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Evolution Algebras and Markov Chains

For a Markov chain, we can define an evolution algebra by taking states as
generators and transition probability vectors as defining relations. We may
say an evolution algebra defined by a Markov chain is a Markov evolution
algebra. Every property of a Markov chain can be redefined by its Markov
evolution algebra. In other words, properties of Markov chains can be revealed
by studying their evolution algebras. Moreover, Markov chains, as a type of
dynamical systems, have a hidden algebraic aspect. In first three sections
of this chapter we study the relations between Markov chains and evolution
algebras. In the last section, the hierarchy of a general Markov chain is revealed
naturally by its evolution algebra.

4.1 A Markov Chain and Its Evolution Algebra

In this section, let us recall some basic properties of Markov chains and define
an evolution algebra for a discrete time Markov chain.

4.1.1 Markov chains (discrete time)

A stochastic process X = {X0, X1, X2, · · · } is a Markov chain if it satisfies
Markov property

Pr {Xn = sn | X0 = s0, X1 = s1, · · · , Xn−1 = sn−1}
= Pr {Xn = sn | Xn−1 = sn−1}

for all n ≥ 1 and all si ∈ S, where S = {si | i ∈ Λ} is a finite or countable
infinite set of states. Note that there is an underlying probability space (Ω,
ξ, P ) for the Markov chain.
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The chain X is called homogeneous if

Pr {Xn = sn | Xn−1 = sn−1}
= Pr {Xn+k = sn | Xn+k−1 = sn−1}

for k = − (n − 1) , (n − 2) , · · · , −1, 0, 1, 2, · · · . That is, the transition
probabilities pij = Pr {Xn+1 = si | Xn = sj} are invariant, i.e., do not depend
on n.

4.1.2 The evolution algebra determined by a Markov chain

A Markov chain can be considered as a dynamical system as follows. Suppose
that there is a certain mechanism behind a Markov chain, and view this mech-
anism as a reproductive process. But it is a very special case of reproduction.
Each state can be considered as an allele. They just “cross” with itself, and
different alleles (states) can not cross or they cross to produce nothing. We
introduce a multiplication for the reproduction. Thus we can define an alge-
braic system that can describe a Markov chain. The multiplication for states
is defined to be ei · ei =

∑
k pkiek and ei · ej = 0, (i �= j). It turns out that

this system is an evolution algebra. Thus, we have the following theorem.

Theorem 16. For each homogeneous Markov chain X, there is an evolution
algebra MX whose structural constants are transition probabilities, and whose
generator set is the state space of the Markov chain.

In what follows, we will use the notation MX for the evolution algebra
that corresponds to the Markov chain X. As we see, the constraint for this
type of evolution algebra is that∑

k

pki = 1, and

0 ≤ pki ≤ 1.

As we defined in Chapter 3, this type of evolution algebra is called Markov
evolution algebra. If we recall the definition of evolution operators in the
previous chapter, it is easy to see the following corollary.

Corollary 10. Let MX be the evolution algebra corresponding to the Markov
chain X with the state set {ei | i ∈ Λ} and the transition probability pij =
Pr {Xn = ei | Xn−1 = ej}, then the matrix representation of the evolution op-
erator is the transpose of the transition probability matrix.

Proof. We recall the definition of the evolution operator that L(ei) = e2
i =∑

k

pkiek, then its matrix representation is given by
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⎜⎜⎜⎜⎜⎜⎝

p11 p12 · p1n ·
p21 p22 · p2n ·
...

...
...

...
...

pn1 pn2 · pnn ·
...

...
...

...
...

⎞
⎟⎟⎟⎟⎟⎟⎠

.

The transition probability matrix of the Markov chain is⎛
⎜⎜⎜⎜⎝

p11 p21 · · · pn1 · · ·
p12 p22 · · · pn2 · · ·
· · · · · · · · · · · · · · ·
p1n p2n · · · pnn · · ·
· · · · · · · · · · · · · · ·

⎞
⎟⎟⎟⎟⎠ .

So the matrix representation of the evolution operator L is a column stochastic
matrix.

The evolution operator can be utilized to describe the full range of possible
motions of a Markov chain (or, a particle) over its states. It can be viewed as
a representation of a dynamical source behind the Markov chain. From this
viewpoint, a Markov chain can also be viewed as a linear dynamical system
over an algebra. In fact, we can treat a Markov chain as a linear dynamical
system L. Thus, we will have a new version of the Chapman–Kolmogorov
equation. Before discussing Chapman–Kolmogorov equation, we need a lemma
about evolution operators.

Lemma 4. Let X be a Markov chain if the initial variable X0 has the mass
function v0, then Xn’s mass function vn can be obtained by the evolution
operator of the evolution algebra MX , vn = Ln (v0) .

Proof. The proof depends on the relation between the Markov chain and its
evolution operator.

Since the state set is at most countable, the mass function v0 of X0 is a
vector, which is v0 =

∑
i

aiei, where {ei | i ∈ Λ} is the state set. It is clear

that at any time instant or step, the mass function of Xn is always a vector
of this form whose coefficients are all nonnegative and sum to one. Denote vn

as the mass function of Xn. We have L(v0) = v1, L2(v0) = L(v1) = v2 and so
on. This is because

L(v0) = L(
∑

i

aiei) =
∑

i

ai L(ei)

=
∑

i

ai

∑
k

pkiek =
∑
i k

aipkiek

=
∑

k

(
∑

i

pkiai)ek;
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on the other hand, in probability theory

Pr {X1 = ek}
=
∑
i

Pr {X1 = ek | X0 = ei}Pr {X0 = ei}

=
∑

i

pikai.

Therefore, we have L(v0) = v1. Similarly, we can get any general probability
vector vn by the operator L.

As we know, at each epoch n, the position of a Markov chain is described
by the possible distribution over the state set {ei | i ∈ Λ} (the mass function of
Xn). If we view the probability vectors, which are of the form

∑
i aiei subject

to 0 ≤ ai ≤ 1 and
∑

i ai = 1, as general states, we may call the original states
“characteristic states” and have the compact cone in the Banach space MX

as the “state space” of the Markov chain. The trace of the Markov chain is a
real path in this compact cone.

4.1.3 The Chapman–Kolmogorov equation

Given a Markov chain X, we have a corresponding evolution algebra MX . For
the evolution operator L of MX , it seems trivial that we have the following
formulae of composition of operator L:

Ll+m = Ll ◦ Lm, (4.1)

or
L(r+n+m, m) = Lr ◦ L(n+m, m), (4.2)

where L(r, m) = Lr ◦ Lm, starting at the mth power, and l, m, n, r are all
nonnegative integers. In terms of generators (states), we have

∥∥ρj Ll+m(ei)
∥∥ =

∑
k

∥∥ρj Ll(ek)
∥∥ · ‖ρk Lm(ei)‖ . (4.3)

Remember, our norm in the algebra MX has a significance of probability.
That is, if v =

∑
i aiei, then ‖v‖ can be interpreted as the probability of the

vector v presented. The action of the evolution operator can be interpreted
as the moving of the Markov chain. Then, the left-hand side of the above
equation 4.3 represents the probability of going from ei to ej in l + m steps.
This amounts to measuring the probability of all these sample paths that start
at ei and end at ej after l + m steps. The right-hand side takes the collection
of paths and partitions it according to where the path is after l steps. All
these paths that go from ei to ek in l steps and then from ek to ej in m steps
are grouped together and the probability of this group of paths is given by
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∥∥ · ‖ρk Lm(ei)‖. By summing these probabilities over all ek, k ∈ Λ,

we get the probability of going from ei to ej in l + m steps. That is, in going
from ei to ej in l+m steps, the chain must be in some place in the state space
after l steps. The right-hand side of the equation considers all the places it
might be in and uses this as a criterion for partitioning the set of paths that
are from ei to ej in l + m steps. Thus, the above three equations 4.1, 4.2, and
4.3 are all versions of the Chapman–Kolmogorov equation.

We can give a concrete proof about our version of the Chapman–Kolmogorov
equation as follows. Since we work on an evolution algebra, it is natural for
us to use matrix representation of evolution operators.

Proof. Let the matrix representation of the evolution operator L be A = (pji)

ρj L(ei) = pjiej ⇒ pji = ‖ρj L(ei)‖ ,

ρj L2(ei) = ρj(
∑
k,t

ptkpki et) = (
∑

k

pjkpki)ej ,

then we have ∥∥ρj L2(ei)
∥∥ =

∑
k

‖ρj L(ek)‖ · ‖ρk L(ei)‖ .

Therefore, we have a 2-step Chapman–Kolmogorov equation in probability
theory,

p
(2)
ji =

∥∥ρj L2(ei)
∥∥ =

∑
k

pjkpki.

For the (l + m)-step, we use the matrix representation of Ll+m that is Al+m.
We have

p
(l+m)
ji =

∥∥ρj Ll+m(ei)
∥∥ =

(
0 · · · 0 1 0 · · · 0

)
Al+m

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
...
0
1
0
...
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

i

=
∑

t1···tl+m−1

ajt1at1t2 · · · · · ·atl+m−1i

=
∑

t1···tl+m−1

aj t1 · · · atl−1k aktl+1 · · · · · ·atl+m−1i

=
∑
k

p
(l)
jk · p(m)

ki

=
∑

k

∥∥ρj Ll(ek)
∥∥ · ‖ρk Lm(ei)‖ .
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Thus, we verified our version of the Chapman–Kolmogorov equation. As to the
version L(r+n+m, m) = Lr ◦L(n+m, m), it is easy to see, since we run the chain
again when it has already moved m steps. Thus, the Chapman–Kolmogorov
equation in evolution algebras is an operator equation.

Remark 3. As we see, in the evolution algebra corresponding to a given Markov
chain, probabilities, as an interpretation of coefficients of elements, can be
found by using the evolution operator and projections. For example,

ρj L(ei) = pjiej,

ρj Ln(ei) = p
(n)
ji ej .

They can be used to find some useful relations between Markov chains and
their corresponding evolution algebras.

4.1.4 Concepts related to evolution operators

We need some concepts about different types of elements in an evolution alge-
bra and different types of evolution operators, such as nonnegative elements,
negative elements, nonpositive elements and positive elements, positive evo-
lution operators, nonnegative evolution operators and periodical positive
evolution operators, etc. Let us now define them here.

Definition 7. Let x =
∑

i aiei be an element in the evolution algebra MX

that corresponds to a Markov chain X. We say x is a nonnegative element
if ai, i ∈ Λ, are all nonnegative elements in field K. If ai are all negative,
we say x is negative. If ai are all positive, we say x is positive. If ai are all
nonpositive, we say x is nonpositive.

Definition 8. For any nonnegative element x �= 0, if L(x) is positive, we
say L is positive; if L(x) is nonnegative, we say L is nonnegative. If L is
nonnegative, and for any generator ei, ρiL(ei) �= 0 periodically occurs, we say
L is periodically positive.

Lemma 5. For a nonnegative or nonpositive element x, we have ‖L(x)‖ ≤
‖x‖ .

Proof. Let x =
∑

i aiei, then L(x) =
∑

i aiLei =
∑

i aipkiek. ‖L(x)‖ =
|∑i aipki| ≤ |∑i ai

∑
k pki| ≤ |∑i ai| = ‖x‖ .

4.1.5 Basic algebraic properties of Markov chains

Markov chains have many interesting algebraic properties as we will see in
this chapter. Here let us first present several basic propositions.
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Theorem 17. Let C be a subset of the state set S = {ei | i ∈ Λ} of a Markov
chain X. C is closed in the sense of probability if and only if C generates an
evolution subalgebra of the evolution algebra MX .

Proof. By the definition of closed subset of the state set in probability theory,
C is closed if and only if for all states ei and ej , ej ∈ C, ei /∈ C, pi j = 0,
which just means

ej · ej =
∑

i

pijei =
∑

ek∈C

pkjek.

Then, if we denote the subalgebra that is generated by C by 〈C〉, it is clear
that ej · ej ∈ 〈C〉, whenever ej ∈ C. Thus, C generates an evolution algebra.

Corollary 11. If a subset C of the state set S = {ei | i ∈ Λ} of the Markov
chain X is closed, then ρj Ln(ei) = 0 for ei ∈ C and ej /∈ C.

Proof. Since C generates an evolution subalgebra and the evolution operator
leaves a subalgebra invariant, Ln (ei) ∈ C for any ei ∈ C and any positive
integer n. That is, any projection to the out of the subalgebra 〈C〉 is zero.
Particularly, ρjL

n(ei) = 0. In term of probability, p
(n)
ji = 0.

In Markov chains, a closed subset of the state set is referred as the impos-
sibility of escaping. That is, a subset C is closed if the chain once enters C,
it can never leave C. In evolution algebras, a subalgebra has a kind of similar
significance. A subalgebra generated by a subset C of the generator set is
closed under the multiplication. That is, there is no new generator that is not
in C that can be produced by the multiplication. Furthermore, the evolution
operator leaves a subalgebra invariant.

Corollary 12. State ek is an absorbing state in the Markov chain X if and
only if ek is an idempotent element in the evolution algebra MX .

Proof. State ek is an absorbing state in Markov chain X if and only if pkk = 1.
So, in the algebra MX , we have ek · ek = ek.

Remark 4. If ek is an absorbing state, then for any positive integer n, Ln(ek) =
ek and ek generates a subalgebra with dimension one, 〈ek〉 = Rek, where R is
the real number field.

Theorem 18. A Markov chain X is irreducible if and only if the correspond-
ing evolution algebra MX is simple.

Proof. If MX has a proper evolution subalgebra A with the generator set
{ei | i ∈ Λ0}, then extend this set to a natural basis for MX as {ei | i ∈ Λ},
where Λ0 ⊆ Λ. For any i ∈ Λ0, since ei · ei =

∑
k∈Λ0

pkiek, so for any j /∈ Λ0,

pji = 0. That is, {ei | i ∈ Λ0} is closed in the sense of probability, which
means the Markov chain M is not irreducible.

On the other hand, if the Markov chain X is not irreducible, the state set
S = {ei | i ∈ Λ} has a proper closed subset in the sense of probability. As
Theorem 17 shows, MX has a proper evolution subalgebra.



60 4 Evolution Algebras and Markov Chains

4.2 Algebraic Persistency and Probabilistic Persistency

In this section, we discuss the difference between algebraic concepts, algebraic
persistency and algebraic transiency, and analytic concepts, probabilistic per-
sistency and probabilistic transiency. When the dimension of the evolution
algebra determined by a Markov chain is finite, algebraic concepts and ana-
lytic concepts are equivalent. By “equivalent” we means that, for example, a
generator is algebraically persistent if and only if it is probabilistically persis-
tent. Generally, a generator is probabilistically transient if it is algebraically
transient, and a generator is algebraically persistent if it is probabilistically
persistent. To this end, we need to define destination operators and other
algebraic counterparts of concepts in probability theory.

4.2.1 Destination operator of evolution algebra MX

Definition 9. Denote ρo
j =

∑
k �=j ρk. We call ρo

j the deleting operator, which
deletes the component of ej, i.e., ρo

j(x) = x− ρj(x). Then, we can define
operators of the first visiting to a generator (characteristic state) ej as follows:

V (1) = ρjL, it happens at the first time,

V (2) = V (1)ρo
jL, it happens at the second time,

V (3) = V (2)ρo
jL, happens at the third time,

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
V (m) = V (m−1)ρo

jL, it happens at the m-th time,

we define a destination operator (notice, ej is a “destination”):

Dj =
∞∑

m=1

V (m)

=
∞∑

m=1

ρjL
(
ρo

jL
)(m−1)

.

Lemma 6. The destination operator Di is convergent.

Proof. Since Di =
∑∞

m=1 ρiL (ρo
i L)(m−1) = ρiL

∑∞
m=1 (ρo

i L)(m−1), when con-
sider operator ρo

i L under the natural basis, we have a matrix representation
for ρo

i L, denote this matrix by A. Then, A is the matrix obtained from the
matrix representation of L by replacing its ith row by zero row. Explicitly,

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

p11 p12 p13 · · ·
· · · · · · · · · · · ·

pi−1,1 pi−1,2 pi−1,3 · · ·
0 0 0 · · ·

pi+1,1 pi+1,2 pi+1,3 · · ·
...

...
...

...

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.
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If we define a norm for matrices B = (bij) to be ‖B‖ = maxj {
∑

i |bij |} ,
then, it is easy to check that the norm of operator ρo

i L is the maximum of the
summation of absolute values of entries in each column of A. That is,

‖ρo
i L‖ = ‖A‖ = max{

∑
k

pkj | j ∈ Λ}.

Case I. If all pik = 0, k ∈ Λ, then

ρi L(ek) = 0, ρi L(ρo
i L)(ek) = 0, · · · ,

then
Di (ek) = 0, ∀ k ∈ Λ.

Case II. Not all pi1, pi2, · · · , pin, · · · are zero, then
∥∥Ak0

∥∥ ≤ r0 < 1 for

some integer k0, since no column in Ak0 sums to 1. Then ‖An‖ ≤ r
[ n

k0
]

0 < 1.
Since A or ρo

i L belongs to the normed algebra L(M), we can utilize theorems
in Functional Analysis. Thus, we get the existence of the limit lim

n→∞
n
√‖An‖.

Then, we set lim
n→∞

n
√‖An‖ = r < 1 or lim

n→∞
n
√‖(ρo

i L)n‖ = r.

Claim:

(I − ρo
i L)−1 =

∞∑
n=0

(ρo
i L)n.

Since for any ε > 0 and r + ε < 1, there is N > k0, for n ≥ N

n
√
‖An‖ = n

√
‖(ρo

i L)n‖ < r + ε,

so
‖(ρo

i L)n‖ < (r + ε)n.

We have, for m > N∥∥∥∥∥
∞∑

n=m

(ρo
i L)n

∥∥∥∥∥ ≤
∞∑

n=m

‖An‖ ≤
∞∑

n=m

(r + ε)n =
(r + ε)m

1 − r − ε
.

Therefore,
∑∞

n=0(ρ
o
i L)n converges by norm. Denote B =

∑∞
n=0(ρ

o
i L)n,

we need to check
B(I − ρo

i L) = (I − ρo
i L)B = I.

Set

Bm =
m∑

n=0

(ρo
i L)n

then

Bm(I − ρo
i L) = Bm − Bm(ρo

i L)
= (I − ρo

i L)Bm = I − (ρo
i L)m+1.
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But ||Bm − B|| −→ 0, when m ≥ N , we have∥∥(ρo
i L)m+1

∥∥ ≤ (r + ε)m+1 −→ 0,

then we get
B(I − ρo

i L) = (I − ρo
i L)B = I.

Thus

Di = ρi L

∞∑
m=1

(ρo
i L)m−1 =

ρi L

I − ρo
i L

,

which means that the operator Di converges.

Corollary 13. ‖Di (ek)‖ ≤ 1.

Proof. From the proof of the above Lemma 6, we see that
in case I,

‖Di (ek)‖ = 0;

in case II,
‖I − ρo

i L|‖ ≥ 1,

since ‖I − A‖ ≥ 1 (because of (i, i)−entry of (I − A) is 1) and ‖ρi L‖ ≤ 1.
Then ‖Di (ek)‖ ≤ 1.

Lemma 7. ρjL
n =

∑n
k=1 ρjL

n−k
(
ρjL

(
ρo

jL
)k−1

)
.

Proof. We use induction to prove this lemma. When n = 1, ρjL = ρj (ρjL) .
Suppose when n = n, the formula is correct. Then, since

L =
(
ρj + ρo

j

)
L = ρjL + ρo

jL,

we have

ρjL
n+1 = ρjL

nL

=
n∑

k=1

ρjL
n−k

(
ρjL

(
ρo

jL
)k−1

) (
ρjL + ρo

jL
)

=
n∑

k=1

ρjL
n−k

(
ρjL

(
ρo

jL
)k−1

)
(ρjL) +

n∑
k=1

ρjL
n−k

(
ρjL

(
ρo

jL
)k)

= ρjL
n (ρjL) +

n∑
k=1

ρjL
n−k

(
ρjL

(
ρo

jL
)k
)

=
n+1∑
k=1

ρjL
n+1−k

(
ρjL

(
ρo

jL
)k−1

)
.

Thus, we got the proof.
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Theorem 19. ‖Qj (ej)‖ = 1
1−‖Dj(ej)‖ , where Qj =

∑∞
n=0 ρjL

n.

Proof. By utilizing the Lemma 7, we have

Qj (ej) = ρj (ej) +
∞∑

n=1

ρjL
n (ej)

= ej +
∞∑

n=1

(
n∑

k=1

ρjL
n−k

(
ρjL

(
ρo

jL
)k−1

))

= ej +
∞∑

n=1

n∑
k=1

∥∥∥ρjL
(
ρo

jL
)k−1 (ej)

∥∥∥ ρjL
n−k (ej)

= ej +
∞∑

k=1

∞∑
n=k

∥∥∥ρjL
(
ρo

jL
)k−1 (ej)

∥∥∥ ρjL
n−k (ej) .

In the last step, we have utilized Fubini’s theorem. Thus, we have

‖Qj (ej)‖ = 1 +
∞∑

k=1

∞∑
n=k

∥∥∥ρjL
(
ρo

jL
)k−1 (ej)

∥∥∥∥∥ρjL
n−k (ej)

∥∥
= 1 + ‖Dj (ej)‖ ‖Qj (ej)‖ .

Therefore, we get

‖Qj (ej)‖ =
1

1 − ‖Dj (ej)‖ .

Theorem 20. If Dj (ej) = ej, then the generator ej as a characteristic state
is persistent in the sense of probability.

If Dj (ej) = kej, 0 ≤ k < 1, then the generator ej as a characteristic state
is transient in the sense of probability.

Proof. By comparing our definition of the first visiting operators with the first
visits to some state in Markov chain theory, we can find that the coefficient
of ρjL

(
ρo

jL
)m−1 (ei) is the probability that the first visit to state ej from ei,

which is f
(m)
ij in Probability theory. Therefore, our statement is correct in

the sense of probability.

Corollary 14. In the sense of probability, generator ej as a characteristic
state is persistent if and only if ‖Qj (ej)‖ = ∞, and ej is transient if and only
if ‖Qj (ej)‖ < ∞.

Proof. By Theorem 20, ej is persistent in probability if and only if ‖Dj(ej)‖=1,
then using Theorem 19, we get ej is persistent if and only if ‖Qj(ej)‖ = ∞.
Similarly, we can get the second statement in the corollary.

We now say ej is probabilistically persistent if it is persistent in the
sense of probability, and ej is probabilistically transient if it is transient
in the sense of probability.
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4.2.2 On the loss of coefficients (probabilities)

Lemma 8. If ρjL
n0(ei) �= 0, i �= j, and n0 is the least number that has this

property, then ρj(ρ0
i L)n0(ei) �= 0.

Proof. If n0 = 1, this is obvious.
If n0 > 1, since L is a linear map, ρjL(ej) = 0, but, ρjL

n0(ei) �= 0, then
ej must come from some element ek which is not ei. So each time when the
action of L is taken, we delete ei, which does not affect the final result.

Proposition 8. If there is ej that occurs in 〈ei〉 , such that ei does not occur
in 〈ej〉 , then Di(ei) = kei, k < 1. That is, ei is transient in the sense of
probability. There is a loss of probability, 1 − k.

Proof. Since ej occurs in 〈ei〉 , so ρjL
n0(ei) �= 0, for some n0. ei does not

occur in 〈ej〉, so ρi Lk(ej) = 0, for any integer k.
If n0 = 1, ρj L(ei) = pjiej �= 0. We see

Di =
∞∑

m=1

ρi L(ρo
i L)m−1 = ρi

∞∑
m=1

(Lρo
i )m−1L = ρi Ti L,

where

Ti =
∞∑

m=1

(ρo
i L)m−1.

Then, we compute

Di(ei) = ρi Ti L(ei)

= ρi Ti (piiei + pjiej +
∑

k �=i,k �=j

pkiek)

= piiei + pjiρi Ti (ej) +
∑

k �=i,k �=j

pkiρi Ti (ek).

As the proof of the convergence of the destination operator in Lemma 6,
we have

Ti = (I − Lρo
i )

−1
,

and
‖ρiTi (ek)‖ ≤ 1.

Since ρiL
k (ej) = 0, so then ρiTi (ej) = 0. Therefore

‖Di (ei)‖ ≤ pii +
∑

k �=i,k �=j

pki ≤ 1 − pji.

If n0 > 1, we derive
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Di =
n0−1∑
m=1

ρi L (ρo
i L)m−1 + ρi L (ρo

i L)n0−1 + ρi L (ρo
i L)n0 + · · · · · ·

=
n0−1∑
m=1

ρi L (ρo
i L)m−1 + ρi L

( ∞∑
k=1

(ρo
i L)k−1

)
(ρo

i L)n0−1

=
n0−1∑
m=1

ρi L (ρo
i L)m−1 + ρi Ti L (ρo

i L)n0−1

= A + ρi Ti L (ρo
i L)n0−1

,

where A =
∑n0−1

m=1 ρi L (ρo
i L)m−1

. Then, acting on ei, we have

Di(ei) = A(ei) + ρiTiL(ρo
i L)n0−1(ei)

= A (ei) + ρiTi

(
aej +

∑
k∈Λ1

akek

)

= A(ei) + aρiTi(ej) +
∑

k∈Λ1

akρiTi(ek),

where, a > 0, Λ1 is a proper index subset. Since ||A(ei)||+a+
∑

k∈Λ1
|ak| ≤ 1,

so ||A(ei)|| �= 1. But, ρi Ti (ej) = 0, therefore ||Di(ei)|| ≤ 1 − a. Thus, ei is
transient in the sense of probability. There is a loss of probability, 1−k. Thus,
we finish the proof.

Lemma 9. Generator ei is transient in the algebra MX if and only if there
is ej which occurs in 〈ei〉 , such that ei does not occur in 〈ej〉.
Proof. Because ej occurs in 〈ei〉 , by the definition of an evolution subalgebra,
ej ∈ 〈ei〉 . So, 〈ej〉 ⊂ 〈ei〉 . But, ei does not occur in 〈ej〉. This means 〈ei〉 does
not contain in 〈ej〉 . Therefore, 〈ei〉 has a proper subalgebra. By definition, ei

is transient in the algebra MX . On the other hand, if ei is transient in MX ,
〈ei〉 is not a simple algebra. It must have a proper evolution subalgebra, for
example, E ⊂ 〈ei〉 . Then, E has a natural basis that can be extended to a
natural basis of 〈ei〉 . Since ei belongs to the natural basis of 〈ei〉 , so there
must be an ej in the basis of E. Thus, ei does not occur in 〈ej〉 .

From Proposition 8 and Lemma 9, if a generator ei is algebraically tran-
sient, then it is also probabilistically transient.

Theorem 21. Let M be a finite dimensional evolution algebra. If Di(ei) =
kei, 0 ≤ k < 1, then there exists ej which occurs in 〈ei〉 , but ei does not occur
in 〈ej〉.
Proof. Suppose that for all ej that occurs in 〈ei〉, ei also occurs in 〈ej〉 . Then
for convenience, we assume e1, e2, · · · , ei, · · · et are all generators which occur
in 〈ei〉 , and ei < 〈ej〉 , j = 1, 2, · · · , t. We consider evolution subalgebras 〈ei〉
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and all 〈ej〉 , we must have 〈ei〉 = 〈ej〉 , j = 1, 2, · · · , t. This means 〈ei〉 is an
irreducible evolution subalgebra.

Case 1. If ei is aperiodic, for simplicity, we take

L(ei) = a1e1 + a2e2 + · · · + atet,

where 0 < aj < 1 and
∑t

j=1 aj = 1. That is, ρi L(ej) = pijei �= 0 for any pair
(i, j) . Otherwise, we start from some power of L. Now, let us look at

ρi L2(ei) = (a1pi1 + a2pi2 + · · · + atpit)ei,

and denote
c = min{pi1, pi2, · · · , pit}.

Since a1pi1 + a2pi2 + · · · + atpit is the mean of pi1, pi2, · · · , pit (because of∑t
j=1 aj = 1 ), so

∑t
j=1 akpik ≥ c. That is,

∥∥ρi L2(ei)
∥∥ ≥ c. Set L2(ei) =

A1e1+A2e2+· · ·+Atet. Since L2 preserves the norm, so A1+A2+· · ·+At = 1,
and 0 < Aj < 1. Look at

ρi L3(ei) = (A1pi1 + A2pi2 + · · · + Atpit)ei,

Then,
∥∥ρi L3(ei)

∥∥ =
∑t

k=1 Akpik ≥ c. Inductively, we have ‖ρi Ln(ei)‖ ≥ c,
(n > 1). This just means that ‖ρi Ln(ei)‖ does not approach to zero, thus

∞∑
n=1

‖ρi Ln(ei)‖ = ∞.

Therefore, we have Di(ei) = ei, which contradicts Di(ei) = kei, where 0 ≤
k < 1.

Case 2. If 〈ei〉 is periodical with a period of d. We consider operator
Ld. Since Ld can be written as a direct sum Ld = l0 ⊕ l1 ⊕ · · · ⊕ ld−1.
Consequently {e1, e2, · · · , et} has a partition with d cells. Suppose ei is in
subspace ∆k, which is spanned by the kth cell of the partition, then we con-
sider lk. Similarly, we will have ‖ρil

n
k (ei)‖ > 0. Because

∑∞
n=1 ‖ρil

n
k (ei)‖

is a sub-series of
∑∞

n=1 ||ρiL
n(ei)||, so we still get

∑∞
n=1 ‖ρiL

n(ei)‖ = ∞.
(
∑∞

n=1 ‖ρiL
n(ei)‖ ≥∑∞

n=1 ‖ρil
n
k (ei)‖ = ∞). We finish the proof.

Theorem 22. (A generalized version of theorem 21) Let Di(ei) = kei, 0 ≤
k < 1. When 〈ei〉 is a finite dimensional evolution subalgebra, then there exists
ej which occurs in 〈ei〉 , but ei does not occur in 〈ej〉 .

Remark 5. Let’s summarize that when 〈ei〉 is a finite dimensional evolution
subalgebra, ei is algebraically transient if and only if ei is probabilistically
transient. Now we can use this statement to classify states of a Markov chain.
In Markov Chain theory, it is not easy to check if a state ei is transient, while
in evolution algebra theory, it is easy to check if ei is algebraically transient.
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4.2.3 On the conservation of coefficients (probabilities)

We work on Markov evolution algebras, for example, MX , which has a gener-
ator set {ei : i ∈ Λ}.
Lemma 10. Generator ei is algebraically persistent if and only if all genera-
tors ej which occurs in 〈ei〉 , ei also occurs in 〈ej〉 .

Proof. If ej occurs in 〈ei〉 , then subalgebra 〈ej〉 ⊆ 〈ei〉 . Since 〈ei〉 is a simple
evolution subalgebra, so we have 〈ej〉 = 〈ei〉 . That is, ei must occur in 〈ej〉 .
On the other hand, if 〈ei〉 is not a simple evolution subalgebra, it must have a
proper subalgebra, say B. Then, B has a natural basis that can be extended
to the natural basis of 〈ei〉 . Let ek be a generator in B, then ei does not occur
in 〈ek〉 .

Lemma 11. Let MX is a finite dimensional evolution algebra. If for all gen-
erators ej which occurs in 〈ei〉 , ei also occurs in 〈ej〉, then Di (ei) = ei. That
is, if ei is algebraically persistent, then ei is also probabilistically persistent.

Proof. If ei is not probabilistically persistent, that is Di (ei) = kei, where
0 ≤ k < 1, then by Theorem 22, there exists some ej that occurs in 〈ei〉 . But
ei does not occur in 〈ej〉 . Thus 〈ej〉 ⊆ 〈ei〉 , so 〈ei〉 is not simple.

Theorem 23. If ei is probabilistically persistent, then ei is algebraically per-
sistent, i.e., for any ej which occurs in 〈ei〉 , ei also occurs in 〈ej〉 .

Proof. If ei is not algebraically persistent, ei is algebraically transient. By
Proposition 8, we have Di (ei) = kei with 0 ≤ k < 1.

Remark 6. Let us summarize that when 〈ei〉 is a finite dimensional evolution
subalgebra, ei is algebraically persistent if and only if ei is probabilistically
persistent. In Markov Chain theory, we have to compute a series of proba-
bilities in order to check if a state ei is persistent; while in evolution algebra
theory, it is easy to check if the subalgebra 〈ei〉 generated by ei is simple. As
the remark in the last subsection, we can use this statement to classify states
of a Markov chain.

Theorem 24. An evolution algebra is simple if and only if each generator that
occurs in the evolution subalgebra can be generated by any other generator.

Proof. If ei0 does not occur in certain 〈ej0〉 , then 〈ej0〉 is a proper subalgebra
of the evolution algebra. But it is irreducible, which is a contradiction. If the
evolution algebra is not simple, then it has a proper subalgebra, say A. There
is a generator of the algebra, for example ei0 , ei0 does not occur in A. So there
is another generator ej of the algebra A, such that ei0 does not occur in 〈ej〉 .
This is a contradiction.
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Theorem 25. For any finite state Markov chain, there is always a persistent
state.

Proof. This is a consequence of Theorem 9 in Chapter 3.

Proposition 9. All generators in the same simple evolution algebra (or sub-
algebra) MX are of the same type with respect to periodicity and persistency.
That is, in the same closed subset of the state space, all states are of the same
type with respect to periodicity and persistency.

Proof. This is a consequence of Theorem 7, 8, and Corollary 9 in Chapter 3.

Remark 7. The above Theorem 24 characterizes a simple evolution algebra,
namely, characterizes an irreducible Markov chain. However, we do not have
this kind of simple characteristics in Markov chain theory as a counterpart.
It provides an easy way to verify irreducible Markov chains.

We see from Chapter 3, the proof of Theorem 9 is quite easy. However, it
is a laborious work to prove Theorem 25 in Markov chain theory.

The same remark for the proof of Proposition 9 as that for Theorem 25
is true. They all show that evolution algebra theory has some advantages in
study classical theory as the study of Markov chains.

4.2.4 Certain interpretations

• If an evolution algebra MX is connected, then in its corresponding Markov
chain, for any pair of the states, there is at least one sequence of states
that can be accessible from the other (but may not be necessarily two-way
accessibility).

• A semisimple evolution algebra is not connected. For an evolution algebra
MX , the probabilistic meaning of this statement is that a semisimple evo-
lution algebra corresponds to a collection of several Markov chains that
are independent. The number of these independent Markov chains is the
number of components of the direct sum of the semisimple evolution alge-
bra.

• Interpretation of Theorem 8 in Chapter 3: Let ei and ej be elements in a
natural basis of an evolution algebra. If ei and ej can intercommunicate
and both are algebraically persistent, then they belong to the same simple
evolution subalgebra of MX , which means, ei and ej belong to the same
closed subset of the state space.

• Interpretation of Corollary 9 in Chapter 3, for finite dimensional evolution
algebra, we have the following statements.

1). A finite state Markov chain X has a proper closed subset of the state
space if and only if it has at least one transient state.

2). A Markov chain X is irreducible if and only if it has no transient state.
3). If a Markov chain X has no transient state, then it is irreducible or it

is a collection of several independent irreducible Markov chains.
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4.2.5 Algebraic periodicity and probabilistic periodicity

In the section 3.4.1 of Chapter 3, plenary powers are used to define (alge-
braically) periodicity. An equivalent definition of periodicity was given by
using evolution operators. When considering the matrix representation of an
evolution operator, we can see that the algebraic definition is the same as the
probabilistic one. Therefore, we have the following statement.

Proposition 10. For a generator in an evolution algebra MX , its algebraic
periodicity is the same as its probabilistic periodicity.

4.3 Spectrum Theory of Evolution Algebras

In this section, we study the spectrum theory of the evolution algebra MX

determined by a Markov chain X . Although the dynamical behavior of an
evolution algebra is embodied by various powers of its elements, the evolu-
tion operator seems to represent a “total” principal power. From the algebraic
viewpoint, we study the spectrum of an evolution operator. Particularly, an
evolution operator is studied at the 0th level in its hierarchy of the evolution
algebra, although we do not study it at high level, which would be an interest-
ing further research topic. Another possible spectrum theory could be a study
of the plenary powers. Actually, we have already defined plenary powers for a
matrix in the proof of Proposition 7 in Chapter 3. It could be a way to study
this possible spectrum theory.

4.3.1 Invariance of a probability flow

We give a proposition to state our point first.

Proposition 11. Let L be the evolution operator of the evolution algebra MX

corresponding to the Markov chain X, then for any nonnegative element y,
‖L (y)‖ = ‖y‖ .

Proof. Write y =
∑n

i=1 aiei, then L (y) =
∑n

i=1

∑n
k=1 pikakei. Therefore

‖L (y)‖ =

∥∥∥∥∥
n∑

i=1

n∑
k=1

pikakei

∥∥∥∥∥
=

n∑
i=1

n∑
k=1

pikak

=
n∑

k=1

ak = ‖y‖ .
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As we see, a Markov chain, as being a dynamical system, preserves the
total probability flow. Suppose we start at a general state y with the total
probability ‖y‖. After one step motion, the total probability is still ‖y‖ . Be-
cause of this kind of conservation or invariance of flow, it is easy to understand
the so-called equilibrium states as the following theorem states.

Theorem 26. For any nonnegative, nonzero element x0 in the evolution al-
gebra MX determined by Markov chain X, there is an element y in MX so
that L (y) = y and ‖y‖ = ‖x0‖ , where L is the evolution operator of MX.

Proof. We assume the algebra is finite dimensional. Set

Dx0 =

{
n∑

i=1

aiei | 0 ≤ ai ≤ ‖x0‖ ,
n∑

i=1

ai = ‖x0‖
}

.

Then Dx0 is a compact subset and L (Dx0) ⊆ Dx0 . Since L is continuous,
we can use Brouwer’s fixed point theorem to get a fixed point y. All we need
to observe is that the fixed point is also in Dx0 , so then ‖y‖ = ‖x0‖ .

Symmetrically, we may consider a nonpositive, nonzero element x0 to get
a fixed point. If consider the unit sphere D in the Banach space MX , we can
get an equilibrium state by this theorem. On the other hand, L, as a linear
map, has eigenvalue 1 as the theorem showed. We state a theorem here.

Theorem 27. Let MX be an evolution algebra with dimension n, then the
evolution operator L has eigenvalue 1 and 1 is an eigenvalue that has the
greatest absolute value.

Proof. By Theorem 26, L has a fixed point y, y �= 0. Since L is linear, L (0) =
0. So we take y as a vector. Then L (y) = y means 1 is an eigenvalue of L.
If λ is any other eigenvalue, x is an eigenvector that corresponds to λ, then
L (x) = λx. We know ‖L (x)‖ ≤ x, which is ‖λx‖ ≤ ‖x‖ . Thus, we obtain
‖λ‖ ≤ 1.

4.3.2 Spectrum of a simple evolution algebra

Simple evolution algebras can be categorized as periodical simple evolution al-
gebras and aperiodic simple evolution algebras. Consequently, their evolution
operators can also be grouped as positive evolution operators and periodical
evolution operators. The notion, positive evolution operator here, is slightly
general. Let us first give the definition.

Definition 10. Let L be the evolution operator of the evolution algebra MX

corresponding to the Markov chain X. We say L is positive if there is a positive
integer m for any generators ei and ej , we have

ρjL
m(ei) �= 0.
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Theorem 28. Let L be a positive evolution operator of an evolution algebra,
then the geometric multiplicity corresponding to the eigenvalue one is 1.

Proof. Since L is positive, there is an integer m such that for any pair ek, el, we
have ρkLm(el) �= 0. Consider L is a continuous map from D to itself. Assume
L has two fixed points x0, y0 and x0 �= λy0. Since L is linear, L(0) = 0, so we
can take x0, y0 as vectors

−→
X0,

−→
Y0 from the original 0 to x0 and y0, respectively.

Then the subspace M1 spanned by
−→
X0 and

−→
Y0 will be fixed by L.

Case I. If this evolution algebra is dimension 2, then L fixes the whole
underlying space of the algebra. That means L(e1) = e1 and L(e2) = e1.
Therefore ρ2L(e1) = 0 and ρ1L(e2) = 0. This is a contradiction.

Case II. If the dimension of MX is greater than 2, then M1 ∩ (∂D0) �= φ,
where D0 = {∑n

i=1 aiei | 0 ≤ ai ≤ 1,
∑n

i=1 ai ≤ 1}. Since x0, y0 ∈ D0, and L
is linear, so the line l that passes through x0 and y0 will be fixed by L. l ⊂ M1

and l ∩ D �= φ, for any z ∈ l ∩ D. Writing z as z =
∑n

i=1 aiei, there must be
some ai that is equal to 0, say an = 0. Then, because Lm(z) = z, (L(z) = z),
we have ρnLm(z) = ρn(z) = 0. This is a contradiction.

Thus, the eigenspace of the eigenvalue one has to be dimension 1.

Theorem 29. If MX is a finite dimensional simple aperiodic evolution alge-
bra, its evolution operator is positive.

Proof. Let the generator set of MX be {e1, e2, · · · , en}. For any ei, there is a
positive integer ki, such that ei occurs in the plenary power e

[ki]
i and ei also

occurs in e
[ki+1]
i , since MX is aperiodic. Let ki be the least number that has

this property. Now consider e1, without loss of generality, we can assume that
k1 = 1, ρ1L(e1) �= 0,

L(e1) = p11e1 +
∑

k∈Λ1

pk1ek, pk1 �= 0, k ∈ Λ1,

where Λ1 is not empty and p11 �= 0. Otherwise, 〈e1〉 will be a proper subalge-
bra. From

L2(e1) = p2
11e1 + p11

∑
i∈Λ1

pi1ei +
∑
i∈Λ1

pi1L(ei),

we can see that once some ei occurs in L(e1), it will keep in Ln(e1) for any
power n. Since every ej must occur in some plenary power of e1, there is a
positive integer m1 so that {e1, e2, · · · , en} < Lm1(e1). Similarly, we have
m2 for e2, · · · , and mn for en. Then, take m0 = Max{m1, m2, · · · , mn}, we
have

ρjL
m0(ei) �= 0.

Therefore, L is positive.

Corollary 15. The geometric multiplicity of eigenvalue 1 of the evolution op-
erator of a simple aperiodic evolution algebra is 1.
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Theorem 30. If MX is a simple evolution algebra with period d, then the
geometric multiplicity of eigenvalue 1 of the evolution operator is 1.

Proof. By the decomposition Theorem 10 in Chapter 3, MX can be written
as

MX = ∆0 ⊕ ∆1 ⊕ · · · ⊕ ∆d−1

and Ld : ∆k → ∆k, k = 0, 1, 2, · · · , d − 1, and

Ld = l0 ⊕ l1 ⊕ · · · ⊕ ld−1,

where lk = Ld|∆k
, and it is positive (we give a proof of this claim below). If

there are two vectors x, y, such that L(x) = x, L(y) = y, and x �= λy, then
x has a unique decomposition according to the decomposition of MX that is
x = x0 + x1 + · · · + ld−1, and

Ld (x) = l0(x0) + l1(x1) + · · · + ld−1(xd−1)
= x0 + x1 + · · · + xd−1.

We get lk (xk) = xk, since it is a direct sum. Similarly, y = y0 +y1 + · · ·+yd−1

and lk (yk) = yk, k = 0, 1, · · · , d − 1. Now, x �= λy, so there is an index k0 so
that xk0 �= λyk0 , but we know lk0(xk0 ) = xk0 and lk0(yk0) = yk0 . This means
that Ld|∆k0

= lk0 has two different eigenvectors for eigenvalue 1. This is a
contradiction.

A proof of our claim that Ld|∆k
is positive:

Suppose ∆k = Span{ek,1, ek,2, · · · , ek,tk
}. Since d is the period, ρk,1e

[d]
k,1 �=

0, and there must be ek,i (�= ek,1) that occurs in e
[d]
k,1. Otherwise, ∆k is the

dimension of 1, which means d must be 1. So Ld|∆k
is positive. Therefore, we

have that
lk(ek,1) = aek,1 + bek,i + · · · ,

then,
l2k(ek,1) = a2ek,1 + abek,i + blk(ek,i) + · · · .

We can see once ek,i occurs in lk(ek,1), ek,i will always keep in lnk (ek,1) for any
power n. Since every ek, j will occur in a certain lmk (ek,1), there exists n1 so
that

{ek,1, ek,2, · · · , ek,tk
} < ln1

k (ek,1).

Similarly, we have n2 for ek,2, · · · , ntk
for ek,tk

, so that

{ek,1, ek,2, · · · , ek,tk
} < lni

k (ek,i).

Set
mk = max{n1, n2, · · · , ntk

}.
For any ek,i and ek, j

ρk, j l
mk

k (ek,i) = ρk, j(Ld|∆k
)mk(ek,i) �= 0.

Therefore, lk = Ld|∆k
is positive.
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Theorem 31. Let MX be a simple evolution algebra with period d, then the
evolution operator has d eigenvalues that are the roots of unity. Each of them
has an eigenspace of dimension one. And there are no other eigenvalues of
modulus one.

Proof. Since MX is simple and periodical, it has a decomposition MX =
∆0 ⊕ ∆1 ⊕ · · · ⊕ ∆d−1, and

L : ∆k → ∆k+1.

Denote L|∆k
= Lk, then

L = L0 + L1 + · · · + Ld−1,

L2 = L1L0 + L2L1 + · · · + L0Ld−1,

· · · · · · · · · · · · · · · · · ·
Ld = Ld−1Ld−2 · · ·L1L0 ⊕ L0Ld−1 · · ·L2L1 ⊕ · · · ⊕ Ld−1 · · ·L0Ld−1.

So, if denote

l0 = Ld−1Ld−2 · · ·L1L0,

l1 = L0Ld−1 · · ·L2L1,

· · · · · · ,

ld−1 = Ld−1 · · ·L0Ld−1,

we have
Ld = l0 ⊕ l1 ⊕ · · · ⊕ ld−1,

and lk : ∆k → ∆k. If L(x) = x, then Ld(x) = x. x has a unique decomposition
x = x0 + x1 + · · · + xd−1, so that

l0(x0) + l1(x1) + · · · + ld−1(xd−1) = x0 + x1 + · · · + xd−1.

Therefore, lk(xk) = xk, k = 0, 1, 2, · · · , d−1, which means that one is an
eigenvalue of lk(with geometric multiplicity 1 because lk is positive). Thus,
one is an eigenvalue of Ld, since Ld is a directed sum of lk. Hence if λ is an
eigenvalue of L, λd is an eigenvalue of Ld. So then λd = 1, or λk = exp 2kπi

d ,
k = 0, 1, 2, · · · , d − 1, dth roots of unity are eigenvalues of L, which we prove
as follows.

Now suppose that each λk is an eigenvalue of L, we prove it has geometric
multiplicity 1. If L(x) = λkx, L(y) = λky, x �= ky, x = x0 + x1 + · · · + xd−1,
and y = y0 + y1 + · · · + yd−1 ∈ ∆0 ⊕ ∆1 ⊕ · · · ⊕ ∆d−1, then Ld(x) = λd

kx = x
and Ld(y) = λd

ky = y, so lk(xk) = xk and lk(yk) = yk, k = 0, 1, 2, · · · , d − 1.
There is k0, xk0 �= kyk0 , but we have lk0(xk0 ) = xk0 and lk0(yk0) = yk0 , which
means that lk0 = Ld|∆k0

has two distinct eigenvectors, xk0 , yk0 for eigenvalue
1. But we know that positive operator lk has an eigenspace of dimension 1
corresponding to eigenvalue 1. This contradiction means that the geometric
multiplicity of each λk is one.
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Each λk is really an eigenvalue of L, since each lk is positive, k =
0, 1, · · · , d − 1, for their eigenvalue 1, let the corresponding eigenvectors are
y0, y1, · · · , yd−1, respectively, l0 (y0) = y0, l1 (y1) = y1, · · · , ld−1 (yd−1) =
yd−1. Actually, y1 = L0 (y0) , y2 = L1 (y1) , · · · , yd−1 = Ld−2 (yd−2), and
y0 = Ld−1 (yd−1) (up to a scalar). Remember l0 = Ld−1Ld−2 · · ·L1L0,
l1 = L0Ld−1 · · ·L2L1, so y0 = Ld−1Ld−2 · · ·L1L0 (y0) . Take the action of L0

on both sides of the equation, we have L0 (y0) = L0Ld−1Ld−2 · · ·L1L0 (y0) =
l1L0 (y0) . By the positivity of l1, we have y1 = L0 (y0) . Similarly, we can
obtain the other formulae. If we set y = y0 + y1 + · · · + yd−1, then L (y) = y,
because

L(y) = L0(y0) + L1(y1) + · · · + Ld−1(yd−1) = y0 + y1 + · · · + yd−1 + y0 = y.

Now set

z1 = y0 + λ1y1 + λ2y2 + · · · + λd−1yd−1 =
d−1∑
k=0

λkyk,

where λ = exp
2πi

d
and λk = λk.

Then, we have

L(z1) = L(y0) + λ1L(y1) + λ2L(y2) + · · · + λd−1L(yd−1)
= L0(y0) + λ1L1(y1) + · · · + λd−1Ld−1(yd−1)
= y1 + λ1y2 + λ2y3 + · · · + λd−2yd−1 + λd−1y0

= λ−1
1 (λ1y1 + λ2

1y2 + +λ1λ2y3 + · · · + λ1λd−2yd−1 + λ1λd−1y0)
= λ−1

1 (y0 + λ1y1 + λ2y2 + λ3y3 + · · · + λd−1yd−1)
= λd−1z1,

since λ−1
1 = λd−1. Set z2 =

d−1∑
k=0

λ2kyk, then

L(z2) =
d−1∑
k=0

λ2kL(yk) =
d−1∑
k=0

λ2kyk+1 = λ−2
d−1∑
k=0

λ2(k+1)yk+1

= λ−2
1 z2 = λd−2z2.

Generally, set zk =
d−1∑
j=0

λkjyk, we have

L(zk) = λd−kzk.

And zd−1 =
d−1∑
j=0

λ(d−1)jyj, so we have L(zd−1) = λ1zd−1. Therefore, all λk are

eigenvalues of L.
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At last, we need to prove all eigenvalues of modulus one must be roots of
dth unity. If L(y) = ηy, |η| = 1, then Ld(y) = ηdy. y has a decomposition
y = y0 + y1 + · · · + yd−1, and we have

L0(y0) + L1(y1) + · · · + Ld−1(yd−1)
= ηy0 + ηy1 + · · · + ηyd−1,

then
L0(y0) = ηy1

L1(y1) = ηy2

· · · · · · · · · · · ·
Ld−1(yd−1) = ηy0.

Therefore, L1L0(y0) = η2y2, · · · , Ld−1Ld−2 · · ·L1L0(y0) = ηdy0. That is,
l0(y0) = ηdy0. Similarly, we can obtain lk(yk) = ηdyk. Since each lk is positive,
then either ηd = 1 or |ηd| < 1. Because |η| = 1, we have ηd = 1, where η is a
dth root of unity.

Corollary 16. Let MX be a finite dimensional evolution algebra, then any
eigenvalue of its evolution operator of modulus one is a root of unity. The roots
of dth unity are eigenvalues of L, if and only if MX has a simple evolution
subalgebra with period d.

Proof. The first part of the corollary is obvious from the previous Theorem 31.
If MX has an evolution subalgebra with period d, as the proof of Theorem
31, the roots of dth unity are eigenvalues. Inversely, if L has an eigenvalue
of root of dth unity, for example λ, L(x) = λx, then we write x as a linear
combination of basis x =

∑
i∈Λx

aiei, i ∈ Λx, ai �= 0, where Λx is a subset of
the index set. Let Ax = 〈ei|i ∈ Λx〉 be an evolution subalgebra generated by
ei, i ∈ Λx. Then Ax is a simple algebra with period d.

4.3.3 Spectrum of an evolution algebra at zeroth level

Theorem 32. Let MX be an evolution algebra of finite dimension, then the
geometric multiplicity of the eigenvalue one of its evolution operator is equal
to the number of simple evolution subalgebras of MX .

Proof. We know that the evolutionary operator L has a fixed point x0. L,
as a linear transformation of D, has eigenvalue 1 and an eigenvector with
nonnegative components. Suppose that MX = A1 ⊕ · · · ⊕ An

•
+ B0 is the

decomposition of MX , then

L : Ak ∩ D → Ak ∩ D, k = 1, 2, · · · , n

since L(Ak) ⊂ Ak. Since Ak ∩ M0 is still compact, Brouwer’s fixed point
theorem (Schauder theorem) can be applied to the restriction of L to get a
fixed point in Ak∩M0, say xk, L(xk) = xk, k = 1, 2, · · · , n. Each xk belongs to
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the eigenspace V1 of eigenvalue 1. Since they do not share the same coordinate,
{x1, · · · , xn} is an independent set. Thus dimV1 ≥ n. On the other hand, for

any vector x ∈ V1, x =
m∑

i=1

aiei and L(x) = x. So Lk(x) = x for any integer k.

To finish the proof, we need the following statement.
Claim: If et is transient, then

∥∥ρtL
k(ei)

∥∥ → 0 for any generator ei, when
k → ∞.

Proof of the claim: Since
∑∞

k=1

∥∥ρtL
k(et)

∥∥ < ∞, if et can not be ac-
cessible from ei,

∥∥ρtL
k(ei)

∥∥ = 0 for any k. If et can be accessible from
ei,
∥∥ρtL

k0(ei)
∥∥ �= 0 for some k0. Then

∑∞
k=1

∥∥ρtL
k(ei)

∥∥ =
∑k0

k=1

∥∥ρtL
k(ei)

∥∥+∑∞
k=k0

∥∥ρtL
k(ei)

∥∥ ≤ c
∑∞

k=1

∥∥ρtL
k(et)

∥∥ ≤ ∞, where c is a constant. Thus∥∥ρtL
k(ei)

∥∥→ 0.
Now, from this claim, we have ||ρtL

k(x)|| → 0 , when k → ∞. Then we
have ρt(x) = ρtL

k(x) = 0. This means that

x =
∑

ei /∈B0

aiei.

Therefore, we can rewrite x according to the decomposition MX = A1 ⊕ · · ·⊕
An

•
+ B0, x = y1 + y2 + · · · + yn, yi ∈ Ai. Since Ai is simple, yi must be of

the form of kxi. Thus dimV1 ≤ n. In a word, dimV1 = n.

We summarize here. Let MX be an evolution algebra, we have a decom-
position MX = A1 ⊕ A2 ⊕ · · · ⊕An

•
+ B0. Denote the period of Ak by dk (dk

can be 1), then the evolution operator L has the following eigenvalues:

• 1 with the geometric multiplicity n;
• Roots of dth unity; each root dk of dth unity has geometric multiplicity 1,

k = 0, 1, 2, · · · , n;
• In the zeroth transient space, the eigenvalue of the evolutionary operator

is strictly less than 1.

4.4 Hierarchies of General Markov Chains and Beyond

4.4.1 Hierarchy of a general Markov chain

• Theorem of semi-direct-sum decomposition: Let MX be a connected evo-
lution algebra corresponding to Markov chain X . As a vector space, MX

has a decomposition

MX = A1 ⊕ A2 ⊕ · · · ⊕ An0

•
+ B0,

where Ai, i = 1, 2, · · · , n, are all simple evolution subalgebras, Ai ∩ Aj =
{0} for i �= j, and B0 is a subspace spanned by transient generators. We
also call B0 the 0th transient space of Markov chain X. Probabilistically,
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if the chain starts at some 0th simple evolution subalgebra Ai, the chain
will never leave the simple evolution subalgebra and it will run within this
Ai forever. If it starts at the 0th transient space B0, it will eventually enter
some 0th simple subalgebra.

• The 1st structure of X and the decomposition of B0, as in Chapter 3, we
have every first level concepts and the decomposition of B0

B0 = A1,1 ⊕ A1,2 ⊕ A1,3 ⊕ · · · ⊕ A1,n1

•
+ B1

where A1,i , i = 1, 2, · · · , n1, are all the first simple evolution subalgebras
of B0, A1,i ∩ A1,j = {0}, i �= j, and B1 is the first transient space that is
spanned by the first transient generators. When Markov chain X starts at
the first transient space B1, it will eventually enter a certain first simple
evolution subalgebra A1,j . Once the chain enters some first simple evolu-
tion subalgebra, it will sojourn there for a while and eventually go to some
0th simple algebra.

• We can construct the 2nd induced evolution algebra over the first transient
space B1, if B1 is connected and can be decomposed. If the kth transient
space Bk is disconnected, we will stop with a direct sum of reduced evolu-
tion subalgebras. Otherwise, we can continue to construct evolution sub-
algebras until we get a disconnected subalgebra. Generally, we can have a
hierarchy as follows:

MX = A0,1 ⊕ A0,2 ⊕ · · · ⊕ A0,n0

·
+ B0

B0 = A1,1 ⊕ A1,2 ⊕ · · · ⊕ A1,n1

·
+ B1

B1 = A2,1 ⊕ A2,2 ⊕ · · · ⊕ A2,n2

·
+ B2

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
Bm−1 = Am,1 ⊕ Am,2 ⊕ · · · ⊕ Am,nm

·
+ Bm

Bm = Bm,1 ⊕ Bm,2 ⊕ · · · ⊕ Bm,h,

where Ak,l is the kth simple evolution subalgebra, Ak,l ∩ Ak,l′ = {0} for
l �= l′, Bk is the kth transient space, and Bm can be decomposed as a
direct sum of the mth simple evolution subalgebras. When Markov chain
X starts at the mth transient space Bm, it will enter some mth simple
evolution subalgebra Am,j. Then, after a period of time, it will enter some
(m− 1)th simple evolution subalgebra. The chain will continue until it
enters certain 0th simple evolution subalgebra A0,i.

4.4.2 Structure at the 0th level in a hierarchy

Stability of evolution operators

Theorem 33. For an evolution algebra MX , x ∈ D, that is,

x =
n∑

i∈Λx

xiei,

n∑
i∈Λx

xi = 1, and 0 ≤ xi ≤ 1,
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the image of Lm (ei) will definitely go to the sum of simple evolution subalge-
bras of MX , when m goes to the infinite. (the evolution of algebra MX will be
stabilized with probability 1 into a simple evolution subalgebra over time).

Proof. In the proof of Theorem 28 in Chapter 3, we got ρtL
m (ei) → 0 for the

transient generator et, when m → ∞. Thus ‖ρB0L
m (ei)‖ → 0. Therefore, for

any x ∈ D, ‖ρB0L
m (x)‖ → 0. This means Lm (x) will go to a certain simple

subalgebra as time m goes to the infinity.

Fundamental operators

Let MX be an evolution algebra, B0 be its 0th transient space. The funda-
mental operator can be defined to be the projection of the evolution operator
to the 0th transient space B0, i.e.,

LB0 = ρB0L,

ρB0 is the projection to B0.

Theorem 34. Let MX be an evolution algebra. If MX has a simple evolution
subalgebra and a nontrivial transient space, then the difference I − LB0 has
an inverse operator

F = (I − LB0)
−1 = I + LB0 + L2

B0
+ · · · .

Proof. In the Banach algebra BL(M → M), if the spectrum radius of LB0 is
strictly less than 1, then we can get this conclusion directly by using a result
in Functional Analysis. So we need to check the spectrum radius of LB0 .

Suppose λ is any eigenvalue of LB0 , the corresponding eigenvector is v,
then

LB0(v) = λv, ∀ m,

for any m, we still have
Lm

B0
(v) = λmv,

|λm| · ||v|| =
∥∥Lm

B0
(v)
∥∥ ≤ ‖ρB0L

m(v)‖ → 0,

as m → ∞, we shall have |λ| < 1.

Corollary 17. (Probabilistic version) ‖ρjF (ei)‖ is the expected number of
times that the chain is in state ej from ei, when ei, ej are both in a transient
space.

Proof. Consider

F = I + LB0 + L2
B0

+ · · · + Lm
B0

+ · · · ,

so ρjL
m
B0

(ei) = aej, which means the chain is in ej in the mth step (if a �= 0)
with probability a. If we define a random variable X(m) that equals 1, if the
chain is in ej after m steps and equals to 0 otherwise, then
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P{X(m) = 1} = ‖ρB0L
m(ei)‖ ,

P{X(m) = 0} = 1 − ‖ρB0L
m(ei)‖ ,

E(X(m)) = P{X(m) = 1} · 1 + P{X(m) = 0} · 0 = ‖ρB0L
m(ei)‖ .

So, we have

E(X(0)+X(1)+ · · · + X(m)) = ‖ρB0L
0(ei)‖+‖ρB0L(ei)‖ + · · · + ‖ρB0L

m(ei)‖
= ‖ρB0L

0(ei) + ρB0L(ei) + · · · + ρB0L
m(ei)‖.

When m → ∞, we obtain

‖ρjF (ei)‖ = E

∞∑
m=0

X(m).

Time to absorption

Definition 11. Let ei be a transient generator of an evolution algebra MX .
If there is an integer, such that Lm

B0
(ei) = 0, we say ei is absorbed in the mth

step.

Theorem 35. Let T (ei) be the expected number of steps before ei is absorbed
from ei. Then T (ei) = ||F (ei)||.
Proof. By Corollary 17, ||ρjF (ei)|| is the expected number of times that the
chain is in state ej from ei ( starting from ei). So when we take sum over all
the 0th transient space B0, we will get the result

T (ei) =
∑

ej∈B0

‖ρjF (ei)‖ = ‖F (ei)‖ .

As to the second equation, it is easy to prove, since F is the sum of any image
of ei under all powers of LB0 .

Probabilities of absorption by 0th simple subalgebras

Theorem 36. Let MX = A1⊕A2⊕· · ·⊕Ar

•
+ B0 be the decomposition of MX .

If ei is a transient generator, eventually it will be absorbed. The probability of
absorption by a simple subalgebra Ak is given by ||LAk

F (ei)||, where LAk
=

ρAk
L is the projection to subalgebra Ak.

Proof. We write LAk
F (ei) out as follows

LAk
F (ei) = LAk

(ei) + LAk
LB0(ei) + LAk

L2
B0

(ei) + · · · · · · .

We can see the coefficient of term LAk
L2

B0
(ei) is the probability that ei is

absorbed by Ak in the mth step. So when we take sum over times, we will
obtain the total probability of absorption.

Remark 8.
r∑

k=1

‖LAk
F (ei)‖ = 1.
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4.4.3 1st structure of a hierarchy

For an evolution algebra MX , we have the 1st structure

MX = A0,1 ⊕ A0,2 ⊕ · · · ⊕ A0,n0

•
+ B0

B0 = A1,1 ⊕ A1,2 ⊕ · · · ⊕ A1,n1

•
+ B1.

We define
L1 = LB1 = ρB1L

to be the 1st fundamental operator.

Theorem 37. Let MX be an evolution algebra. If it has the 1st simple evo-
lution subalgebra and the nontrivial 1st transient space, then the difference
between the identity and the 1st fundamental operator, I −L1, has an inverse
operator, and

F1 = (I − L1)−1 = I + L1 + L2
1 + · · · .

Proof. The proof is easy, since the spectrum radius of L1 is strictly less than 1.

Corollary 18. ‖ρjF1(ei)‖ is the expected number of times that the chain is
in state ej from ei, where ei and ej are both in the 1st transient space.

Proof. The proof is the same as that of Corollary 17.

Time to absorption at the 1st level

Definition 12. Let ei be a 1st transient generator of an evolution algebra,
i.e., ei ∈ B1. If there is an integer, such that Lk

1(ei) = 0, we say that ei is
absorbed in the kth step at the 1st level.

Theorem 38. Let T1(ei) be the expected number of steps before ei is absorbed
at the 1st level from ei, ei ∈ B1, then T1(ei) = ‖F1(ei)‖ .

Proof. The proof is the same as that of Theorem 35.

Probabilities of absorption by 1st simple subalgebras

Theorem 39. Let B0 = A1,1 ⊕ A1,2 ⊕ · · · ⊕ A1,n1

•
+ B1 be the decomposition

of the 0th transient space of MX . If ei ∈ B1, ei will eventually be absorbed
(leave space B1). The probability of absorption by a simple 1st subalgebra A1,k

is given by
∥∥LA1,k

F1(ei)
∥∥, where LA1,k

= ρA1,k
LB0 is the projection to the

subalgebra A1,k.

Remark 9.
n1∑

k=1

∥∥LA1,k
F1(ei)

∥∥ ≤ 1.
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4.4.4 kth structure of a hierarchy

Completely similarly, the 2nd fundamental operator and other terms can be
defined over the 1st structure of the hierarchy, and the corresponding theorems
can be obtained. If an evolution algebra has N levels in the hierarchy, we can
define the (N−1)th fundamental operator and other terms, we will also have
the corresponding theorems.

Relationships between different levels in a hierarchy

Proposition 12. For any generator ei ∈ Aδ,k, ei will be in Aζ,l with proba-
bility

∥∥LAζ,l
F (ei)

∥∥; the whole algebra Aδ,k will be in Aζ,l with probability∥∥∥∑ei∈Aδ,k
LAζ,l

F (ei)
∥∥∥

d(Aδ,k)
,

where d(Aδ,k) is the dimension of the δth subalgebra Aδ,k, 0 ≤ ζ < δ.

Proof. By the theorem of absorption probability, the first statement is just
a repetition. For the second one we just need to sum the absorption proba-
bilities over all the generators in the δth subalgebra Aδ,k. Then normalizing
this quantity by dividing the sum by the dimension of Aδ,k, we shall get the
probability that the whole algebra Aδ,k will be in Aζ,l.

The sojourn time during a simple evolution subalgebra

Suppose the evolution algebra MX has a hierarchy as follows:

Bm,1 ⊕ Bm,2 ⊕ · · · ⊕ Bm,h = Bm

Am,1 ⊕ Am,2 ⊕ · · · ⊕ Am,nm

·
+ Bm = Bm−1

· · · · · · · · · · · ·
A1,1 ⊕ A1,2 ⊕ · · · ⊕ A1,n1

·
+ B1 = B0

A0,1 ⊕ A0,2 ⊕ · · · ⊕ A0,n0

·
+ B0 = MX .

Then we have the following statements:

• We start at some head Bm,j or a distribution v over Bm, the sojourn time
during Bm (the expected number of steps or times before the chain leaves
Bm) is given by

‖FBm (v)‖ ,

where FBm = IBm + LBm + L2
Bm

+ · · · =
∑∞

k=0 Lk
Bm

.
• The sojourn time during Am,1 ⊕ Am,2 ⊕ · · · ⊕ Am,nm is given by∥∥FBm−1 (v)

∥∥− ‖FBm (v)‖ .



82 4 Evolution Algebras and Markov Chains

• The sojourn time during Am,k, denoted by mAm,k
(v), is given by

mAm,k
(v) =

∥∥ρAm,k
FBm−1(v)

∥∥ .

• The sojourn time during Ak,1 ⊕ · · · ⊕ Ak,nk
, k = 1, 2, · · · , m, is given by∥∥FBk−1 (v)

∥∥− ‖FBk
(v)‖ .

• Proposition (about sojourn times)

m,nk∑
k=1,l=1

mAk,l
(v) + mBm(v) = ‖F (ei)‖ .

Since the direction of chain moving along the hierarchy structure is limited
from a higher indexed subalgebra to lower indexed ones, and it never goes
back to higher indexed subalgebras if it once goes to a lower indexed
subalgebra, so there is no overlap or uncover time to be considered before
the chain enters some subalgebra in the 0th level.

Example 4. If MX has a decomposition as follows

MX = A0

•
+ B0

B0 = A1

•
+ B1

B1 = A2

•
+ B2

· · · · · ·
Bm−1 = Am

•
+ Bm,

which satisfies L(Bm) ⊂ Am ∪ Bm, L(Am) ⊂ Am ∪ Am−1, · · · · · · , L(A1) ⊂
A1 ∪ A0, then we have

mAk
(ei) = mBk−1(ei) − mBk

(ei), k = 0, 1, · · · , m,

where

mBk
(ei) = ||Fk(ei)|| =

∞∑
m=0

(ρBk
L)m(ei), (F0 = F ).

Proof. We need to prove first

ρA1F (ei) = F0(ei) − F1(ei)

=
∞∑

m=0

(ρB0L)m(ei) −
∞∑

m=0

(ρB1L)m(ei)

by comparing them term by term. We look at

ρB0L − ρB1L = ρA1ρB0L,
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this formula is true because B0 = A1

•
+ B1. Let ρB0L(ei) = u1 + v1, u1 ∈ B1,

v1 ∈ A1, we see,

(ρB0L)2(ei) = (ρB0L)(ρB0L)(ei)
= (ρB0L)(u1 + v1) = ρB0L(u1) + ρB0L(v1)
= (ρB1L)2(ei) + ρA1(ρB0L)2(ei)

or

(ρB0L)2 = (ρA1L + ρB1L)2

= (ρA1L)2 + (ρB1L)2 + ρA1LρB1L + ρB1LρA1L

= (ρB1L)2 + (ρA1L)(ρA1L + ρB1L)
= (ρB1L)2 + ρA1LρB0L

= (ρB1L)2 + ρA1(ρB0L)2,

since ρB1LρA1L = 0. Thus,

(ρB0L)2(ei) − (ρB1L)2(ei) = ρA1(ρB0L)2(ei).

Suppose
(ρB0L)n = (ρB1L)n + ρA1(ρB0L)n,

then we check,

(ρB0L)n+1 = (ρA1L + ρB1L)(ρB0L)n

= (ρA1L + ρB1L)[(ρB1L)n + ρA1(ρB0L)n]
= ρA1L(ρB1L)n + ρA1LρA1(ρB0L)n + ρB1L(ρB1L)n

+ρB1LρA1(ρB0L)n

= (ρB1L)n + ρA1L[(ρB1L)n + ρA1(ρB0L)n]
= (ρB1L)n+1 + ρA1(ρB0L)n+1,

by using ρB1LρA1 (ρB0)
n = 0 and ρA1ρB0 = ρA1 . By induction, we finish the

proof.

Remark 10. By this Example, we see that under a certain condition, the so-
journ times can be computed step by step over the hierarchial structure of an
evolution algebra.

4.4.5 Regular evolution algebras

Regular Markov chains are irreducible Markov chains. For a regular chain, it
is possible to go from every state to every state after certain fixed number of
steps. Their evolution algebras are simple and aperiodic. We may call these
evolution algebras “regular evolution algebras.” We will have a fundamental
limit theorem for this type of algebras.
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Definition 13. Let A be a commutative algebra, we define semi-principal pow-
ers of a with b, a, b ∈ A, as follows:

a ∗ b = a · b
a2 ∗ b = a · (a · b) = a · (a ∗ b)
a3 ∗ b = a · [a · (a · b)] = a · (a2 ∗ b)

· · · · · ·
an ∗ b = a · (an−1 ∗ b).

Theorem 40. Let MX be a regular evolution algebra with a generator set
{e1 e2 · · · er}, x =

∑r
i=1 αiei be any probability vector; that is, 0 < αi < 1

and
∑r

i αi = 1. Then,

limitn→∞θn ∗ x =
r∑

i=1

πiei,

where θ =
∑r

i=1 ei, and π =
∑r

i=1 πiei with 0 < πi < 1 and
∑r

i πi = 1, is
constant probability vector.

Recall that for an evolution algebra the universal element θ has the same
function as the evolution operator L does. Let us first prove a lemma related
to positive evolution operators and then prove this theorem.

Lemma 12. Let θ be the element corresponding to a positive evolution op-
erator L and c = Min{‖ρie

2
k‖, i, k ∈ Λ}. Let y =

∑r
i=1 yiei, and M0 =

Max{‖ρiy‖, i ∈ Λ }, and m0 = Min{‖ρiy‖, i ∈ Λ }. Let M1 = Max{‖ρiθy‖,
i ∈ Λ } and m1 = Min{‖ρiθy‖, i ∈ Λ } for the element θy. Then

M1 − m1 ≤ (1 − 2c)(M0 − m0).

Proof. Note that each coefficient of θy is a weighted average of the coefficients
of y. The biggest possible weight would be cm0 + (1− c)M0, and the smallest
possible weighted average be cM0 + (1− c)m0. Thus, M1 −m1 ≤ (cm0 + (1−
c)M0) − (cM0 + (1 − c)m0); this is, M1 − m1 ≤ (1 − 2c)(M0 − m0).

Let us give a brief proof of Theorem 40. Denote Mn = Max{ρiθ
n∗y, i ∈ Λ}

and mn = Min{ρiθ
n ∗ y, i ∈ Λ}. Since each component of θn ∗ y is an average

of the components of θn−1 ∗ y, we have M0 ≥ M1 ≥ M2 ≥ · · · and m0 ≤ m1 ≤
m2 ≤ · · ·. Each sequence is monotone and bounded, m0 ≤ mn ≤ Mn ≤ M0.
Therefore, they have limits as n tends to infinity. If M is the limit of Mn

and m the limit of mn, M − m = 0. This can be seen from Mn − mn ≤
(1 − 2c)n(M0 − m0), since c < 1

2 .
The Theorem 40 has an interesting consequence, and it is written as the

following proposition.
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Proposition 13. Within a regular evolution algebra, the algebraic equation

θ · x = x

has solutions, and the solutions form an one-dimensional linear subspace.

Now we provide statements relating to the mean first occurrence time.

Definition 14. Let MX be a simple evolution algebra with the generator set
{e1 e2 · · · en}, for any ei, the expected number of times that ei visits ej for
the first time is called the mean first occurrence time (passage time or visiting
time), denote it by mij . Then by the definition

mij =
∞∑

m=1

m
∥∥∥V (m)

j (ei)
∥∥∥ ,

where V
(m)
j is the operator of the first visiting to ej at the mth step.

Remark 11. Since we work on simple evolution algebras, so

Dj(ei) =
∞∑

m=1

V
(m)
j (ei) = ej .

This definition makes sense.

Proposition 14. Let MX be a simple evolution algebra, we define

Fj =
∞∑

m=0

(ρ0
jL)m.

Then we have

mij = ‖Fj(ei)‖ , if i �= j ,

mij = rij , if i = j, the mean recurrence time.

Proof. Take ρ0
jL = ρ0

ej
L as a fundamental operator, we have

∞∑
m=0

(ρ0
jL)m = (I − ρ0

jL)−1.

Taking derivative with respect to L as L is a real variable, and we have

∞∑
m=0

m(ρ0
jL)m−1 = (I − ρ0

jL)−2.
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Multiply by ρjL from the left-hand side, we obtain
∞∑

m=0

mρjL(ρ0
jL)m−1 = ρjL(I − ρ0

jL)−2.

Then, when i �= j,

∞∑
m=0

mρjL(ρ0
jL)m−1(ei) = ρjL(I − ρ0

jL)−2(ei).

We have,

ρjL(I − ρ0
jL)−2(ei) = ρjL(I − ρ0

jL)−1(I − ρ0
jL)−1(ei)

=
∞∑

m=0

ρjL(ρ0
jL)m−1(I − ρ0

jL)−1(ei)

= Dj(I − ρ0
jL)−1(ei) = DjFj(ei).

Therefore,

mij =
∞∑

m=0

m
∥∥ρjL(ρ0

jL)m−1
∥∥

=
∞∑

m=1

m
∥∥∥V (m)

j (ei)
∥∥∥

= ‖DjFj(ei)‖ = ‖Fj(ei)‖ .

When i = j,

rj =
∞∑

m=1

m
∥∥∥V (m)

j (ei)
∥∥∥ ,

rj is the expected return time.

4.4.6 Reduced structure of evolution algebra MX

As we know, by the reducibility of an evolution algebra, a simple evolution
subalgebra can be reduced to an one-dimensional subalgebra. Now for the evo-
lution algebra MX corresponding to a Markov chain X, each simple evolution
subalgebra can be viewed as one “big” state, since it corresponds to a “closed
subset” of the state space. Then the following formulae give probabilities that
higher indexed subalgebras move to lower indexed subalgebras.

• Moving from Bm,j to Ak,l, k = 0, 1, · · · , m − 1, l can be any number that
matches the chosen index k, with probability

1
d(Bm,j)

∑
ei∈Bm

LAk,l
(ei),

where d(Bm,j) is the dimension of the evolution subalgebra Bm,j.
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• Moving from Ak,l to Ak′ ,l′ , k′ < k, k = 1, · · · , m, with probability

1
d(Ak,l)

∑
ej∈Ak,l

LA
k
′
,l
′ (ei).

4.4.7 Examples and applications

In this section, we discuss several examples to show algebraic versions of
Markov chains, evolution algebras, also have advantages in computation of
Markov processes. Once we use the universal element θ instead of the evolution
operator in calculation, any probabilistic computation becomes an algebraic
computation. For simple examples, we can deal with hands; for complicated
examples, we just need to perform a Mathematica program for nonassocia-
tive setting symbolic computation. More advantages of evolution algebraic
computation shall be revealed when a Markov chain has many levels in its
hierarchy.

Example 5. A man is playing two slot-machines. The first machine pays off
with probability p, the second with probability q. If he loses, he plays the
same machine again; if he wins, he switches to the other machine. Let ei be
the state of playing the ith machine. We will form an algebra for this playing.
The defining relations of the evolution algebra are

e1 · e2 = 0,

e2
1 = (1 − p)e1 + pe2,

e2
2 = qe1 + (1 − q)e2.

The evolution operator is given by θ = e1 + e2. If the man starts at a general
state β = a1e1 + a2e2, the status after n plays is given by θn ∗ β. That is

(θ · · · θ(θ(θβ)) · ··).
Since θβ = (e1 + e2)(a1e1 + a2e2) = (a1 + a2q − a1p)e1 + (a2 + a1p − a2q)e2,
we can compute the semi-principal power and have

θn ∗ β =
a1p(1 − p − q)n + a1q + a2q − a2(1 − p − q)nq

p + q
e1

+
a1p + a2p − a1p(1 − p − q)n + a2(1 − p − q)nq

p + q
e2.

It is easy to see that after infinite many times of plays, the man will reach
the status q

p+q e1 + p
p+q e2. If p = 1 and q = 1, we have a cyclic algebra. That

is (e2
i )

2 = ei. If p = 0 and q = 0, we have a nonzero trivial algebra. If one of
these two parameters is zero, say q = 0, the algebra has one subalgebra and
one transient space. Since θ · e2 = e2 in this case, the evolution operator can
be represented by ρ1e1, and we have
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F (e1) =
∞∑

n=0

(ρ1e1)n ∗ e1 = e1 + (1 − p)e1 + (1 − p)2e1 + · · · =
1
p
e1.

So, the expected number that this man plays machine 1 is 1
p .

Example 6. We continue the example 5. Let us suppose there are five machines
available for this man to play. Playing the machine 1, he wins with probability
p; if he loses, he play the machine 1 again, otherwise move to the machine 2.
Playing the machine 2, he wins with probability q; if he loses, he play the
machine 2 again, otherwise move to the machine 3. Playing the machine 3, he
loses with probability 1 − r − s, wins with probability r + s; when he wins,
he moves to the machine 2 with probability r and move to the machine 4
with probability s. Once he plays machine 4 and 5, he cannot move to other
machines. The machine 4 pays off with probability u, the machine 5 with
probability v; if he loses, he play the same machine again.

As the example 5, the defining relations are given by

e2
1 = (1 − p)e1 + pe2, e2

2 = (1 − q)e2 + qe3,

e2
3 = re2 + (1 − r − s)e3 + se4, ei · ej = 0,

e2
4 = (1 − u)e4 + ue5, e2

5 = ve4 + (1 − v)e5.

The algebra has a decomposition M(X) = A0+̇B0, and B0 = A1 + B1,
where A0 = 〈e4, e5〉, which is a subalgebra; B0 = Span(e1, e2, e3), which
is the 0th transient space; A1 = 〈e2, e3〉1, which is a 1st subalgebra, and
B1 = Span(e1) = Re1, which is the first transient space. We ask what are
the expected numbers that this man plays the same machine when he starts
at the machine 1, 2, and 3, respectively. From the algebraic structure of this
evolution algebra, we can decompose the evolution operator L or correspond-
ingly decompose θ =

∑5
i=1 ei as θ1 = e1, θ2 = e2 + e3, and θ3 = e4 + e5.

Starting at the machine 1, it is easy to compute that

e1 + θ1 ∗ e1 + θ2
1 ∗ e1 + θ3

1 ∗ e1 + · · · =
1
p
e1.

That gives us the mean number he plays the machine, which is 1
p . Generally,

we need to compute
∑∞

k=0(θ1 +θ2)k ∗e1. We perform a Mathematica program
to compute it, or compute it by hands inductively. We get the result which is
1
pe1 + r+s

qs e2 + 1
se3. So, when this man starts to play the machine 1, the mean

number of playing the machine is 1
p , the mean number of playing the machine

2 is r+s
qs and the mean number of playing the machine 3 is 1

s . Starting at the
machine 2, we need to compute

e2 + θ2 ∗ e2 + θ2
2 ∗ e2 + θ3

2 ∗ e2 + · · ·.
We perform a Mathematica program to compute this nonassociative summa-
tion, it gives us r+s

qs e2 + 1
se3. (It also can be obtained inductively.) Thus, the
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expected number that this man plays the machine 2 is r+s
qs , when he start at

the machine 2; and the expected number he plays the machine 3 is 1
s . Simi-

larly, we can get the expected number that he plays the machine 3 is r
qs . Once

he moves to the machine 4 or 5, he will stay there for ever. As example 5,
from a long run, he will play the machine 4 with probability v

u+v , play the
machine 5 with probability u

u+v .

Example 7. We modify an example from Kempthorne [42] as our example of
applications to Mendelian genetics, a simple case of Wright-Fisher models. In
the next chapter, we will apply evolution algebras to Non-Mendelian genetics.
Here we consider the simplest case, where only two genes are involved in each
generation, a and A. Hence any individual must be of gene type aa or aA or
AA. Assume A dominates a, then AA is a pure dominant, aA is a hybrid,
and aa is a pure recessive individual. Then a pair of parents must be of one
of the following six types: (AA, AA), (aa, aa), (AA, Aa), (aa, Aa), (AA, aa),
(Aa, Aa). We think of each pair of parents as one self-reproduction animal
with four genes. The offspring is produced randomly. In its production, it is s
times as likely to produce a given animal unlike itself than a given animal like
itself. Thus s measures how strongly “opposites attract each other.” We take
into account that in a simple dominance situation, AA and Aa type animal are
alike as far as appearance are concerned. We set (AA, AA) = e1, (aa, aa) = e2,
(AA, Aa) = e3, (aa, Aa) = e4, (AA, aa) = e5, and (Aa, Aa) = e6. Then, we
have an algebra generated by these generators and subject to the following
defining relations:

e2
1 = e1, e2

2 = e2, ei · ej = 0,

e2
3 =

1
4
e1 +

1
2
e3 +

1
4
e6, e2

5 = e6,

e2
4 =

1
2(s + 1)

e2 +
s

s + 1
e4 +

1
2(s + 1)

e6,

e2
6 =

1
4(s + 3)

e1 +
1

4(3s + 1)
e2 +

1
s + 1

e3 +
2s(s + 1)

(s + 3)(3s + 1)
e4

+
s(s + 1)

(s + 3)(3s + 1)
e5 +

1
s + 1

e6.

We see that there are two subalgebras generated by e1 and e2, respectively,
which correspond to pure strains: pure dominant and pure recessive; the tran-
sient space B0 is spanned by the rest generators. Now we ask the following
questions: when a hybrid parent starts to reproduce, what’s the mean genera-
tions to reach a pure strain? How do the parameter s affect these quantities?
To answer these questions, we need to compute F (ei) =

∑∞
k=0(ρB0θ)k ∗ ei for

each hybrid parent ei. We perform a Mathematica program, and get

F (e3) =
4(s2 + 5s + 2)
2s2 + 7s + 3

e3+
2s(s + 1)2

2s2 + 7s + 3
e4+

s2 + s

2s2 + 7s + 3
e5+

3s2 + 10s + 3
2s2 + 7s + 3

e6,
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F (e4) =
6s + 2

2s2 + 7s + 3
e3+

4s3 + 13s2 + 12s + 3

2s2 + 7s + 3
e4+

s2 + s

2s2 + 7s + 3
e5+

3s2 + 10s + 3

2s2+7s + 3
e6,

F (e5) =
12s + 4

2s2 + 7s + 3
e3 +

4s(s + 1)2

2s2 + 7s + 3
e4 +

4s2 + 9s + 3
2s2 + 7s + 3

e5 +
6s2 + 20s + 6
2s2 + 7s + 3

e6,

F (e6) =
12s + 4

2s2 + 7s + 3
e3 +

4s(s + 1)2

2s2 + 7s + 3
e4 +

2s2 + 2s

2s2 + 7s + 3
e5 +

6s2 + 20s + 6
2s2 + 7s + 3

e6.

From the theory developed in this chapter, the value

‖F (e3)‖ =
2s3 + 12s2 + 33s + 11

2s2 + 7s + 3

is the mean generations that when the parent (AA, Aa) starts to produce
randomly, the genetic process reaches the pure strains. Similarly,

‖F (e4)‖ =
4s3 + 17s2 + 29s + 8

2s2 + 7s + 3
,

‖F (e5)‖ =
4s3 + 18s2 + 45s + 13

2s2 + 7s + 3
,

‖F (e6)‖ =
4s3 + 16s2 + 38s + 10

2s2 + 7s + 3

are the mean generations that when parents (aa, Aa), (AA, aa), and (Aa, Aa)
start to produce randomly, the genetic processes reach the pure strains, re-
spectively. We see that all these mean generations are increasing functions of
the parameter s. Therefore, large s has the effect of producing more mixed
offsprings. It is expected that a large s would slow down the genetic process
to a pure strain.


