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a b s t r a c t

Relationships between certain properties of maximal subalgebras of a Lie algebra L and the
structure of L itself have been studied by a number of authors. Somemaximal subalgebras,
however, exert a greater influence on particular results than others. Here we study
properties of those maximal subalgebras that contain Engel subalgebras, and of those that
also have codimension greater than one in L.
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1. Introduction

Relationships between certain properties of maximal subalgebras of a Lie algebra L and the structure of L itself have been
studied by a number of authors. Some maximal subalgebras, however, exert a greater influence on particular results than
others. Here, we study properties of those maximal subalgebras that contain Engel subalgebras. This idea is somewhat akin
to that of maximal subgroups containing Sylow subgroups as introduced by Bhattacharya and Mukherjee in [8], and further
studied in [9,10,15].

For x ∈ L, the Engel subalgebra, EL(x), is the Fitting null-component relative to ad x. If U is a subalgebra of L, the core of U ,
UL, is the largest ideal of L contained in U . We put

G = {M : M is a maximal subalgebra of L and EL(x) ⊆ M for some x ∈ L},

G(L) =


M∈G

M if G is non-empty; G(L) = L otherwise; γ (L) = G(L)L.

In Section 2, we consider the structure of γ (L) and its relationship to properties of L itself. It is shown that γ (L) is nil
on L and that L is nilpotent precisely when γ (L) = L. When L is solvable, then γ (L) = τ(L) = T (L)L, where T (L) is the
intersection of the self-idealising maximal subalgebras of L (see [12]). Necessary and sufficient conditions are found for all
maximal subalgebras of L to belong to G, provided that the underlying field is algebraically closed and of characteristic zero.

In Section 3, necessary and sufficient conditions are found for every maximal subalgebra of L belonging to G to have
codimension one in L. This result generalises [13, Theorem 1]. Now, put

H = {M : M is a maximal subalgebra of L of codimension > 1 in L},

H(L) =


M∈H

M if H is non-empty; H(L) = L otherwise; η(L) = H(L)L,

D = {M ∈ G : M ∈ H},

D(L) =


M∈D

M if D is non-empty; D(L) = L otherwise; δ(L) = D(L)L.
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We then investigate some basic properties of η(L) and δ(L), showing, in particular, that if L is solvable then they are
supersolvable. Finally, it is shown that all maximal subalgebras M of L with M ∈ D are c-ideals of L if and only if L is
solvable. This generalises [14, Theorem 3.1].

Throughout, L will denote a finite-dimensional Lie algebra over a field F , which is arbitrary unless restrictions on F are
specified. We define the derived series for L inductively by L(0)

= L, L(i+1)
= [L(i), L(i)

] for all i ≥ 0. The symbol ⊕ will denote
a direct sum of the underlying vector space structure.

2. Maximals containing Engel subalgebras

First,we note that themaximals inG are precisely those containing Cartan subalgebras, provided that the field has enough
elements; also, that G(L) is an ideal when F has characteristic zero.

Lemma 2.1. Let L be a Lie algebra over a field F with at least dim L elements. Then M ∈ G if and only if M contains a Cartan
subalgebra of L.

Proof. Simply note that the minimal Engel subalgebras are precisely the Cartan subalgebras of L, by [4, Theorem 1]. �

Lemma 2.2. Let L be a Lie algebra over a field F of characteristic zero. Then G(L) = γ (L).

Proof. For every automorphism θ of L, and every x ∈ L, θ(EL(x)) = EL(θ(x)), so G(L) is invariant under every automorphism
of L. It follows from [11, Corollary 3.2] that it is invariant under all derivations of L, whence the result. �

Next,we collect together somebasic properties of γ (L); in particular, parts (iv) and (v) of the first lemmabelowgeneralise
characterisations of nilpotent Lie algebras due to Barnes (see [2,3]).

Lemma 2.3. Let L be a Lie algebra. Then

(i) γ (L) is nil on L, and so nilpotent;
(ii) L is nilpotent if and only if L = γ (L);
(iii) L is nilpotent if and only if G = ∅;
(iv) L is nilpotent if and only if M is an ideal of L for all M ∈ G; and
(v) L is nilpotent if and only if L/B is nilpotent for some ideal B of L with B ⊆ γ (L).

Proof. (i) Let x ∈ γ (L), and suppose that EL(x) ≠ L. Then there is a subalgebra M ∈ G such that EL(x) ⊆ M . But
L = EL(x) ⊕ L1(x), where L1(x) = ∩

∞

i=1L(ad x)i ⊆ γ (L), so L = M , a contradiction. The result follows.
(ii) L is nilpotent if and only if EL(x) = L for all x ∈ L, by Engel’s Theorem. But this holds if and only if γ (L) = L.
(iii) This is clear from (ii).
(iv) If L is nilpotent, then all maximal subalgebras of L are ideals of L (see [2]). Conversely, suppose that all maximal
subalgebras of L in G are ideals of L, and let M ∈ G. Then EL(x) ⊆ M for some x ∈ L, so IL(M) = M , by [16, Corollary
4.4.4.4]. It follows that G = ∅, and thus that L is nilpotent, by (iii).
(v) Suppose that B is an ideal of L with B ⊆ γ (L) such that L/B is nilpotent. Suppose that G ≠ ∅, and let M ∈ G. Then there
is an x ∈ L such that EL(x) ⊆ M . It follows from [16, Corollary 4.4.4.4] that IL(M) = M . Now, B ⊆ γ (L) ⊆ M and M/B is a
maximal subalgebra of L/B, soM/B is an ideal of L/B. It follows thatM is an ideal of L, a contradiction. Hence G = ∅ and L is
nilpotent, by (iii).

The converse is clear. �

Lemma 2.4. Let L be a Lie algebra over a field F and let B be an ideal of L. Then

(i) (EL(x) + B)/B ⊆ EL/B(x + B) for all x ∈ L;
(ii) if B ⊆ M and M/B ∈ G, then M ∈ G;
(iii) (γ (L) + B)/B ⊆ γ (L/B);
(iv) if F has at least dim L elements and M ∈ G, then M/B ∈ G if B ⊆ M; and
(v) if F has at least dim L elements and B ⊆ γ (L), then γ (L)/B = γ (L/B).

Proof. (i) Let y ∈ EL(x). Then y(ad x)n = 0 for some n ∈ N, and so (y+B)(ad (x+B))n ⊆ B. It follows that y+B ∈ EL/B(x+B).
(ii) This follows from (i).
(iii) This follows from (ii).
(iv) Suppose thatM ∈ G. ThenM contains a Cartan subalgebra C of L, by Lemma 2.1. But now (C+B)/B is a Cartan subalgebra
of L/B, by [16, Theorem 4.4.5.1], whenceM/B ∈ G.
(v) This follows from (iii) and (iv). �

The Frattini subalgebra, F(L), of L is the intersection of the maximal subalgebras of L, and the Frattini ideal is φ(L) = F(L)L.
We say that L is φ-free if φ(L) = 0. If U is a subalgebra of L, the idealiser of U in L is IL(U) = {x ∈ L : [x,U] ⊆ U}. Next, we
see that if L is solvable then the elements of G are precisely the self-idealising maximal subalgebras of L.

Proposition 2.5. Let L be solvable. Then M ∈ G if and only if IL(M) = M.
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Proof. If M ∈ G, then EL(x) ⊆ M for some x ∈ L, whence IL(M) = M , by [16, Corollary 4.4.4.4].
Now, let L be a solvable Lie algebra of minimal dimension having a subalgebra M such that IL(M) = M but M /∈ G. Then

L is φ-free andML = 0, by Lemma 2.4(ii). Let A be a minimal ideal of L. Then L = A ⊕ M . Pick a minimal ideal B ofM , and let
b ∈ B. We have that L = EL(b) ⊕ L1(b). Moreover, L1(b) ⊆ A, since B is abelian, so L = EL(b) + A. Now, A + B is an ideal of
L, and hence so is [A, B] = [A + B, A + B]. If EL(b) = L for all b ∈ B, then [A, B] = 0, and B is an ideal of L, contradicting the
fact thatML = 0.

It follows that there is a b ∈ B and a maximal subalgebra K of L such that EL(b) ⊆ K . Now, L = A ⊕ K so EA(b) = 0. But it
is easy to check that EL(b) = EA(b) ⊕ EM(b) = EM(b), soM ∈ G. This contradiction establishes the converse. �

Corollary 2.6. Let L be a solvable Lie algebra. Then L is supersolvable if and only if M has codimension one in L for every M ∈ G.

Proof. Suppose first that M has codimension one in L for every M ∈ G. Let K be any maximal subalgebra of L such that
K /∈ G. Then K is an ideal of L, by Proposition 2.5, and so has codimension one in L. It follows that L is supersolvable, by [3,
Theorem 7].

The converse follows immediately from [3, Theorem 7]. �

Corollary 2.7. Let B be an ideal of L with B ⊆ γ (L) such that L/B is supersolvable. Then L is supersolvable.

Following [12], we put

T = {M : M is a maximal subalgebra of L and IL(M) = M},

T (L) =


M∈T

M if T is non-empty; T (L) = L otherwise; τ(L) = T (L)L.

Then we have the following result.

Corollary 2.8. If L is solvable, then γ (L) = τ(L).

The hypothesis that L be solvable cannot be removed from Proposition 2.5, as the next result will show. A subalgebra U
of a semisimple Lie algebra L is called regular if we can choose a basis for U in such a way that every vector of this basis is
either a root vector of L corresponding to some Cartan subalgebra C of L, or otherwise belongs to C; U is an R-subalgebra of
L if it is contained in a regular subalgebra of L, and is an S-subalgebra otherwise (see [6, page 158]).

Proposition 2.9. Let L be a semisimple Lie algebra over an algebraically closed field F of characteristic zero. Then M ∈ G if and
only if M is a regular maximal subalgebra of L.

Proof. Suppose first thatM ∈ G. ThenM contains a Cartan subalgebra of L by Lemma 2.1, and so is clearly regular.
Now, suppose that M is a regular maximal subalgebra of L. Then M is either parabolic or semisimple of maximal rank

(see [6]), whenceM ∈ G. �

In view of the above result, if M is a maximal subalgebra that is an S-subalgebra of a semisimple Lie algebra L over an
algebraically closed field of characteristic zero, then M is self-idealising but not in G. This observation yields the following
corollary.

Corollary 2.10. Let L be a semisimple Lie algebra over an algebraically closed field F of characteristic zero, and suppose that all
maximal subalgebras of L belong to G. Then L = sl(2, F).

Proof. First, suppose that L is simple. If L ≠ sl(2, F), then L has an S-subalgebra isomorphic to sl(2, F) (see [6, Section 9,
pages 168–175]). This subalgebra must be inside a maximal subalgebra which is itself an S-subalgebra, and so is not in G.

Now, suppose that L is semisimple, so that L = S1 ⊕ · · · ⊕ Sn, where Si is a simple ideal of L, and let M be a maximal
subalgebra of Si. Then

n−
j=1,j≠i

Si ⊕ M

is a maximal subalgebra of L, and so contains a Cartan subalgebra C of L. But now, if πi is the projection map of L onto Si,
πi(C) is a Cartan subalgebra of Si contained inM . It follows that Si ∼= sl(2, F) for each 1 ≤ i ≤ n.

Finally, let S be sl(2, F), let S̄ be an isomorphic copy of S, and denote the image of s ∈ S in S̄ by s̄. Put L = S ⊕ S̄ with
[S, S̄] = 0. It is easy to check that the diagonal subalgebraM = {x ∈ L : x = s+ s̄ for some s ∈ S} is maximal in L. However,
s ∈ EL(s + s̄) for every s ∈ S, soM /∈ G. �

The abelian socle of L, Asoc L, is the sum of the minimal abelian ideals of L. We can use the above result to classify the Lie
algebras all of whose maximal subalgebras belong to G.

Theorem 2.11. Let L be a Lie algebra over an algebraically closed field F of characteristic zero. Then the following are equivalent:

(i) all maximal subalgebras of L belong to G; and
(ii) L/φ(L) = Asoc (L/φ(L)) ⊕ S where S ∼= sl(2, F) and each minimal ideal of L/φ(L) has even dimension.
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Proof. Suppose first that (i) holds and that φ(L) = 0. Then we have that L = Asoc (L) ⊕ (S ⊕ B), where S is a semisimple
subalgebra, B is an abelian subalgebra, and [S, B] = 0, by [11, Theorems 7.4 and 7.5]. Let C be a Cartan subalgebra of L, and
let L = C ⊕ L1 be the Fitting decomposition of L relative to C . Clearly, L1 ⊆ L(1)

⊆ Asoc (L) ⊕ S. If B ≠ 0, it follows that
any maximal subalgebra of L containing Asoc (L) ⊕ S cannot contain a Cartan subalgebra of L. This yields that B = 0. That
S ∼= sl(2, F) then follows from Lemma 2.4.

Now let A be a minimal ideal of L. Then A is an irreducible sl(2, F)-module, and so has the structure given in [7, pages
83–86]. Let Fh be a Cartan subalgebra of S, and letD be its centraliser in A. Then E = Fh+D is a Cartan subalgebra of K = A+S
(see [5]). If A has odd dimension, Cartan subalgebras of K have dimension greater than 1 (put i = m/2 in [7, (36), page 85]).
But S is a maximal subalgebra of K and contains no such Cartan subalgebra.

If φ(L) ≠ 0, then L/φ(L) satisfies the hypotheses of (i) by Lemma 2.4, and so (ii) follows.
So now assume that (ii) holds. We can assume that φ(L) = 0, since, if we can prove (ii) for this case, the result will follow

from Lemma 2.4. Let A = Asoc (L) = A1 ⊕ · · · ⊕ An. It is straightforward to check, using [7, (36), page 85]), that, if Fh is a
Cartan subalgebra of S, then CA(h) = 0. It follows from [5] that the Cartan subalgebras of L are one dimensional. Now, the
maximal subalgebras of L are of the form A ⊕ K , where K is a maximal subalgebra of S, or

n−
j=1,j≠i

Ai ⊕ S.

Clearly, each of these contains a Cartan subalgebra of L, and (i) follows. �

3. Maximal subalgebras of codimension one

Our objective here is to generalise Corollary 2.6 and [13, Theorem 1]. First, we recall the definition of the algebras Lm(Γ )
over a field F of characteristic zero or p, where p is prime, as given by Amayo in [1, page 46]. Let m be a positive integer
satisfying

m = 1,
or if p is odd, m = pr − 2 (r ≥ 1),
or if p = 2, m = 2r

− 2 or m = 2r
− 3 (r ≥ 2).

Let Γ = {γ0, γ1, . . .} ⊆ F subject to

(m + 1 − i)γi = γm+i−1 = 0 for all i ≥ 1, and
λi,k+1−iγk+1 = 0 for all i, kwith 1 ≤ i ≤ k.

Let Lm(Γ ) be the Lie algebra over F with basis v−1, v0, v1, . . . , vm and products

[v−1, vi] = −[vi, v−1] = vi−1 + γivm, [v−1, v−1] = 0,
[vi, vj] = λijvi+j for all i, j with 0 ≤ i, j ≤ m,

where vm+1 = · · · = v2m = 0.
We also let Hm,i be the subspace spanned by vi, . . . , vm.
We shall need the following classification of Lie algebras with core-free subalgebras of codimension one as given in [1].

Theorem 3.1. ([1, Theorem 3.1]) Let L have a core-free subalgebra of codimension one. Then either (i) dim L ≤ 2, or else
(ii) L ∼= Lm(Γ ) for some m and Γ satisfying the above conditions.

We shall also need the following properties of Lm(Γ ) which are given by Amayo in [1].

Theorem 3.2 ([1, Theorem 3.2]). (i) If m > 1 and m is odd, then Lm(Γ ) is simple, and Hm,0 is the only subalgebra of
codimension one.

(ii) If m > 1 and m is even, then Lm(Γ ) has precisely two subalgebras of codimension one in Lm, namely L(1)
m and Hm,0.

(iii) L1(Γ ) has a basis {u−1, u0, u1} with multiplication [u−1, u0] = u−1 + γ0u1 (γ0 ∈ F , γ0 = 0 if Γ = {0}), [u−1, u1] =

u0, [u0, u1] = u1.
(iv) If F has characteristic different from two, then L1(Γ ) ∼= L1(0) ∼= sl(2, F).
(v) If F has characteristic two, then L1(Γ ) ∼= L1(0) if and only if γ0 is a square in F .

Lemma 3.3. Let x ∈ L be ad-nilpotent. Then (ad x)dim L
= 0.

Proof. It is easy to check that, if y (ad x)n = 0 but y (ad x)n−1
≠ 0, then the elements y, y (ad x), . . . , y (ad x)n−1 are linearly

independent. �

Lemma 3.4. Let L ∼= Lm(Γ ). Then all maximal subalgebras M ∈ G have codimension one in L if and only if L ∼= L1(0).
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Proof. Let L = Lm(Γ ) have all maximal subalgebras M ∈ G with codimension one in L, and suppose that m > 1. We have
that v−1 ∉ Hm,0, and it is shown in the proof of [1, Theorem 3.2] that vm ∉ L(1)

m , so v−1 + vm does not belong to a subalgebra
of codimension one in L. It follows that EL(v−1 + vm) = L and v−1 + vm is ad-nilpotent. Now,

[vi, v−1 + vm] = −vi−1 − γivm (i ≥ 1);
[v0, v−1 + vm] = −v−1 − (γ0 + λm0)vm; [v−1, v−1 + vm] = −vm−1 − γmvm.

This yields that vi(ad (v−1 + vm))m+2 is (−1)m+2γiv−1 + f (v0, v1, . . . vm) for 1 ≤ i ≤ m. Since m + 2 = dim L, it follows
from Lemma 3.3 that γi = 0 for 1 ≤ i ≤ m. But v−1 + v0 + vm is also ad-nilpotent, and a similar calculation shows that
v1(ad (v−1 + v0 + vm))m+2 is (−1)m+2v0 + g(v−1, v1, . . . , vm), which contradicts Lemma 3.3. Hencem = 1.

Suppose that L ≁= L1(0). Then Theorem 3.2(iii) and (iv) imply that F has characteristic two and L has a basis u−1, u0, u1
with multiplication [u−1, u0] = u−1 + γ0u1, [u−1, u1] = u0, [u0, u1] = u1, where γ0 is not a square in F . But a simple
calculation verifies that Fu−1 is a maximal subalgebra of L containing EL(u−1) = Fu−1, contradicting our hypothesis. It
follows that L ∼= L1(0).

The converse follows from [13, Theorem 1]. �

Theorem 3.5. Let L be a Lie algebra over a field with at least dim L elements. Then the following are equivalent:

(i) every maximal subalgebra M ∈ G has codimension one in L; and
(ii) L/γ (L) = S ⊕ R, where S = S1 ⊕ · · · ⊕ Sn, Si is a simple ideal of L/γ (L) isomorphic to L1(0) for each 1 ≤ i ≤ n, or is {0},

and R is a supersolvable ideal of L/γ (L) (possibly {0}).

Proof. (i) ⇒ (ii): Suppose that (i) holds, and assume first that γ (L) = 0. If L is solvable it is supersolvable, by Corollary 2.6,
so suppose that L is not solvable. Clearly, L has a maximal subalgebra M1 ∈ G (otherwise, L is nilpotent). If all M ∈ G have
L/ML solvable, then L(2)

⊆ γ (L) = 0, and L is solvable, so we can further assume that L/(M1)L ∼= L1(0), by Theorem 3.1 and
Lemma 3.4. If (M1)L = 0, we have finished, so suppose that (M1)L ≠ 0.

Let M2 ∈ G be a maximal subalgebra with (M1)L ⊈ M2. Then L = (M1)L + M2. Put B = (M1)L + (M2)L. Since L/(M1)L
is simple, B = (M1)L or B = L. The former implies that (M1)L = (M2)L = M2, a contradiction, so L = B = (M1)L + (M2)L.
Now, L/((M1)L ∩ (M2)L) ∼= (L/(M1)L) ⊕ (L/(M2)L). Suppose there is such anM2 with L/(M2)L ∼= L1(0). If (M1)L ∩ (M2)L = 0,
we have finished. If (M1)L ∩ (M2)L ≠ 0, then choose M3 ∈ G to be a maximal subalgebra with (M1)L ∩ (M2)L ⊈ M3. In
similar fashion to that above, we find that L = ((M1)L ∩ (M2)L) + (M3)L. If there is such an M3 with L/(M3)L ∼= L1(0) and
(M1)L ∩ (M2)L ∩ (M3)L ≠ 0, we continue in the same way.

Eventually, obtain L = A + (Mn)L, where A = (M1)L ∩ · · · ∩ (Mn−1)L, Mn ∈ G is a maximal subalgebra of L with A ⊈ Mn,
L/(A∩ (Mn)L) ∼= (L/(Mn)L) ⊕ S1 ⊕ · · · ⊕ Sn−1, each Si ∼= L/(Mi)L ∼= L1(0) for 1 ≤ i ≤ n− 1, and either L/(Mn)L ∼= L1(0) and
A ∩ (Mn)L = 0, in which case we have finished, or else there is no Mn ∈ G with L/(Mn)L ∼= L1(0) and dim(L/(Mn)L) ≤ 2. So
suppose that the latter holds, in which case L(2)

⊆ (Mn)L. We now have that, for every M ∈ G, either A ⊆ M or L(2)
⊆ M ,

which yields that A ∩ L(2)
⊆ γ (L) = 0, whence A(2)

= 0 and A is solvable.
Now

L/A ∼=
L/(A ∩ (Mn)L)

A/(A ∩ (Mn)L)
∼= S1 ⊕ · · · ⊕ Sn−1

(since A/(A ∩ (Mn)L ∼= L/(Mn)L), so L = L(2)
⊕ A. Moreover, A is supersolvable, by Corollary 2.6, and L(2) ∼= L/A, which

completes the proof for the case γ (L) = 0.
Now, suppose that γ (L) ≠ 0. Then, if M/γ (L) ∈ G, we have M ∈ G, by Lemma 2.4(ii), and so M/γ (L) has codimension

one in L/γ (L). Thus (ii) follows from the argument above.

(ii) ⇒ (i): So now suppose that (ii) holds, and letM ∈ G. Then L/γ (L) is φ-free, so L = L/γ (L) = S ⊕R = S ⊕ (A⊕ B), where
A = A1 ⊕ · · · ⊕ Ak = Asoc L and B is abelian, by [11, Theorems 7.3 and 7.4]. Since R = A⊕ B is supersolvable, dim Ai = 1 for
each 1 ≤ i ≤ k. Clearly, M = M/γ (L) is a maximal subalgebra of L. If A ⊈ M , then there is an Ai ⊈ M for some 1 ≤ i ≤ k.
But then L = Ai + M , andM has codimension one in L, whenceM has codimension one in L. So assume that A ⊆ M .

Suppose that B ⊈ M . Then there is an element b ∈ B such that b ∉ M . But [B, L] ⊆ A ⊆ M , so L = M + Fb, and again M
has codimension one in L.

So suppose that R ⊆ M . Suppose further that there exist i, j with 1 ≤ i, j ≤ n and Si ⊈ M , Sj ⊈ M . Then
L = M + Si = M + Sj. Moreover, [L,M ∩ Si] = [M + Sj,M ∩ Si] = [M,M ∩ Si] ⊆ M ∩ Si, so M ∩ Si is an ideal of
L. It follows that M ∩ Si = 0. Since M ∈ G, by Lemma 2.4(iv), EL(r +

∑n
t=1 xt) ⊆ M for some r ∈ R, xt ∈ St . But now

xi ∈ EL(r +
∑n

t=1 xt)∩ Si = 0 for each xi ∈ Si, which yields that Si ⊆ EL(r +
∑n

t=1 xt)∩ Si = 0, a contradiction. We therefore
have that there is just one Si with Si ⊈ M , in which case

M = R ⊕

n−
j=1,j≠i

Sj ⊕ K ,

where K is a maximal subalgebra of Si. It follows from Lemma 3.4 thatM has codimension one in L. �
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Then we have the following corollary to Theorem 3.5.
Corollary 3.6. Let L be a Lie algebra over a field with at least dim L elements. Then L is supersolvable if and only if δ(L) = L and
L/γ (L) has no ideals isomorphic to L1(0).

Next, we have some basic properties of η(L) and δ(L).
Lemma 3.7. Let L be a Lie algebra over a field F , and let B be an ideal of L. Then
(i) (η(L) + B)/B ⊆ η(L/B) and (δ(L) + B)/B ⊆ δ(L/B);
(ii) if B ⊆ η(L), then η(L)/B = η(L/B); and
(iii) if F has at least dim L elements and B ⊆ δ(L), then δ(L)/B = δ(L/B).
Proof. This is straightforward. �

Define the series {Zi : i ≥ 0} inductively by Z0 = {0}, Zi/Zi−1 = Z(L/Zi−1) for all i ≥ 1, where Z(L) is the centre of L. Then
the hypercentre of L is Z∞ = ∪

∞

i=0Zi.
Proposition 3.8. For any Lie algebra L, Z∞ ⊆ η(L) ⊆ δ(L).
Proof. Suppose that Z∞ ⊈ η(L). Then there is amaximal subalgebraM ∈ H and k ≥ 1 such that Zk ⊈ M , whereas Zk−1 ⊆ M .
But now L = M + Zk, from which it follows that M is an ideal of L, and so has codimension one in L, a contradiction. The
other inclusion is clear. �

Proposition 3.9. For any solvable Lie algebra L, δ(L) (and hence also η(L)) is supersolvable.
Proof. Let L be a minimal counter-example. Suppose first that γ (L) ≠ 0. Then δ(L)/γ (L) ⊆ δ(L/γ (L)) is supersolvable. But

δ(L)
γ (L)

∼=
(δ(L)/φ(L))
(γ (L)/φ(L))

∼=
(δ(L)/φ(L))
(τ (L)/φ(L))

=
(δ(L)/φ(L))
Z(L/φ(L))

,

by Corollary 2.8 and [12, Theorem 2.8]. It follows that δ(L)/φ(L) is supersolvable, and hence that δ(L) is supersolvable, by
[3, Theorem 6].

So suppose now that γ (L) = 0. Let A be a minimal ideal of Lwith A ⊆ δ(L). Then there is a maximal subalgebraM ∈ G of
Lwith L = A⊕M . If dim A > 1, then A ⊆ δ(L) ⊆ M , a contradiction. Hence dim A = 1. But δ(L)/A ⊆ δ(L/A) is supersolvable,
whence δ(L) is supersolvable. This contradiction completes the proof. �

A subalgebra U of L is called a c-ideal of L if there is an ideal C of L such that L = U + C and U ∩ C ≤ UL. Finally, we have
the following generalisation of [14, Theorem 3.1].
Theorem 3.10. Let L be a Lie algebra over any field F . Then all maximal subalgebras M of L with M ∈ D are c-ideals of L if and
only if L is solvable.
Proof. This follows closely that of [14, Theorem 3.1], but we include the details for the convenience of the reader. Let L be
a non-solvable Lie algebra of smallest dimension in which all maximal subalgebras M of L with M ∈ D are c-ideals of L.
Clearly, all maximal subalgebras M of L with M ∈ G are c-ideals of L and G ≠ ∅. Then all proper factor algebras of L are
solvable, by [14, Lemma 2.1(ii)] and Lemma 2.4. Suppose first that L is simple. Let M be a maximal subalgebra of L with
M ∈ G. Then M is a c-ideal, so there is an ideal C of L such that L = M + C and M ∩ C ≤ ML = 0, as L is simple. This yields
that C is a non-trivial proper ideal of L, a contradiction. If L has twominimal ideals B1 and B2, then L/B1 and L/B2 are solvable
and B1 ∩ B2 = 0, so L is solvable. Hence L has a unique minimal ideal B and L/B is solvable.

Suppose that there is an element b ∈ B such that adLb is not nilpotent. Let L = EL(b) ⊕ L1 be the Fitting decomposition
of L relative to adLb. Then L ≠ EL(b), so let M be a maximal subalgebra of L containing EL(b). As M ∈ G, it is a c-ideal, and
so there is an ideal C of L such that L = M + C and M ∩ C ≤ ML. Now L1 ≤ B, so B ≰ ML. It follows that ML = 0, whence
M = EL(b) and B = C = L1. But b ∈ M ∩ B = 0. Hence every element of B is ad-nilpotent, yielding that B is nilpotent, and
so L is solvable, a contradiction.

The converse follows from [14, Theorem 3.1]. �
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