 = e14 + 5e17 + 3e18 + e21,
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e2
14 = e13 + 4e17 + e18 + 5e19 + e20,

e2
15 = 8e16 + e20 + e21 + 7e22,

e2
16 = 9e15 + e23 + 10e24 + e25,

e2
17 = 3e17 + 2e18, e2

18 = 4e17 + 2e18, e2
19 = 3e19 + e20,

e2
20 = e19, e2

21 = 3e22 + e21, e2
22 = 2e22 + 5e21,

e2
23 = e25 + 4e24, e2

24 = 2e25, e2
25 = e23 + 8e24.

The 0th evolution subalgebras are A0,1 = 〈e17, e18〉, A0,2 = 〈e19, e20〉,
A0,3 = 〈e21, e22〉, and A0,4 = 〈e23, e24, e25〉. The 0th transient space is
spane1, e2, · · ·, e16. The 1st evolution subalgebras are A1,1 = 〈e13, e14〉 and
A1,2 = 〈e15, e16〉. The 2nd evolution subalgebras are A2,1 = 〈e6, e7, e8〉,
A2,2 = 〈e9〉, and A2,3 = 〈e10, e11, e12〉. The 3rd evolution subalgebras are
A3,1 = 〈e2, e3〉 and A3,2 = 〈e4, e5〉. The 3rd transient space, the head of the
hierarchy given by the algebra B3, is span{e1}. Figure 3.1 shows the hierar-
chical structure.

3.5.4 Reducibility of an evolution algebra

From the hierarchy of an evolution algebra, we get an impression about the
dynamical flow of an algebra. That is, if we start at a high level, a big index
level, the dynamical flow will automatically go down to a low level, it may also
sojourn in a simple evolution subalgebra at each level. It is reasonable to view
each simple evolution subalgebra at each level as one point or one-dimensional
subalgebra. The big evolution picture still remains. If we call this remained
hierarchy the skeleton of the original evolution algebra, all evolution algebras
that possess the same skeleton will have a similar dynamical behavior. We
call this procedure the reducibility of an evolution algebra and write it as a
statement.

Theorem 15. Every evolution algebra E can be reduced to a unique evolu-
tion algebra Er such that its evolution subalgebras in its hierarchy are all
one-dimensional subalgebras. We call such a unique evolution algebra Er the
skeleton of E.

Example 3. The skeleton Er of the algebra E in Example 2 is the evolution
algebra generated by η1, η2, · · ·, η12 that are subject to the following defining
relations:

η2
1 = η2 + η3, η2

2 = η4 + η5, η2
3 = η5 + η6,

η2
4 = η7, η2

5 = η7 + η8, η2
6 = η8,

η2
7 = η9 + η10 + η11, η2

8 = η12 + η10 + η11,

η2
9 = η9, η2

10 = η10, η2
11 = η11, η2

12 = η12.
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e20e19e18e17

e16e15e14e13

e12e11e10e8e7e6
e9

e21

A0,4A0,3A0,2A0,1

A1,2

A2,3A2,2A2,1

A1,1

B3

A3,2
A3,1

e25e24e23e22

e3 e5e4e2

e1

Fig. 3.1. The hierarchy of the Example 2

The Fig. 3.2 shows the hierarchical structure of Er . Comparing with Fig. 3.1,
these two have the same dynamical shape.

The concept of the skeleton can be utilized to give a rough classification
of all evolution algebras. From Examples 2 and 3, we can see that two types
of numbers, the number of levels m and the numbers nk of simple evolution
subalgebras at each level k, can roughly determine the shape of the hierarchy
of an evolution algebra, ignoring the flow relations between two different levels.
Note that at level (m + 1) , the number nm+1 is h, the number of heads, in
our notation. We give the criterions for classification of evolution algebras.
That is, if two evolution algebras have the same number m of levels and the
numbers nk of simple evolution subalgebras at each level k, we say these two
evolution algebras belong to the same class of skeleton-shape. Furthermore,
we say two evolution algebras belong to the same class of skeleton if they
belong to the same class of skeleton-shape and the flow relations between any
two different levels are the same correspondingly.
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Fig. 3.2. The hierarchy of the Example 3

Now, there are two basic questions related to our classifications that should
be answered.

The first one stated as follows: given the level number m and the total
number n of simple evolution subalgebras (including heads) wherever they are,
how many classes of skeleton-shapes of evolution algebras can we have? The
answer is a famous number in number theory, pm+1 (n) , the number of parti-
tions of n into m+1 cells. For n < m+1, pm+1 (n) = 0 and pm+1 (m + 1) = 1.
Generally, we have the recursion

pm+1 (n) = pm+1 (n − m − 1) + pm (n − m − 1) + · · · + p1 (n − m − 1) .

We list here the answers for the question when the hierarchy has small levels
as follows:

p1 (n) = 1, m = 0;

p2 (n) =
{

n
2 , n ≡ 0 (2) ,

n−1
2 , n ≡ 1 (2) ,

m = 1;

p3 (n) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

n2

12 , n ≡ 0 (6) ,
n2

12 − 1
12 , n ≡ 1 (6) ,

n2

12 − 1
3 , n ≡ 2 (6) ,

n2

12 + 1
4 , n ≡ 3 (6) ,

n2

12 − 1
3 , n ≡ 4 (6) ,

n2

12 − 1
12 , n ≡ (6) ,

m = 2.
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Generally, we have

pm+1 (n) =
nm

m! (m − 1)!
+ Rm−1 (n) , n ≡ n′ ((m + 1)!) ,

where Rm−1 (n) is a polynomial in n of degree at most m − 1. Therefore, by
the number of levels and the numbers of simple evolution subalgebras, we can
determine any evolution algebra up to its skeleton-shape. Thus, we obtain a
skeleton-shape classification of all evolution algebras.

The second problem is that, given the level number m and the numbers nk

of simple evolution subalgebras at each level, how many classes of skeletons of
evolution algebras can we have? We will use a formula that gives the number
bp(n, m) of bipartite graphs with two given disjoint vertex sets, V1 and V2,
and |V1| = n |V2| = m. This formula is given by Winfried Just:

bp(n, m) =
n∑

k=0

(−1)k

(
n
k

)( m∑
l=0

(−1)l

(
m
l

)
2(n−k)(m−l)

)
.

Then, the number of classes of skeletons of evolution algebras with m levels
and nk subalgebras at each level is

bp(n0, n1)bp(n1, n2) · · · bp(nm−1, nm) =
m−1∏
i=1

bp(ni, ni+1).

Therefore, by the number of levels and subalgebras at each level, we can
determine any evolution algebra up to its skeleton.


