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WHAT IS A MODULE?

The American Heritage Dictionary of the

English Language, Fourth Edition 2009.

HAS 8 DEFINITIONS



1. A standard or unit of measurement.

2. Architecture The dimensions of a struc-

tural component, such as the base of a

column, used as a unit of measurement or

standard for determining the proportions of

the rest of the construction.

3. Visual Arts/Furniture A standardized, of-

ten interchangeable component of a sys-

tem or construction that is designed for

easy assembly or flexible use: a sofa con-

sisting of two end modules.

4. Electronics A self-contained assembly of

electronic components and circuitry, such

as a stage in a computer, that is installed

as a unit.



5. Computer Science A portion of a pro-

gram that carries out a specific function

and may be used alone or combined with

other modules of the same program.

6. Astronautics A self-contained unit of a

spacecraft that performs a specific task or

class of tasks in support of the major func-

tion of the craft.

7. Education A unit of education or instruc-

tion with a relatively low student-to-teacher

ratio, in which a single topic or a small sec-

tion of a broad topic is studied for a given

period of time.

8. Mathematics A system with scalars com-

ing from a ring.



1. REVIEW OF ALGEBRAS

(SEPT 27,OCT 4,OCT 11)

AXIOMATIC APPROACH

AN ALGEBRA IS DEFINED TO BE A SET

(ACTUALLY A VECTOR SPACE) WITH

TWO BINARY OPERATIONS, CALLED

ADDITION AND MULTIPLICATION

ACTUALLY, IF YOU FORGET ABOUT

THE VECTOR SPACE, THIS DEFINES A

RING



ADDITION IS DENOTED BY

a+ b

AND IS REQUIRED TO BE

COMMUTATIVE AND ASSOCIATIVE

a+ b = b+ a, (a+ b) + c = a+ (b+ c)

THERE IS ALSO AN ELEMENT 0 WITH

THE PROPERTY THAT FOR EACH a,

a+ 0 = a

AND THERE IS AN ELEMENT CALLED −a
SUCH THAT

a+ (−a) = 0

MULTIPLICATION IS DENOTED BY

ab

AND IS REQUIRED TO BE DISTRIBUTIVE

WITH RESPECT TO ADDITION

(a+ b)c = ac+ bc, a(b+ c) = ab+ ac



IMPORTANT: A RING MAY OR MAY

NOT HAVE AN IDENTITY ELEMENT

1x = x1 = x

AN ALGEBRA (or RING) IS SAID TO BE

ASSOCIATIVE (RESP. COMMUTATIVE) IF

THE MULTIPLICATION IS ASSOCIATIVE

(RESP. COMMUTATIVE)

(RECALL THAT ADDITION IS ALWAYS

COMMUTATIVE AND ASSOCIATIVE)



Table 2

ALGEBRAS (OR RINGS)

commutative algebras

ab = ba

associative algebras

a(bc) = (ab)c

Lie algebras

a2 = 0

(ab)c+ (bc)a+ (ca)b = 0

Jordan algebras

ab = ba

a(a2b) = a2(ab)



Sophus Lie (1842–1899)

Marius Sophus Lie was a Norwegian

mathematician. He largely created the theory

of continuous symmetry, and applied it to the

study of geometry and differential equations.



Pascual Jordan (1902–1980)

Pascual Jordan was a German theoretical and

mathematical physicist who made significant

contributions to quantum mechanics and

quantum field theory.



THE DERIVATIVE

f ′(x) = lim
h→0

f(x+ h)− f(x)

h

DIFFERENTIATION IS A LINEAR

PROCESS

(f + g)′ = f ′+ g′

(cf)′ = cf ′

THE SET OF DIFFERENTIABLE

FUNCTIONS FORMS AN ALGEBRA D

(fg)′ = fg′+ f ′g

(product rule)



CONTINUITY

xn → x⇒ f(xn)→ f(x)

THE SET OF CONTINUOUS FUNCTIONS

FORMS AN ALGEBRA C

(sums, constant multiples and products of

continuous functions are continuous)

D and C ARE EXAMPLES OF ALGEBRAS

WHICH ARE BOTH ASSOCIATIVE AND

COMMUTATIVE

PROPOSITION 1

EVERY DIFFERENTIABLE FUNCTION IS

CONTINUOUS

D is a subalgebra of C; D ⊂ C



DIFFERENTIATION IS A LINEAR

PROCESS

LET US DENOTE IT BY D AND WRITE

Df for f ′

D(f + g) = Df +Dg

D(cf) = cDf

D(fg) = (Df)g + f(Dg)

D(f/g) =
g(Df)− f(Dg)

g2



DEFINITION 1

A DERIVATION ON C IS A LINEAR

PROCESS SATISFYING THE LEIBNIZ

RULE:

δ(f + g) = δ(f) + δ(g)

δ(cf) = cδ(f)

δ(fg) = δ(f)g + fδ(g)

THEOREM 1

There are no (non-zero) derivations on C.

In other words,

Every derivation of C is identically zero



DERIVATIONS ON THE SET OF

MATRICES

THE SET Mn(R) of n by n MATRICES IS

AN ALGEBRA UNDER

MATRIX ADDITION

A+B

AND

MATRIX MULTIPLICATION

A×B

WHICH IS ASSOCIATIVE BUT NOT

COMMUTATIVE.

(WE DEFINED TWO MORE

MULTIPLICATIONS)



DEFINITION 2

A DERIVATION ON Mn(R) WITH

RESPECT TO MATRIX MULTIPLICATION

IS A LINEAR PROCESS δ WHICH

SATISFIES THE PRODUCT RULE

δ(A×B) = δ(A)×B +A× δ(B)

.

PROPOSITION 2

FIX A MATRIX A in Mn(R) AND DEFINE

δA(X) = A×X −X ×A.

THEN δA IS A DERIVATION WITH

RESPECT TO MATRIX MULTIPLICATION

(WHICH CAN BE NON-ZERO)



THEOREM 2
(1942 Hochschild)

EVERY DERIVATION ON Mn(R) WITH
RESPECT TO MATRIX MULTIPLICATION

IS OF THE FORM δA FOR SOME A IN
Mn(R).

Gerhard Hochschild (1915–2010)

(Photo 1968)
Gerhard Paul Hochschild was an American
mathematician who worked on Lie groups,
algebraic groups, homological algebra and

algebraic number theory.



Joseph Henry Maclagan Wedderburn

(1882–1948)

Scottish mathematician, who taught at

Princeton University for most of his career. A

significant algebraist, he proved that a finite

division algebra is a field, and part of the

Artin–Wedderburn theorem on simple

algebras. He also worked on group theory and

matrix algebra.



Amalie Emmy Noether (1882–1935)

Amalie Emmy Noether was an influential

German mathematician known for her

groundbreaking contributions to abstract

algebra and theoretical physics. Described as

the most important woman in the history of

mathematics, she revolutionized the theories

of rings, fields, and algebras. In physics,

Noether’s theorem explains the fundamental

connection between symmetry and

conservation laws.



DISCUSSION OF EXERCISE 7

7. PROBLEM Let us write δa,b for the lin-

ear process δa,b(x) = a(bx)− b(ax) in a Jordan

algebra. Show that δa,b is a derivation of the

Jordan algebra by following the outline below.

SOLUTION

(a) In the Jordan algebra axiom

u(u2v) = u2(uv),

replace u by u+w to obtain the two equations

2u((uw)v)+w(u2v) = 2(uw)(uv)+u2(wv) (1)

and

u(w2v) + 2w((uw)v) = w2(uv) + 2(uw)(wv).

(Hint: Consider the “degree” of w on each side

of the equation resulting from the substitution)



(b) In (1), interchange v and w and subtract

the resulting equation from (1) to obtain the

equation

2u(δv,w(u)) = δv,w(u2). (2)

(c) In (2), replace u by x + y to obtain the

equation

δv,w(xy) = yδv,w(x) + xδv,w(y),

which is the desired result.



WE NOW RETURN TO MODULES

(the mathematical definition #8)

The American Heritage Dictionary of the

English Language, Fourth Edition 2009.

1. A standard or unit of measurement.

2. Architecture The dimensions of a struc-

tural component, such as the base of a

column, used as a unit of measurement or

standard for determining the proportions of

the rest of the construction.

3. Visual Arts/Furniture A standardized, of-

ten interchangeable component of a sys-

tem or construction that is designed for

easy assembly or flexible use: a sofa con-

sisting of two end modules.

4. Electronics A self-contained assembly of

electronic components and circuitry, such

as a stage in a computer, that is installed

as a unit.



5. Computer Science A portion of a pro-

gram that carries out a specific function

and may be used alone or combined with

other modules of the same program.

6. Astronautics A self-contained unit of a

spacecraft that performs a specific task or

class of tasks in support of the major func-

tion of the craft.

7. Education A unit of education or instruc-

tion with a relatively low student-to-teacher

ratio, in which a single topic or a small sec-

tion of a broad topic is studied for a given

period of time.

8. Mathematics A system with scalars com-

ing from a ring.



Nine Zulu Queens Ruled China

• Mathematicians think of numbers as a set

of nested Russian dolls. The inhabitants of

each Russian doll are honorary inhabitants

of the next one out.

N ⊂ Z ⊂ Q ⊂ R ⊂ C

• In N you can’t subtract; in Z you can’t

divide; in Q you can’t take limits; in R you

can’t take the square root of a negative

number. With the complex numbers C,

nothing is impossible. You can even raise

a number to a complex power.

• Z is a ring

• Q,R,C are fields

• Qn is a vector space over Q

• Rn is a vector space over R

• Cn is a vector space over C



A field is a commutative ring with iden-

tity element 1 such that for every nonzero

element x, there is an element called x−1

such that

xx−1 = 1

A vector space over a field F (called the

field of scalars) is a set V with an addition

+ which is commutative and associative

and has a zero element and for which there

is a “scalar” product ax in V for each a

in F and x in V , satisfying the following

properties for arbitrary elements a, b in F

and x, y in V :

1. (a+ b)x = ax+ bx

2. a(x+ y) = ax+ ay

3. a(bx) = (ab)x

4. 1x = x



In abstract algebra, the concept of a module

over a ring is a generalization of the notion of

vector space, wherein the corresponding

scalars are allowed to lie in an arbitrary ring.

Modules also generalize the notion of abelian

groups, which are modules over the ring of

integers.

Thus, a module, like a vector space, is an

additive abelian group; a product is defined

between elements of the ring and elements of

the module, and this multiplication is

associative (when used with the

multiplication in the ring) and distributive.



Modules are very closely related to the

representation theory

of groups and of other algebraic structures.

They are also one of the central notions of

commutative algebra

and

homological algebra,

and are used widely in

algebraic geometry

and

algebraic topology.



MOTIVATION

In a vector space, the set of scalars forms a

field and acts on the vectors by scalar

multiplication, subject to certain axioms such

as the distributive law. In a module, the

scalars need only be a ring, so the module

concept represents a significant

generalization.

In commutative algebra, it is important that

both ideals and quotient rings are modules,

so that many arguments about ideals or

quotient rings can be combined into a single

argument about modules.

In non-commutative algebra the distinction

between left ideals, ideals, and modules

becomes more pronounced, though some

important ring theoretic conditions can be

expressed either about left ideals or left

modules.



Much of the theory of modules consists of

extending as many as possible of the desirable

properties of vector spaces to the realm of

modules over a ”well-behaved” ring, such as

a principal ideal domain.

However, modules can be quite a bit more

complicated than vector spaces; for instance,

not all modules have a basis, and even those

that do, free modules, need not have a

unique rank if the underlying ring does not

satisfy the invariant basis number condition.

Vector spaces always have a basis whose

cardinality is unique (assuming the axiom of

choice).



FORMAL DEFINITION

A left R-module M over the ring R consists of

an abelian group (M, +) and an operation

R×M →M such that for all r,s in R, x,y in

M, we have:

r(x+ y) = rx+ ry

(r + s)x = rx+ sx

(rs)x = r(sx)

1x = x

if R has multiplicative identity 1.

The operation of the ring on M is called

scalar multiplication, and is usually written by

juxtaposition, i.e. as rx for r in R and x in M.



If one writes the scalar action as fr so that

fr(x) = rx, and f for the map which takes

each r to its corresponding map fr, then the

first axiom states that every fr is a group

homomorphism of M, and the other three

axioms assert that the map f:R → End(M)

given by r 7→ fr is a ring homomorphism from

R to the endomorphism ring End(M).

In this sense, module theory generalizes

representation theory, which deals with group

actions on vector spaces.

A bimodule is a module which is a left

module and a right module such that the two

multiplications are compatible.



EXAMPLES

1. If K is a field, then the concepts ”K-vector

space” (a vector space over K) and K-module

are identical.

2. The concept of a Z-module agrees with the

notion of an abelian group. That is, every

abelian group is a module over the ring of

integers Z in a unique way. For n ≥ 0, let

nx = x + x + ... + x (n summands), 0x =

0, and (-n)x = -(nx). Such a module need

not have a basis

3. If R is any ring and n a natural number,

then the cartesian product Rn is both a left

and a right module over R if we use the

component-wise operations. Hence when

n = 1, R is an R-module, where the scalar

multiplication is just ring multiplication. The

case n = 0 yields the trivial R-module 0 con-

sisting only of its identity element. Modules

of this type are called free

Note: THE NEXT 8 PAGES MAY BE

SKIPPED AT THIS TIME



4. If S is a nonempty set, M is a left R-module,

and MS is the collection of all functions f

: S → M, then with addition and scalar

multiplication in MS defined by (f + g)(s)

= f(s) + g(s) and (rf)(s) = rf(s), MS is

a left R-module. The right R-module case

is analogous. In particular, if R is commu-

tative then the collection of R-module ho-

momorphisms h : M → N (see below) is

an R-module (and in fact a submodule of

NM).

5. The square n-by-n matrices with real entries

form a ring R, and the Euclidean space Rn is

a left module over this ring if we define the

module operation via matrix multiplication.

If R is any ring and I is any left ideal in R,

then I is a left module over R. Analogously

of course, right ideals are right modules.

6. There are modules of a Lie algebra as well.



SUBMODULES AND HOMOMORPHISMS

Suppose M is a left R-module and N is a

subgroup of M. Then N is a submodule

(or R-submodule, to be more explicit) if,

for any n in N and any r in R, the product

r n is in N (or nr for a right module).

If M and N are left R-modules, then a map

f : M → N is a homomorphism of R-

modules if, for any m, n in M and r, s in

R, f(rm + sn) = rf(m) + sf(n).

This, like any homomorphism of mathemat-

ical objects, is just a mapping which pre-

serves the structure of the objects. Another

name for a homomorphism of modules over

R is an R-linear map.



A bijective module homomorphism is an iso-

morphism of modules, and the two mod-

ules are called isomorphic.

Two isomorphic modules are identical for

all practical purposes, differing solely in the

notation for their elements.

The kernel of a module homomorphism f :

M → N is the submodule of M consisting of

all elements that are sent to zero by f.

The isomorphism theorems familiar from groups

and vector spaces are also valid for R-modules.



TYPES OF MODULES

(a) Finitely generated A module M is finitely

generated if there exist finitely many ele-

ments x1, . . . xn in M such that every ele-

ment of M is a linear combination of those

elements with coefficients from the scalar

ring R.

(b) Cyclic module A module is called a cyclic

module if it is generated by one element.

(c) Free A free module is a module that has

a basis, or equivalently, one that is iso-

morphic to a direct sum of copies of the

scalar ring R. These are the modules that

behave very much like vector spaces.

(d) Projective Projective modules are direct

summands of free modules and share many

of their desirable properties.

(e) Injective Injective modules are defined du-

ally to projective modules.

(f) Flat A module is called flat if taking the

tensor product of it with any short exact

sequence of R modules preserves exact-

ness.



(g) Simple A simple module S is a module

that is not 0 and whose only submodules

are 0 and S. Simple modules are some-

times called irreducible.

(h) Semisimple A semisimple module is a di-

rect sum (finite or not) of simple modules.

Historically these modules are also called

completely reducible.

(i) Indecomposable An indecomposable mod-

ule is a non-zero module that cannot be

written as a direct sum of two non-zero

submodules. Every simple module is in-

decomposable, but there are indecompos-

able modules which are not simple (e.g.

uniform modules).

(j) Faithful A faithful module M is one where

the action of each r 6= 0 in R on M is

nontrivial (i.e. rx 6= 0 for some x in M).

Equivalently, the annihilator of M is the

zero ideal.

(k) Noetherian. A Noetherian module is a

module which satisfies the ascending chain

condition on submodules, that is, every



increasing chain of submodules becomes

stationary after finitely many steps. Equiv-

alently, every submodule is finitely gener-

ated.

(l) Artinian An Artinian module is a mod-

ule which satisfies the descending chain

condition on submodules, that is, every

decreasing chain of submodules becomes

stationary after finitely many steps.

(m) Graded A graded module is a module de-

composable as a direct sum M = ⊕xMx

over a graded ring R = ⊕xRx such that

RxMy ⊂Mx+y for all x and y.

(n) Uniform A uniform module is a module

in which all pairs of nonzero submodules

have nonzero intersection.



RELATION TO REPRESENTATION

THEORY

If M is a left R-module, then the action of

an element r in R is defined to be the map

M → M that sends each x to rx (or xr in the

case of a right module), and is necessarily

a group endomorphism of the abelian group

(M,+).

The set of all group endomorphisms of M

is denoted EndZ(M) and forms a ring un-

der addition and composition, and sending

a ring element r of R to its action actu-

ally defines a ring homomorphism from R

to EndZ(M).



Such a ring homomorphism R → EndZ(M)

is called a representation of R over the abelian

group M; an alternative and equivalent way

of defining left R-modules is to say that

a left R-module is an abelian group M to-

gether with a representation of R over it.

A representation is called faithful if and only

if the map R → EndZ(M) is injective. In

terms of modules, this means that if r is an

element of R such that rx=0 for all x in M,

then r=0.

END OF “MODULE” ON MODULES



DERIVATIONS INTO A MODULE

So far we have defined a module over an

associative algebra. One can also define

modules over Lie algebras and modules

over Jordan algebras.

We now recall the earlier theorems on

derivations and restate them in the case of

a derivation into a module



(i) ASSOCIATIVE ALGEBRAS

derivation: D(ab) = a ·Db+Da · b

inner derivation: δx(a) = x · a− a ·x (x ∈M)

THEOREM (Noether,Wedderburn)

(early 20th century))

EVERY DERIVATION OF SEMISIMPLE

ASSOCIATIVE ALGEBRA IS INNER,

THAT IS, OF THE FORM x 7→ ax− xa
FOR SOME a IN THE ALGEBRA

THEOREM (Hochschild 1942)

EVERY DERIVATION OF SEMISIMPLE

ASSOCIATIVE ALGEBRA INTO A

MODULE IS INNER, THAT IS, OF THE

FORM x 7→ a · x− x · a FOR SOME a IN

THE MODULE



(ii) LIE ALGEBRAS

derivation: D([a, b]) = [a,Db] + [Da, b]

inner derivation: δx(a) = [a, x] (x ∈M)

THEOREM (Zassenhaus)

(early 20th century)

EVERY DERIVATION OF A FINITE

DIMENSIONAL SEMISIMPLE LIE

ALGEBRA INTO ITSELF IS INNER

THEOREM (Hochschild 1942)

EVERY DERIVATION OF A FINITE

DIMENSIONAL SEMISIMPLE LIE

ALGEBRA INTO A MODULE IS INNER



(iii) JORDAN ALGEBRAS

derivation: D(a ◦ b) = a ◦Db+Da ◦ b

inner derivation:∑
i[L(xi)L(ai)− L(ai)L(xi)]

(xi ∈M,ai ∈ A)

b 7→
∑
i[xi ◦ (ai ◦ b)− ai ◦ (xi ◦ b)]

THEOREM (1949-Jacobson)

EVERY DERIVATION OF A FINITE

DIMENSIONAL SEMISIMPLE JORDAN

ALGEBRA INTO ITSELF IS INNER

THEOREM (1951-Jacobson)

EVERY DERIVATION OF A FINITE

DIMENSIONAL SEMISIMPLE JORDAN

ALGEBRA INTO A (JORDAN)

MODULE IS INNER

(Lie algebras, Lie triple systems)


