DERIVATIONS

Introduction to non-associative algebra
OR
Playing havoc with the product rule?

BERNARD RUSSO
UNIVERSITY OF CALIFORNIA, IRVINE
DEPARTMENT OF MATHEMATICS

UNIVERSITY STUDIES 4 TRANSFER SEMINAR

FALL 2012
Sixth Meeting: November 1, 2012

OUTLINE OF TODAY'S MEETING

> 1. SOME SET THEORY
> (EQUIVALENCE CLASSES)
2. GROUPS AND THEIR QUOTIENT GROUPS
3. FIRST COHOMOLOGY GROUP

4. SECOND COHOMOLOGY GROUP

Note:
PARTS 1,2,4 WILL BE POSTPONED TO OUR NEXT MEETING (NOVEMBER 8)

PART 1 OF TODAY'S TALK (Will be discussed on November 8)

A partition of a set X is a disjoint class $\left\{X_{i}\right\}$ of non-empty subsets of X whose union is X

- $\{1,2,3,4,5\}=\{1,3,5\} \cup\{2,4\}$
- $\{1,2,3,4,5\}=\{1\} \cup\{2\} \cup\{3,5\} \cup\{4\}$
- $\mathbf{R}=\mathbf{Q} \cup(\mathbf{R}-\mathbf{Q})$
- $\mathbf{R}=\cdots \cup[-2,-1) \cup[-1,0) \cup[0,1) \cup \cdots$

A binary relation on the set X is a subset R of $X \times X$. For each ordered pair

$$
(x, y) \in X \times X
$$

x is said to be related to y if $(x, y) \in R$.

- $R=\{(x, y) \in \mathbf{R} \times \mathbf{R}: x<y\}$
- $R=\{(x, y) \in \mathbf{R} \times \mathbf{R}: y=\sin x\}$
- For a partition $X=\cup_{i} X_{i}$ of a set X, let $R=\left\{(x, y) \in X \times X: x, y \in X_{i}\right.$ for some $\left.i\right\}$

An equivalence relation on a set X is a relation $R \subset X \times X$ satisfying
reflexive $(x, x) \in R$
symmetric $(x, y) \in R \Rightarrow(y, x) \in R$
transitive $(x, y),(y, z) \in R \Rightarrow(x, z) \in R$
There is a one to one correspondence between equivalence relations on a set X and partitions of that set.

NOTATION

- If R is an equivalence relation we denote $(x, y) \in R$ by $x \sim y$.
- The equivalence class containing x is denoted by $[x]$. Thus

$$
[x]=\{y \in X: x \sim y\} .
$$

EXAMPLES

- equality: $R=\{(x, x): x \in X\}$
- equivalence class of fractions
= rational number:

$$
R=\left\{\left(\frac{a}{b}, \frac{c}{d}\right): a, b, c, d \in \mathbf{Z}, b \neq 0, d \neq 0, a d=b c\right\}
$$

- equipotent sets: X and Y are equivalent if there exists a function $f: X \rightarrow Y$ which is one to one and onto.
- half open interval of length one:

$$
R=\{(x, y) \in \mathbf{R} \times \mathbf{R}: x-y \text { is an integer }\}
$$

- integers modulo n :
$R=\{(x, y) \in \mathbf{N} \times \mathbf{N}: x-y$ is divisible by $n\}$

PART 2 OF TODAY'S TALK

(Will be discussed on November 8)
A group is a set G together with an operation (called multiplication) which associates with each ordered pair x, y of elements of G a third element in G (called their product and written $x y$) in such a manner that

- multiplication is associative: $(x y) z=x(y z)$
- there exists an element e in G, called the identity element with the property that

$$
x e=e x=x \text { for all } x
$$

- to each element x, there corresponds another element in G, called the inverse of x and written x^{-1}, with the property that

$$
x x^{-1}=x^{-1} x=e
$$

TYPES OF GROUPS

- commutative groups: $x y=y x$
- finite groups $\left\{g_{1}, g_{2}, \cdots, g_{n}\right\}$
- infinite groups $\left\{g_{1}, g_{2}, \cdots, g_{n}, \cdots\right\}$
- cyclic groups $\left\{e, a, a^{2}, a^{3}, \ldots\right\}$

EXAMPLES

1. $\mathbf{R},+, 0, x^{-1}=-x$
2. positive real numbers, $\times, 1, x^{-1}=1 / x$
3. \mathbf{R}^{n},vector addition, $(0, \cdots, 0)$,

$$
\left(\mathrm{x}_{1}, \cdots, x_{n}\right)^{-1}=\left(-x_{1}, \cdots,-x_{n}\right)
$$

4. $\mathcal{C},+, 0, f^{-1}=-f$
5. $\{0,1,2, \cdots, m-1\}$, addition modulo $m, 0$, $k^{-1}=m-k$
6. permutations (=one to one onto functions), composition, identity permutation, inverse permutation
7. $M_{n}(\mathbf{R}),+, 0, \mathrm{~A}^{-1}=\left[-a_{i j}\right]$
8. non-singular matrices, matrix multiplication, identity matrix, matrix inverse

Which of these are commutative, finite, infinite?

We shall consider only commutative groups and we shall denote the multiplication by + , the identity by 0 , and inverse by -. No confusion should result.

> ALERT
> Counterintuitively, a very important (commutative) group is a group with one element

Let H be a subgroup of a commutative group G. That is, H is a subset of G and is a group under the same $+, 0,-$ as G.

Define an equivalence relations on G as follows: $x \sim y$ if $x-y \in H$.

The set of equivalence classes is a group under the definition of addition given by

$$
[x]+[y]=[x+y] .
$$

This group is denoted by G / H and is called the quotient group of G by H.

Special cases:

$$
\begin{aligned}
H & =\{e\} ; G / H=G \text { (isomorphic) } \\
H & =G ; G / H=\{e\} \text { (isomorphic) }
\end{aligned}
$$

EXAMPLES

1. $G=\mathbf{R},+, 0, x^{-1}=-x$;

$$
H=\mathbf{Z} \text { or } H=\mathbf{Q}
$$

2. \mathbf{R}^{n}, vector addition, $(0, \cdots, 0)$,
$\left(\mathrm{X}_{1}, \cdots, x_{n}\right)^{-1}=\left(-x_{1}, \cdots,-x_{n}\right) ;$ $H=\mathbf{Z}^{n}$ or $H=\mathbf{Q}^{n}$
3. $\mathcal{C},+, 0, f^{-1}=-f$;
$H=\mathcal{D}$ or $H=$ polynomials
4. $M_{n}(\mathbf{R}),+, 0, \mathrm{~A}^{-1}=\left[-a_{i j}\right]$;
$H=$ symmetric matrices, or $H=$ anti-symmetric matrices

Part 3 of today's talk
 COHOMOLOGY OF ASSOCIATIVE ALGEBRAS
 (FIRST COHOMOLOGY GROUP)

The basic formula of homological algebra

$$
\begin{gathered}
F\left(x_{1}, \ldots, x_{n}, x_{n+1}\right)= \\
x_{1} f\left(x_{2}, \ldots, x_{n+1}\right) \\
-f\left(x_{1} x_{2}, x_{3}, \ldots, x_{n+1}\right) \\
+f\left(x_{1}, x_{2} x_{3}, x_{4}, \ldots, x_{n+1}\right) \\
-\cdots \\
\pm f\left(x_{1}, x_{2}, \ldots, x_{n} x_{n+1}\right) \\
\mp f\left(x_{1}, \ldots, x_{n}\right) x_{n+1}
\end{gathered}
$$

OBSERVATIONS

- n is a positive integer, $n=1,2, \cdots$
- f is a function of n variables
- F is a function of $n+1$ variables
- $x_{1}, x_{2}, \cdots, x_{n+1}$ belong an algebra A
- $f\left(y_{1}, \ldots, y_{n}\right)$ and $F\left(y_{1}, \cdots, y_{n+1}\right)$ also belong to A

HIERARCHY

- $x_{1}, x_{2}, \ldots, x_{n}$ are points (or vectors)
- f and F are functions- they take points to points
- T, defined by $T(f)=F$ is a transformationtakes functions to functions
- points x_{1}, \ldots, x_{n+1} and $f\left(y_{1}, \ldots, y_{n}\right)$ will belong to an algebra A
- functions f will be either constant, linear or multilinear (hence so will F)
- transformation T is linear

SHORT FORM OF THE FORMULA

$$
\begin{gathered}
(T f)\left(x_{1}, \ldots, x_{n}, x_{n+1}\right) \\
=x_{1} f\left(x_{2}, \ldots, x_{n+1}\right) \\
+\sum_{j=1}^{n}(-1)^{j} f\left(x_{1}, \ldots, x_{j} x_{j+1}, \ldots, x_{n+1}\right) \\
+(-1)^{n+1} f\left(x_{1}, \ldots, x_{n}\right) x_{n+1}
\end{gathered}
$$

FIRST CASES

$$
\underline{n}=0
$$

If f is any constant function from A to A, say, $f(x)=b$ for all x in A, where b is a fixed element of A, we have, consistent with the basic formula,

$$
T_{0}(f)\left(x_{1}\right)=x_{1} b-b x_{1}
$$

$$
\underline{n}=1
$$

If f is a linear map from A to A, then

$$
T_{1}(f)\left(x_{1}, x_{2}\right)=x_{1} f\left(x_{2}\right)-f\left(x_{1} x_{2}\right)+f\left(x_{1}\right) x_{2}
$$

$$
\underline{n}=2
$$

If f is a bilinear map from $A \times A$ to A, then

$$
\begin{gathered}
T_{2}(f)\left(x_{1}, x_{2}, x_{3}\right)= \\
x_{1} f\left(x_{2}, x_{3}\right)-f\left(x_{1} x_{2}, x_{3}\right) \\
+f\left(x_{1}, x_{2} x_{3}\right)-f\left(x_{1}, x_{2}\right) x_{3}
\end{gathered}
$$

Kernel and Image of a linear transformation

- $G: X \rightarrow Y$

Since X and Y are vector spaces, they are in particular, commutative groups.

- Kernel of G is
$\operatorname{ker} G=\{x \in X: G(x)=0\}$
This is a subgroup of X
- Image of G is
$\operatorname{im} G=\{G(x): x \in X\}$
This is a subgroup of Y

What is the kernel of D on \mathcal{D} ?

What is the image of D on \mathcal{D} ?
(Hint: Second Fundamental theorem of calculus)

$$
\text { We now let } G=T_{0}, T_{1}, T_{2}
$$

$$
\underline{G}=T_{0}
$$

$$
\begin{gathered}
X=A \text { (the algebra) } \\
Y=L(A)(\text { all linear transformations on } A) \\
T_{0}(f)\left(x_{1}\right)=x_{1} b-b x_{1} \\
\operatorname{ker} T_{0}=\{b \in A: x b-b x=0 \text { for all } x \in A\} \\
\quad(\text { center of } A)
\end{gathered}
$$

$\operatorname{im} T_{0}=$ the set of all linear maps of A of the form $x \mapsto x b-b x$,
in other words, the set of all inner derivations of A
$\operatorname{ker} T_{0}$ is a subgroup of A
$\operatorname{im} T_{0}$ is a subgroup of $L(A)$

$$
\underline{G}=T_{1}
$$

$X=L(A)$ (linear transformations on A)

$Y=L^{2}(A)$ (bilinear transformations on $A \times A$)

$$
\begin{gathered}
T_{1}(f)\left(x_{1}, x_{2}\right)=x_{1} f\left(x_{2}\right)-f\left(x_{1} x_{2}\right)+f\left(x_{1}\right) x_{2} \\
\operatorname{ker} T_{1}=\left\{f \in L(A): T_{1} f\left(x_{1}, x_{2}\right)=\right. \\
\left.0 \text { for all } x_{1}, x_{2} \in A\right\}=\text { the set of all } \\
\text { derivations of } A
\end{gathered}
$$

$\operatorname{im} T_{1}=$ the set of all bilinear maps of $A \times A$ of the form
$\left(x_{1}, x_{2}\right) \mapsto x_{1} f\left(x_{2}\right)-f\left(x_{1} x_{2}\right)+f\left(x_{1}\right) x_{2}$,
for some linear function $f \in L(A)$.
$\operatorname{ker} T_{1}$ is a subgroup of $L(A)$
$\operatorname{im} T_{1}$ is a subgroup of $L^{2}(A)$

$$
L^{0}(A) \xrightarrow{T_{0}} L(A) \xrightarrow{T_{1}} L^{2}(A) \xrightarrow{T_{2}} L^{3}(A) \cdots
$$

FACTS:

- $T_{1} \circ T_{0}=0$
- $T_{2} \circ T_{1}=0$
- $T_{n+1} \circ T_{n}=0$

Therefore

$$
\begin{gathered}
\operatorname{im} T_{n} \subset \operatorname{ker} T_{n+1} \subset L^{n}(A) \\
\text { and }
\end{gathered}
$$

$\operatorname{im} T_{n}$ is a subgroup of $\operatorname{ker} T_{n+1}$

- $\operatorname{im} T_{0} \subset \operatorname{ker} T_{1}$
says
Every inner derivation is a derivation
- $\operatorname{im} T_{1} \subset \operatorname{ker} T_{2}$
says
for every linear map f, the bilinear map F defined by

$$
F\left(x_{1}, x_{2}\right)=x_{1} f\left(x_{2}\right)-f\left(x_{1} x_{2}\right)+f\left(x_{1}\right) x_{2}
$$

satisfies the equation

$$
\begin{gathered}
x_{1} F\left(x_{2}, x_{3}\right)-F\left(x_{1} x_{2}, x_{3}\right)+ \\
F\left(x_{1}, x_{2} x_{3}\right)-F\left(x_{1}, x_{2}\right) x_{3}=0
\end{gathered}
$$

for every $x_{1}, x_{2}, x_{3} \in A$.

The cohomology groups of A are defined as the quotient groups

$$
\begin{gathered}
H^{n}(A)=\frac{\operatorname{ker} T_{n}}{\operatorname{im} T_{n-1}} \\
(n=1,2, \ldots)
\end{gathered}
$$

Thus

$$
H^{1}(A)=\frac{\operatorname{ker} T_{1}}{\operatorname{im} T_{0}}=\frac{\text { derivations }}{\text { inner derivations }}
$$

$$
H^{2}(A)=\frac{\operatorname{ker} T_{2}}{\operatorname{im} T_{1}}=\frac{?}{?}
$$

The theorem that every derivation of $M_{n}(\mathbf{R})$ is inner (that is, of the form δ_{a} for some $\left.a \in M_{n}(\mathbf{R})\right)$ can now be restated as: "the cohomology group $H^{1}\left(M_{n}(\mathbf{R})\right)$ is the trivial one element group"

Some facts which may be discussed later on (M is a module)

- $H^{1}(\mathcal{C})=0, H^{2}(\mathcal{C})=0$
- $H^{1}(\mathcal{C}, M)=0, H^{2}(\mathcal{C}, M)=0$
- $H^{n}\left(M_{k}(\mathbf{R}), M\right)=0 \quad \forall n \geq 1, k \geq 2$
- $H^{n}(A)=H^{1}(A, L(A))$ for $n \geq 2$

Cohomology groups were defined in various contexts as follows

- associative algebras (1945)
- Lie algebras (1952)
- Lie triple systems $(1961,2002)$
- Jordan algebras (1971)
- associative triple systems (1976)
- Jordan triple systems (1982)

Part 4 of today's meeting
THIS IS POSTPONED TO THE NEXT NEXT MEETING
(November 8)

